A quasi-static model test series using model pile and soil are performed to measure stresses and strains in the soil around the pile. A model pile is buried 250mm in the ground and loaded on the pile top. The stresses and strains in the ground are measured by pressure transducers and coil type displacement gauges. According to the test results, the following findings are obtained. In the soil around the pile tip, the resultant stress of normal stresses is act in a radial direction from a point 2.5~3.0D(D: diameter) below the pile tip. Stress strain curve in quasi-static test is matched with that of static test.

Keywords: Pile, Bearing Capacity, Model Test, Vertical Load, Loading Test

1. 序論

杭の鉄直載荷試験は、長時間かけて杭をゆっくり押し込む静的載荷試験（静的試験）を行うことが望まれる。静的載荷試験では、荷重と沈下の関係を明確にすることができるが、長時間の試験時間と複雑な装置、それに伴う多額の費用が必要になる。一方、杭頭にハンマーを落下させることに衝撃力が載荷荷重とする動的載荷試験（動的試験）の研究も行われている。動的載荷試験では短時間の試験を可能とするが、動的載荷試験の適用を考慮するためには、杭の変形を考慮できないことから、静的載荷試験と動的載荷試験の中間的な存在として急速載荷試験の有用性が認められてきた。急速載荷試験は、試験時間が静的載荷試験より短く、経済的に試験を行え、動的載荷試験よりも長い載荷時間を得ることから弾性波動伝播の影響を少なくすることができる。

ASTM Standard DraftのLong period dynamic load testingでは、次式の荷重成分から構成されている。

1. 50ms程度の滑らかに増加する荷重成分
2. 15~20ms程度のピーク値を維持する荷重成分
3. 30ms程度以上の滑らかに除荷荷重成分

現在までの筆者らは、急速載荷載荷試験法の1つとして杭頭にコイル状のばねを介してハンマーで打撃する準静的試験を行ってきた。動的試験では、杭体の弾性波動現象が変形できるため、加速度や速度の影響を補正してもその結果は静的試験と大きく異なるが、準静的試験では、加速度と速度の補正により静的試験結果を推定することができる。模型実験では、気乾状態の砂地盤を想定した打込み杭に対し、載荷時間は13~94msecを示した結果、杭の変形を急激に加速させ、荷重を大きくすることで、杭体に発生する弾性波動伝播の影響は少なくなる。また、Nw=10で弾性波動の影響を無視することができる、Nw=1000程度になると、地盤内の間摩擦の消えおよび剛性抵抗は静的試験とほぼ同様になると言われている。以上、これより載荷時間の長い試験を行うと、杭体に発生する弾性波動伝播の影響は少なくなる。
頭荷重〜沈下曲線を再現することを目的とした実験では、杭頭に介するばねの剛性に関わらず、ハンマーの質量を杭質量の3倍以上にすると静的試験の第1限界荷重付近まで再現できた。また、このうち杭頭に介するばねの剛性が地盤剛性の1/50以下のケースでは、載荷荷重〜沈下量が大きくなり、静的試験の第2限界荷重付近まで再現できなかった。このことから杭頭に介するばねの剛性が地盤剛性の1/50〜1/5のケースでも弾性波の影響を少なからず受け、静的試験の非線形変形まで再現することができる。本研究では杭頭付近の地盤を再現する模型実験装置により、動的試験、準静的試験、静的試験の3種類の載荷方法の異なる試験を行い、杭頭および杭部周辺付近の地盤内の応力およびひずみを圧力センサおよび2点間の距離の変化を検知できる地中変位計を用いて計測した。これにより、載荷速度が地盤内の応力およびひずみに及ぼす影響を調べると共に、準静的試験が、静的試験の代用となる可能性を調べることを目的とした。

2. 実験装置および方法
2.1 実験装置と載荷方法
実験装置(鉄骨製可変床沈下試験装置)、土槽(直径800mm、高さ800mmの円筒形)、模型杭(直径41mm、先端開放形)は、前報[9]と同じ装置を用いて動的試験、準静的試験、静的試験を行い杭頭荷重、杭頭沈下量、杭頭加速度および地盤内の応力と地盤のひずみを計測した。

表1に実験ケースを示す。上載荷は、すべてのケースで200kN/m²とした。静的試験では、実験装置上部にある静的試験用手動油圧ジャッキを用い、3.5minの定数持続で手動により単純荷重した。動的試験では直接ノッキングヘッドを、準静的試験ではノッキングヘッド上にコイル状のばねを介し、ハンマーで打撃することで載荷した。準静的試験で杭頭に介するばねの剛性は、ばね定数215kN/m²の2種類、ハンマーは標準貫入試験用のモンケン(63.5kg)を使用し、落下荷重は動的試験、準静的試験とも200mmとした。

2.2 模型地盤と地盤内センサ
2.2.1 模型地盤の性質
2.2.1.1 模型地盤
模型地盤には、気乾状態の珪砂7号を用いた模型地盤の作成は、多重ふるい法（目的の異なるふるいを一層毎に90%にずらした3層のふるいに珪砂を流量3kg/min、高さ400mmからふるいに落下させ、砂の落下速度を調節）により、密迄再現性のある地盤を作成した。また、地盤作成中には所定の位置に各センサを正確に設置した。模型地盤の土槽底面から500mmまで作成後に、土槽内部に模型杭(標準貫入試験用ロッド直径41mm)を設置し、残りの地盤を同じ方法により作成することにより、土槽内部の密度1.525g/cm³、相対密度99%の地盤を得た。地盤作成中に杭を建て入れることで、杭は非撚扱杭となる。また、c=3軸圧縮試験により得られたせん断破壊面は36°であった。

図1に、模型地盤のサウンディング結果を示す。コーン貫入試験では、コーン底面面積6442cm²を用い、貫入速度10mm/secで貫入量50mm、毎に貫入量を観察、計測した。地盤表面から深さ150mmでコーン貫入抵抗を5MN/m²の一定値となり、これは模型地盤表面より150mm付近までは、上限荷重の杭貫入(直径110mm)の影響で、上限荷重がその周辺に完全に伝わっていなかったためである。標準貫入試験結果は、地盤内部や杭貫入抵抗をも考慮した精度である。
入試験では、地盤表面から予備打ち150mm後、300mm貫入するまでのN値を計測した結果、N=15であった。

図2には、センサ埋設位置を示す。模型地盤の厚さは750mm、杭先端位置は土槽底面から500mm、杭の挿入長さは250mmとした。静的試験では、図中のNo.1～12位置に、動的試験、準静的試験ではNo.1～6位置にセンサを埋設した。図中の印の位置は圧力センサ、印の位置には圧力センサと地中変位センサを各測点で鉛直、水平の2方向に埋設した。鉛直方向の圧力センサは受圧面を上向きに水平方向では杭軸方向に埋設した。杭先端の水平方向のセンサは、杭中心軸上に受圧面を設置した。杭中心軸上のセンサ埋設位置No.1は、杭先端からSDD(杭径41mm)とした。

図3に水平実験での各センサ詳細図を示す。圧力センサは受圧面の直径6mm、長さ26mm、地中変位センサは直径29mm、厚さ3.2mmの円盤状のものを用いた。圧力センサはひずみゲージ式変換器を用い、地中変位センサは2つの1組として模型地盤中に埋め込み、センサ間の初期間隔を変化させることで出力変換を測定できる仕組みである。なお地中変位センサのセンサ間の距離は、1d(d:センサの直径29mm)とした。地盤の相対変位(ひずみ)を計測した。地盤変位センサは、一軸圧縮試験機の上下に各センサを取り付け、センサ間の距離を変化させることで計測した。圧力センサおよび地中変位センサのキャリブレーション結果は、出力値と空気圧および出力値とセンサ間の距離において、最小2乗法で求めた相関係数は0.999（最大誤差3%）および0.991（最大誤差10%）であった。なお、圧力センサ、地中変位センサ共に、応答周波数は20kHzものものを用いた。また、費用短少にて圧力センサと土圧計を設置して計測し、両者の出力を比較して違いの無いことを確認した。

2.3 計算方法

動的試験、準静的試験での動的な、ひずみゲージ(対辺2ゲージ3線法)を芯に貼付、静的試験ではロードセルを用いた。杭頭沈下量の計算には、いずれの試験とも非接触変位計を用いた。また動的試験、準静的試験では、杭頭を加速度を計測した。計測は動的試験、準静的試験では0.1msec毎に、静的試験では5sec毎にAD変換器を用いて記録した。またいずれの実験とも、すべての計測装置の設置が整った段階で計上載荷を与え、静的試験はその状態で、動的試験、準静的試験ではハンマーをつっこんだ状態で各センサの初期値の調整を行った。またすべての計測は上載荷をかけた後の増分を計測した。なお、動的試験、準静的試験では、荷重計測値の高周波ノイズ成分の除去のため300Hzのローパスフィルタをかけた。なお載荷に対するフィルタは、1500～150Hzと様々な周波数を試みてきた結果、300Hzで動的、準静的試験ともに実測値の高周波ノイズ成分を取り除くことができ、載荷～時間曲線および荷重～沈下曲線において実測値の平均的な滑らかな曲線で示すことができた。動的試験、準静的試験での杭頭沈下量およびすべての試験の地盤内ひずみは細かく振幅を取り除き滑らかな曲線とするため、各測定値より10区間(1msec分のデータ)の平均値(移動平均)とした。各試験の地盤内応力および静的試験の杭頭荷重、杭頭沈下量には、ノイズ成分が含まれていなかったため、フィルタ処理は施していない。

3.実験結果

3.1 抗衡荷重と沈下量の関係

動的、準静的試験の実測抗衡荷重には、杭に加速度、速度を伴うため、慣性力(Fin)と速度に依存する地盤の抵抗力(Fr)が生じる。Fnは(2)式に示すように杭頭加速度(a)と杭の質量(m)の積である。Frは(3)式に示すように杭の貫入速度(v)と減衰定数(c)で得ることができる。なお減衰定数cはHorvathらが提案した減衰定数(1)により求めた。

图4aに実測荷重と沈下の関係を、图4bにFhとFcを差し引いた荷重(フリップと沈下の関係)を示す。加速度と速度の影響を補正することにより、準静的試験の荷重と沈下の関係はいずれも静的試験の結果に近づいていることが分る。一方、動的試験結果はこのような補正を行っても静的試験とは大きな差が見られる。すなわち、Fh、Fcの発生が小さく、実測値(图4a)とFc(図4b)ではほぼ同じ挙動を示した。

图5aにNo.1位置(図2)で測定した地盤内応力と時間の関係を、图5bにNo.1位置(図2)での地盤内ひずみと時間の関係を示す。図中にはdy, h, sはそれぞれ動的試験、hは、sはね、v, Hは、鉛直、水平方向応力を示す。図5aに示した矢印は応力の発生から一定値を示すまでの時間を示し、この時間は地盤内応力継続時間とする。図5bに示す実験は、すなわちの発生から一定値を示すまでの時間を示しており、この時間はひずみ継続時間とする。地盤内応力は、杭荷重の大きさのhはねで大きく、sはねでは、それより小さくなった。また、鉛直、水平方向に杭頭に介するばねの剛性を小
さくすることで、長い載荷時間を得られることから、地盤内応力継続時間は長くなる。ひずみ継続時間は、動的試験、h ばね、s ばねで 40.5ms、44.3ms、67.7ms を示し、杭頭に介するばねの剛性を小さくすることで長くなる。また、いずれの試験でも地盤内応力、ひずみは、載荷後 0.5msec に最大値を示した。これは、杭の貫入に伴い地盤が塑性化したためである。

図 6 a、b に鉛直方向、水平方向の地盤内応力継続時間と載荷時間の関係を示す。載荷時間と、杭頭荷重～時間曲線において、杭頭に荷重が作用した点を起点に、杭頭荷重が再び 0 に戻るまでの時間とした。図中に示す数値は、センサ埋設位置（図 2）を示す。地盤内応力継続時間は、載荷時間に対して動的試験で 1.4 倍、h ばね、s ばね 1.1 倍を示し、いずれの試験ともに地盤内の応力継続時間が載荷時間よりも長いため、杭頭に介するばねの剛性を小さくすると地盤内応力継続時間と載荷時間は近づいてくる。

図 7 にひずみ継続時間と載荷時間の関係を示す。図中の V、H は鉛直、水平方を、1、4、6 は計測位置を示す。ひずみ継続時間は、いずれの計測位置でもほぼ同じ時間で示している。いずれの試験ともに載荷時間よりもやや長い時間で示しており、載荷時間に対して動的試験、h ばね、s ばねで 1.5 倍、1.2 倍、1.1 倍示した。杭頭に介するばねの剛性を小さくすることで各測点のひずみ継続時間は載荷時間に一致しており、その差も少なくなる。ひずみ継続時間は、図 6 とほぼ同じ傾向を示した。

3.3 杭頭沈下量と地盤内応力の関係

図 8 に応力の発生が明確な No.1、No.4、No.5 位置の杭頭沈下量と地盤内応力の関係を示す。No.1 位置では、いずれの試験ともに鉛直方向での応力は杭の沈下とともに大きく発生し、水平方向には発生しない。No.5 位置での応力は、いずれの試験ともに水平方向に大きく発生し、鉛直方向にあまり発生していない。No.4 位置では、やや水平方向応力が鉛直方向応力に比べ大いが、No.1、No.5 の中間的な値を示した。鉛直方向応力は、No.1-No.4-No.5 と中心軸からの角度が増加するとともに発生量が少なくなり、水平方向は中心軸からの角度の増加とともに発生量が増加する。このことから、鉛直方向と水平方向の応力の増加から求めた合成応力の発生方向は、杭先端より、深さ方 2.5~3.0D 下がった位置を中心とした方向を示すことが分かれる。No.5 位置の鉛直方向では負の応力を示しているが、これは、上載荷を 200kN/m² 作用させた初期状態からの増分を示したもので、絶対値が負の値（引張り）を示すわけではない。図中の弾性解は地盤を弾性体と仮定し、先端位置に集中荷重が働くケースの応力を Mindlin 解 により求めたものである。なお、地盤のヤング率は E=280(N/㎡) および 4200kg/cm²、ポアソン比 0.3 と仮定した。各測定点とも弾性解は、実測値よりも大きな鉛直压縮応力を示している。水平方向は、No.1 位置で引張応力を、No.4、No.5 位置で圧縮応力を示しており、実験値よりも大きな圧縮応力を示した。弾性解では、引張応力を考慮するために、No.1 位置の水平方向では負の応力を示している。No.5 位置での実験での鉛直方向応力は、杭の沈下量 5mm 付近か 100D および引張りに転じる傾向にあり、弾性解と異なっている。No.4 位置では実験値と異なり、弾性解では水平方向よりも鉛直方向応力が大きくなった。このことからも、弾性解では杭先端位置付近を中心とした合成応力の方向を示し、実際に地盤の挙動を再現できなかった。
3.4 地盤内応力の方向と大きさ

図9の動的試験、静的試験、静的試験の杭頭荷重6kN、2.4kN、5.0kNおよび7.4kN（初期状態、静的試験の第1限界荷重、第2限界荷重、杭径の20%圧下時）時の地盤内応力の方向と大きさを示す。地盤内応力は、鉛直および水平方向の直応力合 成し求めた応力の方向と大きさを求めた。載荷線上に鉛直方向を、横軸に水平方向を、①〜⑦は各測定位置を示す。応力の大きさは図中の補助線で図んだ1マス=100kN/m²、距離は1マス5D(D:杭径41mm)である。実験データはいずれの試験ともに杭頭荷重0〜7.4kN間で、深さ7.5Dの③位置および杭先端側面（6）であまり作用していない。全体的に見ると地盤内に作用する垂直応力の合成応力、載荷速度を変化させてもあまり差異はなく、杭先端位置直下、杭径の2.5〜3.0倍付近（C点）を中心とした方向を示している。そのため、いずれの試験でも杭中心軸上に位置するNo.1では、鉛直方向のに押しつけられている。No.5では、C点から90°方向に位置しており水平方向に大きく押し拡げられ、鉛直方向にあまり応力の発生を示さなかった。C点からその後杭中心軸より45°の方向に位置するNo.4での鉛直、水平方向の応力は、No.1位置とNo.5位置の中間的な値を示した。No.4、No.5、No.6での合成応力は、実験値と静的試験で異なった応力の方向、大きさを示し、実験値と比較して鉛直方向に大きさの値を示した。実験部では、杭の沈下量などを含んでしている。地盤が塑性変形していることを示すのに対し、鉛直方向は地盤を弾性体として扱っており、異なった応力の方向、大きさを示すものと考えられる。

3.5 地盤内の応力とひずみの関係

図10にNo.1位置の地盤内応力とひずみの関係を示す。No.1位置
の鉛直方向では、動的試験、h ばね、s ばね、静的試験の順に載荷速度が大きくなるとひずみの発生が少なくなる。動的試験ではひずみの発生が静的試験よりも大きく、準静的試験では杭頭に介するばねの剛性を小さくすることでひずみの発生が小さくなり、地盤内の応力とひずみの関係は静的試験により近くなる。静的試験では100kN/m²付近までNo.1 位置の地盤は、ほとんどのひずみの発生を示していないが、その後ひずみと応力の関係は、弾性解とほぼ同じ傾きで、直線的に増加している。載荷速度が大きくなると静的試験の基本的な性質は変わらないが、鉛直方向に大きなるひずみを生じる。

動的試験では、急激な杭の沈下に伴い、杭直下の地盤が局所的に変形することでひずみが大きくなり、杭から離れた位置で静的、準静的試験に比べて各測定位置で応力が小さくなる。一方、動的 h ばね s ばね→静的試験の順に載荷速度を遅くするにつれて、次第に応答の波形が伝わり、静的、準静的試験では各測定位置で動的試験よりも応力が大きくなるものと思われる。また、弾性解と実験値を比較すると、実験では載荷初期近辺で地盤ばねが弾性体であるため、静的試験と異なった挙動を示した。

4. 結論
杭頂上にばねを介する静的試験において、地中に各種センサを埋設し、地盤内の応力およびひずみを測定した結果、以下のことがわかった。
1) 杭頂ばね剛性の低いケースでは、地盤内応力非線形時間、ひずみ非線形時間が長くなる。応力、ひずみ非線形時間は載荷時間とほぼ同じ時刻を示した。
2) 地盤内に作用する垂直応力の比率は、載荷速度を変化させても、杭先端付近、杭頭の2.5倍～3.0倍の位置を含む領域を示した。載荷速度に応じて変化する比率を示した基準値が存在しなかった。
3) 杭先端の変位は、動的試験では杭先端付近付近で静的試験よりも大きな地盤のひずみを示すのに対し、静的試験では杭先端付近の地盤の挙動が静的試験により近いことがわかった。

謝辞 実験を行うにあたり日本工業大学田中実助手に多大なる助言を、日本工業大学卒業生小玉真由美君、鈴木努君の協力を得た。記して感謝の意を表します。

参考文献
1) 地盤工学会：杭の打ち込み性および波動理論の杭への応用に関するシンポジウム。1989.1.
2) 藤田圭一、新谷元、本田秀一郎、用松利雄、髙松慎一郎：波動理論における杭の貫入抵抗と静的支点力、第24回地盤工学研究発表会(岡山) pp.1391～1392.1990.6.
4) 杭の急速載荷試験法研究委員会：杭の急速載荷試験法研究委員会活動概要、第33回地盤工学研究発表会(山口) pp.125～128.1998.7.
5) 柴田厚幸、日下部貞、石田雅博、福原直則：急速載荷試験法の一次元波動解析(その1)～解析及び結果概要、第33回地盤工学研究発表会(山口) pp.159～160.1998.7.
6) 日下部貞、松本泰明：急速載荷試験(スタティック試験)方法とその実施例、土と基礎、Vol.43, No.5, Ser.No.448, pp.19-21. 1995
7) Kuo Kojima, Shinji Nishimura, Minoru Tanaka and Fumio Kawanabe: Improvement of pile toe capacity by the Statnamic pre-loading on the model pile test in a frustum confining, 2nd International STATNAMIC Seminar, Japan, 1998.10.
10) 菅田博年, 藤原正夫, 田村昌仁, 井上波彦, 阿部秋男: 杭頭にばねを介した準静的載荷試験における杭の鉛直支持力に関する研究, 日本建築学会構造系研究論文集, 第522号, pp.73-78, 1999.8.