位相差分特性を考慮した設計用模擬地震動作成に関する研究
その2 位相差分分布と震源・伝播・地盤特性の関係に関する考察

A STUDY ON A GENERATION OF SIMULATED EARTHQUAKE GROUND MOTION
CONSIDERING PHASE DIFFERENCE CHARACTERISTICS

Part 2 Consideration of the relationship between phase difference distribution
and source, propagation, site characteristics

山根尚志*, 長橋純男**

Takashi YAMANE and Sumio NAGASHASHI

It is shown that the wave propagation can be explained on the basis of the simple equation, which expresses the relationship between the phase differences and the delay time of a wave. Since the phase differences of a pulse are uniform, the rupture process of a source region and the wave propagation, including directivity, of an earthquake can be understood in terms of the dispersion with respect to the phase differences of pulses radiated from a sequence of point sources in a fault plane considering the onset time, the location of each point and the dispersion of the apparent phase velocity. This idea is verified by analyzing recorded earthquake motions. It is concluded that the source and propagation characteristics of earthquakes are reflected in the information of phase characteristics.

Keywords: Simulated earthquake ground motion, Phase difference, Pulse,
Source characteristics, Propagation characteristics, Directivity

模擬地震動、位相差分、パルス波、震源特性、伝播特性、ディレクティブ

1. 序
設計用模擬地震動を正弦波合成法により作成する場合、時刻歴経
時特性と密接に関連する位相特性の設定に関しては、フーリエ位相
を一様乱数で与え、Jennings et al. が定義した時刻歴波形線を規定
する手法
と、観測地震動の位相特性を採用する手法
が主に用いられている。これらの手法の内、前者は、人为的に作成し
た位相特性と経時特性と実際の地震動特性との関係が明快とは言い
難い。これに対し後者は、実現象から位相特性を借用しているため
このような問題は少なく、また、得られた波形が位相を校正した原
波形と類似したものとなることも含め、より現実的な地震動が作成
されていると考えることができる。しかしこの場合でも、位相を採
用する地震動の選択基準は明快ではなく、より論理的な考え方の提
示が期待されている。

設計用地震動の位相特性に関する研究は、大崎ら が、隣り合う
フーリエ位相の差である位相差分の分布形状と速度時刻歴波形
以下、時刻歴波形と称す）の波形線の類似性を指摘したのが始
まりといえる。その後和泉・勝野 は、フーリエ位相の積みである
群構延時間の平均値と標準偏差の時刻歴波形の物性の観察を示し
る方法で地震動の特性を考察することを目的として、断層を分割した
小領域でインパルス列を想定する手法ではその条件設定が難しいため、より合理
的・実用的な手法の提案が期待されている。

このような研究状況の下で筆者らは、既往の研究とは異なる観
点で位相差分分布について考察し、これに基づいた模擬地震動記録
の分析を踏まえて位相特性の選択基準を示し、模擬地震動の速度特

* 本日建設構造設計室 主査・工修
** 千葉工業大学工学部建築学科 教授・工博

Senior Structural Engineer, Structural Engineering Dept., Nikken Sekkei Ltd.,
M. Eng.
Prof., Dept. of Architecture, Chiba Institute of Technology, Dr. Eng.

NII-Electronic Library Service
性を論理的に決定するための考え方を提案することを目指している。そこでまず既報10）において、これらの概念を基に、波形の変化を示すという物理に明示的な論理を用いて、位相差分布と地震動特性の類似性に関する理論的背景を明らかにした。更に、提案した考え方を基にして、位相差が一定であるように波形はフォーミュラ変換を施す。バ尔斯波は求められることを指摘した。このように既報では、位相差分布と地震動特性の対応関係を明確にしたが、これは新たな、位相差をそのものに内在している物理現象としての地震や地震動に関する性質・情報について考察する。具体的には、波動伝播と位相差特性の関係について整理し、位相差情報が有している物理的意味を震源、伝播、地盤特性と関連付けて説明する。

本論文の目的は、（1）波動伝播と位相差特性が波形の時間遅れと位相差分布に関する数式表現を示すことを挙げる。（2）震源震動記録の分布を、提案した考え方の妥当性を検証するとともに、実現象としての位相差分布が有しているその他の特徴を抽出することにあたる。すなわち、地殻の波動の位相差特性には震源域の破壊過程も含めた震源・伝播特性が反映されており、これは、バ尔斯波の位相差特徴を基にした簡明な論理により説明され、また震源解析の分析結果もその論理を支持していることを示すものである。

2. 震源・伝播・地盤特性と位相差特性に関する基本的性質

本節では、震源・傳播・地盤特性と位相差特性に関する基本的性質について整理し、地震動を位相差分布という指標で分析するための新たな考え方を提示する。

2.1 波動伝播と位相差分布

地中的任意の点Aから点Bまで地震波が伝播する場合を考える。点Aと点Bでの地震動時刻歴をそれぞれf(t)及びg(t)とし、これを有限フーリエ級数に展開すると、以下のような表現が得られる。

\[f(t) = \sum_{k} a_k \cos(\omega_k t + \phi_k) \quad (1) \]

\[g(t) = \sum_{k} b_k \cos(\omega_k t + \psi_k) \quad (2) \]

ここに、a_kとb_kはk次のフーリエ係数、\(\phi_k \)と\(\psi_k \)はk次のフーリエ位相、\(\omega_k \)はk次の円振動数。\(N \)は震源域に含まれた時刻歴のデータ数を表す。またフーリエ解析の数値上、\(\phi_k = \psi_k = 0 \)とする。これらの波形を重ね合わせた波形は以下の様に定義される。

\[\psi_k = \phi_k - \omega_k t \quad (k = 1, 2, \cdots, N/2 - 1) \]

\[\Delta \psi_k = \Delta \phi_k - \omega_k t \quad (k = 1, 2, \cdots, N/2 - 1) \]

\[\Delta \phi_k = \Delta \phi_k = \Delta \phi_k \quad (k = 1, 2, \cdots, N/2 - 1) \]

2.2 震源・伝播特性と位相差分布

前述した波動伝播と位相差分布に関する基本的性質を基にして、地震動の震源及び伝播特性を位相差特性の観点から整理する。波動は点Aから点Bに伝播するものとする。これに伝播特性に着目すると、その性質は以下のようになる。（P=1）見かけの位相速度がすべての成分について一定であれば、点Bの位相差分布は点Aの分布を平移移動したものとなる。距離減衰により波形の振幅が変化する場合でも、位相差分布の形状は変化せずに単純な平移移動となる。特にフーリエ振幅が変化しない場合には、波形は元の形状のまま時間軸上に移動することになる。

（P=2）各成分波に関する見かけの位相速度が一定ではない場合、
ある場合、点 B の位相差分布は点 A の分布を平行移動したものとはならず分散性を示す。この場合、フーリエ振幅が変わらないと仮定しても、点 B の波形は点 A の波形に比べ分散した形状となる。なおこの分散の程度は、位相差速度の指標の程度に依存する。

次に震動特性に着目して整理する。

(S-1) 点震源からパルス波が発振されると想定した場合、その位相差分は一定であり 15)、位相差分布は極めて限られた範囲に限局が集中したものとなる。これを伝播特性と関連させて考える。まず見かけの位相速度が一定である場合、距離減衰を無視すると、発振されたパルス波は振幅を変えずに元の形状のまま伝播する。一方距離減衰を考慮しても、位相速度一定の条件下では位相差分布は平行移動するほか、また位相差一定の波形がフーリエ振幅とは独立に必ずパルス波となること 15) を考え合わせると、この場合でもその波動は、振幅を減少させるものではなくパルス波として伝播する。波形が分布するものは、各成分波の位相速度に依存する場合もある程度に限られる。

(S-2) 断層面を想定した場合でも震源域を点震源の集まりとみなし、各点から出射される地震波がパルス波と考えることができ、アスペクトが比較的強い場合には、地震波伝播に関する空間的・時間的広がりは狭く、またその領域内想定した点震源から出射される波動はパルス波となることを考慮すると、その合成波も比較的集中度の高い包絡形になると推察される。波形の重ね合わせと位相差分布の重ね合わせの対応特性を考えると、上述の内容は、特に集中度の高いパルス波の位相差分布がある空間的・時間的広がりの下で重ね合わせられる、比較的集中度の高い分布形状になることを意味している。

(S-3) プレート境界地震のように断層面の破壊伝播が広範囲に及ぶ場合、想定した各点震源から順次出射される波動をパルス波と仮定しても、各点での発生時刻及び観測点との位置関係・震源距離の違いにより、観測点での波形は分散性を示す。これらの要因と、破壊伝播速度の波動伝播速度に対する比が7〜8 倍程度であり両者の差が大きいため 16, 17) を考慮すると、破壊伝播速度の位置震源分布モデルでは時間依存包絡形・位相差分布の集中度が比較的高く、逆方向の観測点での分散性が著しくなり、また断層直交方向ではその中間的な形状になると推定される。つまり、位相差特性に基づく地震動に関するディレクトリビティの効果が現われていると考えることができる。

3. 位相差分布の分析

(1) 1968年十勝沖地震

まずプレート境界地震として、1968年十勝沖地震を基にして検討する。観測点は八戸・宮古・青森・富良の4地点であり、既往の研究 18)を基に推定した断層面 19) の位置関係を図1に示す。

表1 分析に用いた地震の諸元

<table>
<thead>
<tr>
<th>発生年月日</th>
<th>1968/05/16</th>
<th>1968/05/16</th>
<th>1996/01/17</th>
<th>2000/10/06</th>
<th>2001/03/24</th>
</tr>
</thead>
<tbody>
<tr>
<td>地震源距離</td>
<td>143.6</td>
<td>142.9</td>
<td>135.0</td>
<td>133.4</td>
<td>132.7</td>
</tr>
<tr>
<td>地震モーメント</td>
<td>0</td>
<td>40</td>
<td>16</td>
<td>11</td>
<td>51</td>
</tr>
<tr>
<td>気圧変化</td>
<td>7.9</td>
<td>7.6</td>
<td>7.5</td>
<td>7.4</td>
<td>6.7</td>
</tr>
</tbody>
</table>

(2002年1月25日現在の気象庁表頭値を推定値)

図1 1968年十勝沖地震本震の断層面と観測点の位置関係

文献 18) p304の図を基に作成

2. 3 地盤特性と位相差分布

ここでは、地盤基盤から地表面への地震動伝播と位相差分布の関係について考察する。

まず、位相速度に依存する場合、前節(P-1)項に対応すると、波動の時間遅れと、基盤深さと基盤から地表までの見かけの位相速度によって決まるが、位相差分布はこれに応じて波動伝播速度を平行移動したものとし、その形状は変化しない。例えば、基盤深さを2km、基盤から地表面までの平均位相速度を1km/sと仮定すると時間遅れは 4.0t 2 (sec) であり、波形全長が t = 163.84 (sec)である場合その比は dT/T = 1/82 となり、基盤の位相差分布を横軸最大値 2π の約 1/82 だけ右側へ平行移動したもののが地表の分布形状となる。振幅特性が地盤増幅により複雑に変化するのに対し、位相差分布特性の変化は比較的単純なものとなる。

位相速度に依存する場合は前節(P-2)項に対応し、地表面の位相差分布は地震基盤の分布と比べて分散した形状となる。ところが次節で述べるように、観測地震時記録の分析結果はこの分散の程度が小さいことを示している。これは、観測点直下の地盤に関する見かけの位相速度が小さいことを意味しており、基盤と地表の分布の形が異なるとされる地震の下で位相差特性に関する論理が行えることを示唆している。

2. 3 地盤特性と位相差分布

ここでは、地盤基盤から地表面への地震伝播と位相差分布の関係について考察する。

まず、位相速度に依存する場合の(1) 19) 項に対応すると、波動の時間遅れは、基盤深さと基盤から地表までの見かけの位相速度によって決まるが、位相差分布はこれに応じて波動伝播速度を平行移動したものとし、その形状は変化しない。例えば、基盤深さを2km、基盤から地表面までの平均位相速度を1km/sと仮定すると時間遅れは 4.0t 2 (sec) であり、波形全長が t = 163.84 (sec)である場合その比は dT/T = 1/82 となり、基盤の位相差分布を横軸最大値 2π の約 1/82 だけ右側へ平行移動したもののが地表の分布形状となる。振幅特性が地盤増幅により複雑に変化するのに対し、位相差分布特性の変化は比較的単純なものとなる。

位相速度に依存する場合は前節(P-2)項に対応し、地表面の位相差分布は地震基盤の分布と比べて分散した形状となる。ところが次節で述べるように、観測地震時記録の分析結果はこの分散の程度が小さいことを示している。これは、観測点直下の地盤に関する見かけの位相速度が小さいことを意味しており、基盤と地表の分布の形が異なるとされる地震の下で位相差特性に関する論理が行えることを示唆している。
各観測点の時刻歴波形及び位相差分分布を図2に示す。なお分析には、原波形ゼロ線及び長周期成分の補正を施したデータを用いた。これより位相差分分布に関して以下の知見が得られた。

(1) 破壊伝播方向とほぼ同じ方向に位置する宮古の位相差分分布はこれより4地点の中では最も集中度が高く、その最大係数は0.25程度である。

(2) 断層面に直交する位置にある八戸の分布は宮古の分布に比べて分散的であり、その最大係数は0.12程度である。

(3) 八戸よりやや破壊伝播方向寄りに位置する青森の分布は、宮古と八戸の中間的な形状となっている。

(4) 破壊伝播方向と反対の方向に位置する上毛の分布は、八戸の分布より更に分散的となり、その最大係数は0.08程度である。

(5) 各観測点の時刻歴波形及び位相差分分布はほぼ同様の形状となっており、各観測点での方向成分による差異はない。

この結果は、震源域及震源面の関係を再決定することにより、破壊過程が断層面南端から北方へ向かったユニテラル破壊伝播であったことを(1, 2)を踏まえて、以下のよう説明される。

まず破壊伝播速度と波動伝播速度が同じであると仮定すると、この場合破壊進行方向の観測点から見ると、各点から相対的に発生したパルス波が震源を一致させながら重ね合わされるため、その地点で観測される波形もパルス波となる。仮に震央付近にパルス波は同じ位相差分を有しているため、各点から発生された波動はフーリエ振幅法と無関係に同一の位相差分で重ね合わせ、合成波の位相差分分布も極めて集中度が高くなる。現実には破壊伝播速度と波動伝播速度には若干の差があり、また震源距離が遠くなると見かけの位相速度にも影響が生じるため、宮古の波形及び位相差分分布は分散性を示しているが、その集中度は他の観測点のものに比べて相対的に高い。これを時間軸で考察すると、破壊伝播速度に依存する各点観測の発振時刻の差と、震源距離の差を波動伝播速度で除した時間遅れが打ち消し合うように重ね合わせることになる。

一方これと逆方向における観測点（宮古）では、発振時刻の差による時間遅れが加えられ、波形及び位相差分分布はより分散する。また断層面に直交する方向（八戸）では、各観測点間の観測点を反映して位相差分分布は両者の中间的な形状をなす（2.2節（3-3）に対応）。

以上、1968年十勝沖地震主震の位相差分分布にはディレクトリーティの影響が明確に反映されていることを指摘し、その効果がパルス波の重ね合わせという簡明な概念により説明できることを示した。なお各地点における水平2成分間の差がほとんど無視できる程度であることより、位相差分分布に関して、観測点におけるFault Normal・Fault Parallel成分の違いもほとんど無いものと判断できる。
次に、同日発生した余震の記録を分析する。しかし、八戸では記録が得られていないため、他の3地点の記録について検討する。なお本震と同様、時刻歴波形にはゼロ軸等の補正を施した。
図3に各観測点の波形と位相差分布を示すが、室蘭・青森・宮古の分布形の差は小さい。これは、本震のような規模で破壊が伝播しなかったためと推察でき、巨視的にみると集団揺れに近い震源・伝播特性が反映された結果であると考えることができる（2.2節（S-2）に対応）。
3.2 1995年兵庫県南部地震
内陸直下地震である1995年兵庫県南部地震に関しては、気象庁の神戸・大阪・舞鶴・岡山・鳥取・彦根・福井の各観測所と、大阪ガス商品供給部で観測された地震動記録を分析する。
図4に時刻歴波形と位相差分布を示す。しかし、各観測点は地名のみに留め記述。また気象庁の各記録に関しては、波形・分布形の比較を行えるように、同地点発生の地震発生時刻が時刻歴波形の原点となるようデータを調整した。
これより、この地震に関する位相差分布特性は次のように要約することができる。
まず、震源近傍での地震動に関しては、時刻歴波形の経時特性に対応して位相差分布の集中度が高い（2.2節（S-2）に対応）。
次に、震央距離60〜140km程度の地点での位相差分布は観測地点に依存せず類似したものとなっている。波動伝播の方向性の観点からすると、この地震動はアスペリティが小さく、限られた領域から波動が放射状に伝播したため位相差特性が等特性を示している。また、位相速度の観点からすると、この震央距離の範囲では見かけの位相速度がほとんど変化せずに波動が伝播すること（2.2節（S-1）に対応）、及びその特性にも指針性がほとんどないことを意味している。
更に、位相差分布のNS・EW成分による差異がほとんど無視できる程度であることもあり、観測点におけるFault Normal・Fault Parallel成分成はRadial・Transverse成分の違いもほとんど無いものと判断できる。

![図4 1995年兵庫県南部地震の加速度時刻歴波形と位相差分布](image-url)
3.3 2000年島取県西部地震

2000年島取県西部地震については、KII-netで公開されている217地点における、地表及び地中（深さGL-0.1〜2.0km程度）の水平2成分のデータを分析した。

図2〜4では位相差分布の形状と最大振幅との間に関連性が認められるが、これは最大振幅値で位相差分布の形状を代表させ、その値を用いて波動の分散性の議論が示すことができる。そこで、位相差分布の分散性を表す指標として最大振幅値を統計に、震央距離を横軸にとってその相関性を示した結果が図5である。これより震央距離に応じて波形が分散していく様子が把握できるが、これは震源から離れるにしたがって見かけの位相速度のずれが大きくなることを意味している（2.3節（1）に対応）。また地中と地表の結果を比較することにより、地盤特性による位相差分布の変化が小さいことも確認できる（2.3節に対応）。

これらの分析に用いたデータの例として、任意に抽出した4地点での波形と位相差分布を示したもののが図6である。但し、方向成
分による差はほとんど無視できるため NS 成分のみを提示した。なお波形と分布形の比較を行えるようにするため、気象庁発表の地震発生時刻が時刻帯波形の原点となるようデータを調整した。これより、(1)地盤増幅により波形振幅は増大するものの品位差分布はほとんど変化しないこと(2.3節に対応）、(2)品位差分布の形状と最大地震波の関係性があること、(3)震央距離に応じた波形の分散性が品位差分布・最大地震波により説明され得ること(2.2節(P-2)及び(P-2)に対応）が指摘される。

3. 4 2001年芸予地震
2001年芸予地震に関しては、KIK-netで公開されている242地点のデータを前節と同じ考え方で分析したが、図7と図8に示す結果からも前節と同様の結果が導かれる。また、図8の時刻歴の原点も地震発生時刻と一致させているため図6との比較が可能となり、震央距離に応じて波動伝播の傾向に関する類似性が確認される。図4の結果をも含めて特に品位差分布の分散性に着目した場合、同程度の震央距離での分布形状が類似していることは、位相速度の推定に関する傾向が観測波形を用いてより明らかになることを示唆している。

3.5 大阪府広域の観測記録
図6及び図9で推算した観測点の地帯震計の観測記録はGL-0.1～0.3ka程度と比較的浅く、地中と地表の品位差分布の変化も小さい。観測位置がより深い場合の分布形状の差を確認する目的で、大阪府広域の観測記録を分析する。表2に地盤構成を示すが、地震計はGL-2.0kaの地帯震計（P波速度6.0km/s）内に設置されている。

地震観測としては西武県西部・芸予地震以外に、より震央距離の近い2地点を含め4地点を採用した。地震観測、震央距離及び観測点地表面で記録された最大加速度を図3に示す。

<table>
<thead>
<tr>
<th>表2 大阪府広域の地盤構成</th>
</tr>
</thead>
<tbody>
<tr>
<td>地盤構成）</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>震央距離</td>
</tr>
<tr>
<td>震央距離</td>
</tr>
<tr>
<td>震央距離</td>
</tr>
</tbody>
</table>

分析結果を図9に示すが、各地震とも、気象庁発表の発生時刻が時刻帯波形の原点となるようデータをそれぞれ調整した。これより、比較的軟弱な層が堆積する大阪平野の地盤特性を反映して波形振幅が大きく増幅するのに対し、品位差分布の変化は比較的小さく、位相特性の観点から見た波形の分散性は低いことが指摘される。これにより、地帯震計から約2.0ka上方に地帯震が伝播する場合でも、見かけの位相速度の振幅は小さいことを示している(2.3節に対応)。

4. 結論
地震波の震源・伝播特性と位相差特性・震時特性に関する基本的性質を提示した。その要は以下の5項目である。

(1) 波動伝播と位相差特性の関係は、波形の時間遅れに位相差を有する関数を用いて表現される。これは振幅特性の変化には依存しない。(2.1節(7)及(式8))
(2) 伝播特性の観点からすると、各成分波の見かけの位相速度が一定の場合、位相差分布は平坦移動する。位相速度に遅れがある場合には、その分布は波動伝播とともに分散性を示す。

(2.2節(P-1)及(P-2))

--- 61 ---
建築特性として想定された地震波が発振すると仮定した場合、位相速度一定の条件下では、振幅特性が変化しても波形はパルス波として伝播する。波形が分散するのは位相速度に依存する場合に限られる。（2.2節（S-1））

（4）断層面を点震源の集合と仮定し各点からパルス波が発振されると仮定すると、スペクトル特性が一定である場合には発振に関係する空間・時間の広がりが無視でき、その領域から放射される地震波変形は位相差分分布は集中度の高いものとなる。（2.2節（S-2））

（5）プレート境界地震の場合、断層面の波形伝播と震源における点震源から順次発射されるパルス波の発振時刻及び観測点との位置関係が異なるため、観測点での位相・位相差分分布は分散性を示す。破壊伝播方向及び速度を考慮することにより、位相差分特性に基づいてディレクティブの効果を観察することができる。（2.2節（S-3））

これらの基本的性質を踏まえ、異なるタイプの地震記録を分析することにより、以下の事項を確認した。

（6）パルス特性が小さい地震の場合は、震源近辺で観測された地震動の位相差分分布は集中度が高い、震源距離に無関係にしたがって分布形は分散性を示すが、伝播方向の違いによる差異は小さい。（2.2節（S-2）及び（P-2））

（7）断層面の波形伝播が広範囲に及ぶプレート境界地震では、観測点での位相差分分布にディレクティブの影響が明らかに表れる。（2.2節（S-3））

（8）地震動の地表面で観測された地震動の位相差分布の差異は小さい。これは、地盤特性が波動の分散性を与える影響、つまり見かけの位相速度の揺らぎが小さいことを意味している。（2.3節）

（9）観測点での位相差分布に関するNS・EW成分の差異は、Fault Normal・Fault Parallel成分またはRadial・Transverse成分の差よりもほとんど無いものと判断できる。

（10）位相差分布の形及び最大応力振幅には関連性があり、その変化を表すことができ、位相差分布の分散性は震源での変形の観測における重要な指標の一つとなることが提案された。上記10項目は、以下の簡潔な概念を約束することを試みたもので、地震震源、震源近辺の断層面の時空間地震波の波形特性（振幅特性には依存せず位相差分は一定）と仮定し、位相差分布波形の分散性の理由として、（1）見かけの位相速度の揺き、（2）スペクトルの空間的広がり、（3）破壊伝播特性、各点震源及び観測点との位置関係及び発振時刻の遅さを考慮することにより、地震動の位相特性、位相速度特性を説明することができる。換言すると、位相情報、破壊過程は含めた震源特性、及び位相速度の揺らぎを含めた伝播特性が反映されていると結論付けられる。これらの影響は位相差分布の分散性として明確に表れるため、その分布形及び最大応力振幅を指標として地震動の位相特性を考慮することができる。この概念は観測記録の分析結果を用いることにより、設計用規模地震動作成に与条件にした位相特性を合理的判断に基づいて選択することができる、論理的根拠のある確率特性を有する規模地震動波形を作成することが可能となる。なお、具体的な考え方については統報において報告する。

謝辞
本研究では、建築空港技術研究所・防災科学技術研究所・大阪ガス（株）の地震観測ダットと並びに原子力87型電磁波式強震計データを利用させていただきました。関係各機関に感謝いたします。また論文発表に関して、（株）日建設計構造設計室山本恵氏に御協力いただきました。ここに謝意を表します。

参考文献
3) 北藤公幸, 岩崎尚志, 本田隆男: 地震観測の位相特性を用いた統合実用地震計について (その1, 2), 日本建築学会大学学術講演応力(中国), 構造1, pp.287-290, 1990.10
4) 大崎順彦, 岩崎隆二, 大川岡, 沖尾: 地震波の位相特性とその応用に関する研究, 第5回日本建築学会シンポジウム講演集, pp.201-208, 1978.11
5) 和田正哲, 藤倉俊: 地震動の位相特性に関する基礎的研究, 日本建築学会論文報告集, 第327号, pp.28-29, 1983.5
6) 大木正彦: 模擬地震動供試における波形制御について, 日本建築学会構造系論文報告集, 第267号, pp.30-36, 1986.9
7) 沢田勉: 位相差分による地震動の非定常性の解析, 土木学会論文集, 第344-1/1号, 1984.4
8) 沢田勉, 水永正, 平尾秀: 位相差分による地震動非定常時間の定義とその統計解析, 土木学会論文集, 第368-1/1号, 1986.4
9) 石井勒, 仲村信, 岩崎隆二: 仮想地盤特性を考慮した建築構造解析用模様地動震源作成手法, 日本建築学会構造系論文報告集, 第379号, pp.49-57, 1987.9
10) 佐藤進, 佐藤俊彦, 福島一, 蒲原良則: 震源時間の長さや間隔の時定性推定値の設計の基础的研究, 日本建築学会構造系論文集, 第480号, pp.57-65, 1996.2
12) 佐藤進, 小松野隆, 西村昭彦, 野村健二: 地震動の仮想スペクトルのモーメント化, 土木学会論文集, 第640-1/5号, pp.119-130, 2000.1
13) 佐藤進, 小松野隆, 野村健二: 地震動の仮想スペクトルのモーメント化, 土木学会論文集, 第675-1/5号, pp.113-123, 2001.4
14) 佐藤進, 小松野隆, 西村昭彦, 佐藤健次: 地震動の仮想スペクトルのモーメント化, 土木学会論文集, 第612-1/6号, pp.201-213, 1995.1
15) 山城和彦, 米倉俊男: 仮想時間特性の設計設計用模擬地震動作成に関する研究 その1 仮想時間特性と地震動変換特性の関係に関する理論的背景, 日本建築学会構造系論文集, 第553号, pp.49-56, 2002.3
18) 佐藤健次編著: 日本の地震断層ハラメータハンドブック, 鹿島出版会, pp.265-266, 1995.3

（2002年2月7日原稿受理, 2002年6月7日採用決定）