エネルギー・スペクトルと速度応答スペクトルの対応

RELATIONSHIP BETWEEN ENERGY SPECTRA AND VELOCITY RESPONSE SPECTRA

秋山 宏*1，北村 春雄*2
Hiroshi Akiyama and Haruyuki Kitamura

The maximum response of structure under an earthquake is closely related to the maximum response spectrum (Sv-spectrum). The cumulative plastic deformation is related to the energy spectrum (V-spectrum). The relationship between Sv-spectrum and V-spectrum is influenced by the scale of an earthquake or the time of duration of an earthquake. On the simple assumption that an earthquake consists of the repetition of a single elemental earthquake with the number of repetition of f, the relationship between Sv and V-spectra is clearly described with the relationship of that in the elemental earthquake and f.

Keywords: Energy Spectra, Velocity Response Spectra, Cumulative Plastic Deformation, Maximum Deformation, Elemental Earthquake

エネルギースペクトル，速度応答スペクトル，累積塑性変形，最大変形，単位地動

1. 序

地震地動の構造物への影響を端的に示すものとして，変位応答スペクトル Sa，速度応答スペクトル Sv，加速度応答スペクトル Sg がある。これ等の応答スペクトルは 1 質点系の応答特性であり，固有周期 T と減衰定数 h を主なパラメータとする。応答スペクトルの支配因子は地震動の非定常性，地震時等であると考えられている。応答スペクトルは定常確率過程に基づく理論1)や観測記録に基づく応答時刻波形の統計処理2)によって導かれている。

応答スペクトルは，構造物の最大変形応答に深く関わるものであるといえる。一方，構造物への地震動のもたらす総エネルギー入力 E の速度換算値 \(V_o \) (\(= \sqrt{2E_0/M} \)，M:構造物の総質量) と \(T \) との関係は，エネルギースペクトルと呼ばれる3)。エネルギースペクトルは減衰定数の増大により周期依存性が弱くなり，より滑らかな曲線となるのがその平均レベルは変わらない。\(h = 0 \) の場合のエネルギースペクトルは，フーリエ加速速度振幅スペクトル（略称フーリエスペクトル）に一致し，周期依存性が極めて大きい。

応答スペクトルの使用すべきエネルギースペクトルは，\(h = 0.1 \) のエネルギースペクトルで代表できる4)。即ち，構造物への総エネルギー入力は，単純貫入近似で，設計に用いない一定値である5)。

総エネルギー入力から減衰の消費エネルギーを差し引いたもののが，構造物に与えられる（ないし変形）をもたらし，損傷に寄与するエネルギー入力 \(E_0 \) と呼ばれる。損傷に寄与するエネルギー入力の速度換算値 \(V_o \) (\(= \sqrt{2E_0/M} \)) 速度応答スペクトル Sv とは対応することが明らかにされている1)。

エネルギースペクトルは弹性系の累積塑性歪エネルギーないし累積塑性変形と直接対応する。残留変形は正方向の累積塑性変形と負方向の累積塑性変形の差である6)。最大変形は構造物の回元力特性に累積塑性変形と統計的に対応づけられる。累積塑性変形と最大変形の関係に影響する因子として回元力特性を含んで地震動の継続時間が重要である。これは応答スペクトルの支配因子として地動継続時間が重要であることを一にしている。

継続時間が長い地震動は単位地震動が繰り返し起こっていると考えられ，単位地震動によって最大変形が決まり，総エネルギー入力は単位地震動の繰り返し数に比例することから，累積塑性変形の最大変形に対する比率は繰り返し数に比例して大きくなる。エネルギースペクトルと速度応答スペクトルとの対応関係については継続時間に着目した三宅による研究が挙げられる。

本研究は単一の単位地震動が繰り返し起こると仮定して，エネルギースペクトルと速度応答スペクトルとの関係を総合的に求める。

繰り返し数を \(n \) として，最大変形と累積塑性変形との対応関係を明確に定量できることを示す。

2. 応答スペクトル，エネルギースペクトルの特性

エネルギースペクトル \(V_s \) スペクトルは次式で示される 1 質点弹性振動系に 1 つの地震動により与えられる総エネルギー入力 \(E \) の速度換算値 \(V_s \) と固有周期 \(T \) との関係である。

\[
V_s = \sqrt{\frac{2E}{M}}
\]

References:
*1 日本大学総合理工学研究科 教授・工博
*2 東京理科大学理学部建築学科 教授・博士(工学)
Prof., Nihon University, Graduate School of Science and Technology, Dr. Eng.
Prof., Tokyo University of Science, Faculty of Science and Technology, Dr. Eng.
ここで，M：質点の質量

弾性無減衰系の総エネルギー入力をE_0とすれば，減衰系のEは次のように表される。

$$E(T_0) = \frac{1}{2} \int_{T_0}^{T_0 + \Delta T} E_0(T_0) \, dT \quad (2)$$

ここで，T_0：固有周期 T の 1 つの値

ΔT：瞬間の周期の変動幅

減衰定数 h が大きくならつて ΔT は増大する。式 (2) は，h の増大につれて h_0 の場合に比べて V_e スペクトルは平滑化することを意味している。$h=0$ に対するエネルギー・スペクトルは平滑化が充分に進んだものであり，$h=0.1$ が大きくしても平滑化はさほど進まない。この意味で $h=0.1$ に対するもので V_e スペクトルを代表させることができる。

応答スペクトルの間には次の関係式が近似的に成立する。

$$S_n = \sqrt{h_0} \cdot S_e = \omega_n^2 S_0 \quad (3)$$

ここで，ω_n：固有円振動数 = $2\pi / T_0$

本論文では，応答スペクトルを代表するものとして速度応答スペクトル S_v スペクトルを取りあげる。S_v スペクトルは 1 質点弹性振动系が 1 つの地震動下に生ずる最大相対速度応答 g と T の関係である。$h=0$ の場合，S_v は地動応答時間 T_0 に起きた最大相対速度を表し，V_e は $T=t_0$ における総入力エネルギーの速度換算値であり，次式が成立する。

$$S_{v, a=-0} \geq V_{0, a=-0} \quad (4)$$

各種スペクトルのレベルは次式で示される平均値で評価することにする。

$$S_v = \frac{1}{T_0} \int_{0}^{T_0} S_v(T) \, dT, \quad V_v = \frac{1}{T_0} \int_{0}^{T_0} V_v(T) \, dT \quad (5)$$

ここで，S_v：平均 S_v スペクトル値

V_v：平均 V_v スペクトル値

T_0：長周期

総エネルギー入力についても同様に平均総エネルギー入力値 \bar{E} を求める。表 1 には，E, S_v, V_v の例を示す。T_0 は実在構造物の周期を考慮して10秒を採る。実応答地動時間 Δt は次式を与えられる加速度パワーピーの無次元化時間照経 $\tau(t)$ を参照し，

$$\bar{a}(t) = \frac{1}{\tau(0)} \int_{0}^{\tau(0)} \bar{a}(t) \, dt \quad (6)$$

ここで，\bar{a}：地動応答時間

次式を満たす時間を実効地動応答時間とした。

$$0.05 \leq \bar{a}(t) \leq 0.95 \quad (7)$$

表 1 より h によるエネルギー入力の平滑化にかかわらず，E の平均値は安定しておりほぼ一定値であることがわかった。$h=0$ の場合，V_v は S_v の約 80～90%である。$S_v / S_{v, a=-0}$ は減少関係であり，h_0 の増大に対して減少度は増す。

$S_{v, a=-0}$ は $h=0.1$ の V_v とほぼ等しい。従って，近似的に次式が成立する。

$$\frac{S_v}{S_{v, a=-0}} = \frac{S_{v}}{V_{0, a=-0}} \quad (8)$$

表 1 S_v, V_v の値

<table>
<thead>
<tr>
<th>基地</th>
<th>E/M (cm^2)</th>
<th>V_v (cm/2)</th>
<th>S_v (cm/s)</th>
<th>$\frac{S_v}{S_{v, a=-0}}$</th>
<th>$\frac{V_v}{V_{0, a=-0}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial Valley</td>
<td>0</td>
<td>2015</td>
<td>49.75</td>
<td>60.12</td>
<td>1.00</td>
</tr>
<tr>
<td>竹南(1950)</td>
<td>0.02</td>
<td>2022</td>
<td>54.33</td>
<td>42.72</td>
<td>0.71</td>
</tr>
<tr>
<td>亀ヶ根 NS</td>
<td>0.05</td>
<td>2094</td>
<td>57.61</td>
<td>34.22</td>
<td>0.71</td>
</tr>
<tr>
<td>稲村</td>
<td>0.10</td>
<td>2209</td>
<td>60.41</td>
<td>27.16</td>
<td>0.56</td>
</tr>
<tr>
<td>竹南</td>
<td>0.20</td>
<td>2417</td>
<td>65.05</td>
<td>20.27</td>
<td>0.34</td>
</tr>
<tr>
<td>十勝北町</td>
<td>0</td>
<td>2741</td>
<td>52.21</td>
<td>67.24</td>
<td>1.00</td>
</tr>
<tr>
<td>(1968)</td>
<td>0.02</td>
<td>2801</td>
<td>60.16</td>
<td>45.67</td>
<td>0.68</td>
</tr>
<tr>
<td>亀ヶ根 EW</td>
<td>0.05</td>
<td>2910</td>
<td>64.90</td>
<td>37.54</td>
<td>0.55</td>
</tr>
<tr>
<td>稲村 EW</td>
<td>0.10</td>
<td>3071</td>
<td>69.96</td>
<td>30.40</td>
<td>0.45</td>
</tr>
<tr>
<td>竹南</td>
<td>0.20</td>
<td>3336</td>
<td>76.22</td>
<td>23.52</td>
<td>0.35</td>
</tr>
<tr>
<td>想定南海地震</td>
<td>0</td>
<td>10874</td>
<td>86.39</td>
<td>112.27</td>
<td>1.00</td>
</tr>
<tr>
<td>(2003)</td>
<td>0.02</td>
<td>10528</td>
<td>112.22</td>
<td>58.78</td>
<td>0.58</td>
</tr>
<tr>
<td>大阪南(10)</td>
<td>0.05</td>
<td>10598</td>
<td>122.19</td>
<td>47.25</td>
<td>0.40</td>
</tr>
<tr>
<td>(KK-OSA-NS)</td>
<td>0.10</td>
<td>10665</td>
<td>130.29</td>
<td>38.10</td>
<td>0.32</td>
</tr>
<tr>
<td>大阪</td>
<td>0.20</td>
<td>10646</td>
<td>136.70</td>
<td>29.22</td>
<td>0.25</td>
</tr>
</tbody>
</table>

表 2 $f(h)$ 及び $f(h)$ の値

<table>
<thead>
<tr>
<th>基地</th>
<th>$F(h)$ (96式)</th>
<th>$f(h)$ (96式)</th>
<th>$I(h)$ (96式)</th>
<th>$J(h)$ (96式)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial Valley</td>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>竹南(1950)</td>
<td>0.02</td>
<td>0.71</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>亀ヶ根記録 NS</td>
<td>0.05</td>
<td>0.57</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>稲村 EW</td>
<td>0.10</td>
<td>0.45</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>稲村 EW</td>
<td>0.20</td>
<td>0.34</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>十勝北町</td>
<td>0</td>
<td>0.96</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>(1968)</td>
<td>0.02</td>
<td>0.65</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>亀ヶ根 EW</td>
<td>0.05</td>
<td>0.54</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>稲村 EW</td>
<td>0.10</td>
<td>0.43</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>稲村 EW</td>
<td>0.20</td>
<td>0.34</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>十勝北町</td>
<td>0</td>
<td>1.13</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>(2003)</td>
<td>0.02</td>
<td>0.68</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>亀ヶ根記録 NS</td>
<td>0.05</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>稲村 EW</td>
<td>0.10</td>
<td>0.37</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>稲村 EW</td>
<td>0.20</td>
<td>0.27</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>想定南海地震</td>
<td>0</td>
<td>0.92</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>大阪南(10)</td>
<td>0.05</td>
<td>0.36</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>(KK-OSA-NS)</td>
<td>0.10</td>
<td>0.29</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>大阪</td>
<td>0.20</td>
<td>0.22</td>
<td>0.22</td>
<td></td>
</tr>
</tbody>
</table>

3. 地震動のモデル化に基づく S_v / V_e の定量化

地震動を惹起する地震波群の規模に地震動応答時間は依存する。大断層では断層の破壊が確率的進行し，また同一の単位地震動が数回連続して発生するのに似ている。同一の地震動が一定間隔を

— 38 —
保って数回起こるモデルを想定する。この同一地震動を単位地震動と呼ぶことにする。図1に示すように入力エネルギーの時刻歴は単位地震動によるエネルギー入力の時刻歴の累積である。一方、弾性系の応答は単位地震動の時刻歴波形の反復以外はない。単位地震動の反復数をとる。\(\frac{S_v}{V_k} \)を次式のように表現する。

\[
\frac{S_v}{V_k} = F(h)
\]

ここで、\(F(h) \)：地震動に対する構造物の減衰関数

単位地震動の \(\frac{S_v}{V_k} \) を次のように表現する。

\[
\frac{S_v}{V_k} = F(h)
\]

ここで、\(F(h) \)：単位地震動に対する構造物の減衰関数

\[
S_v = \text{単位地震動の} ~ S_v
\]

\[
\frac{S_v}{V_k} = \text{単位地震動の} ~ \frac{S_v}{V_k}
\]

\[
V_k, \frac{S_v}{V_k} = h = 0.1 \text{に対応} \text{する} \text{ものを} \text{採用} \text{する}.
\]

\(h \neq 0 \) の場合、図1に示す単位地震動の性質から次式が成り立つ。

\[
E = f \cdot sE
\]

ここで、\(sE \)：単位地震動の総エネルギー入力

\(h \) より次式が得られる。

\[
V_k = \sqrt{f} \cdot sE
\]

従って、\(h = 0 \) の場合、次式が得られる。

\[
F(h) = \frac{S_v}{V_k} = \sqrt{f} \cdot sE
\]

\(h \neq 0 \) より単位地震動の反復数 \(f \) は次式で表せる。

\[
f = \left(\frac{S_v}{V_k} \right)^2 / F(h)
\]

4. \(sF(h), F(h) \) の定量化

1 質点弾性系の最大変形下的 1 サイクルの応答を次式で表す。

\[y = \delta_m \sin \omega t \]

ここで、\(y \)：相対変位

\(\delta_m \)：最大変形

振動方程式における減衰項 \(c \dot{y} \)（c：減衰係数）が最大変形下の 1 サイクルでなすエネルギー吸収量 \(W_m \) は次のように求められる。

\[
W_m = \frac{1}{2} \left(c \dot{y} \right)^2 dt = 2\pi \cdot M \cdot h \cdot \delta_m \cdot \dot{y}
\]

地震時の減衰項のエネルギー吸収量 \(W_m \) は等価サイクル数 \(n \) を導入して、次式で表される。

\[
W_m = n \cdot W_m = 2\pi \cdot M \cdot h \cdot n \cdot \delta_m \cdot \dot{y}
\]

弾性変動エネルギーは次式で表される。

\[
W_e = \frac{1}{2} Q_m \delta_m \cdot \frac{1}{2} \cdot k \delta_m
\]

ここで、\(Q_m \)：最大層せん断力

\(k \)：パネ定数 = \(Me \)

弾性系のエネルギーの約束は次式のように書ける。

\[
W_e + W_m = E = \frac{1}{2} MV^2
\]

\(h = 0 \) の場合最大変形 \(\delta_m \) は次式で表される。

\[
\delta_m = \frac{V_k}{\omega_k}
\]

従って、\(h \) より次式を\(h \) に代入することにより \(F(h) \) は形式的に次式で表されることになる。

\[
F(h) = \frac{\delta_m}{\omega_k} \cdot \frac{1}{\sqrt{1 + 4\pi h}}
\]
表3 各地震記録の反復数f及び地震継続時間\(t_o\)

<table>
<thead>
<tr>
<th>地震</th>
<th>地点</th>
<th>地震波名</th>
<th>(\delta_{R,0.1}(\text{cm/s}))</th>
<th>(\delta_{F,0.1}(\text{cm/s}))</th>
<th>(f)</th>
<th>継続時間(t_o(\text{s}))</th>
<th>設定位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>標準波</td>
<td></td>
<td>EL CENTRO NS</td>
<td>27.16</td>
<td>60.41</td>
<td>1.00</td>
<td>24.4</td>
<td>地表</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HACHINOHE EW</td>
<td>30.40</td>
<td>69.96</td>
<td>1.11</td>
<td>50.4</td>
<td>地表</td>
</tr>
<tr>
<td>模擬波</td>
<td></td>
<td>ART HACHI(^{(7)})</td>
<td>59.92</td>
<td>130.76</td>
<td>1.00</td>
<td>55.7</td>
<td>地表</td>
</tr>
<tr>
<td>直下型地震</td>
<td>神戸海洋気象台</td>
<td>JMA KOBE NS</td>
<td>52.16</td>
<td>107.79</td>
<td>0.90</td>
<td>9.54</td>
<td>地表</td>
</tr>
</tbody>
</table>

\(f\geq1.0\)であり、06式より \(F(h)\leq \delta F(h)\)であることがある。\(F(h)\)の上限値をもたらす地震動を単位地震動と考えることができる。表2には、(9)式により求めた \(F(h)\)の値が示されている。表2より、\(h=0.05\)における \(F(h)\)を比べることにより、El Centro記録が \(F(h)\)の上限値を与えることがわかる。そこで、El Centro記録を単位地震動と考えて、08式の形式で \(\delta F(h)\)を求める。表2には、\(\delta F(h)\)に対し08式を適用するにあたり \(n=3\)を採用した値が、表2中示されている。次式は \(\delta F(h)\)を適切に表現し得ることがわかる。

\[
\delta F(h) = \frac{1}{v^4 + 12 \nu k}
\]

\(\delta F(h)\)として06式を用い、06式より得た \(F(h)\)の予測値を表2中に対し \(h=0.05\)の範囲で予測値は良好な精度で得ていることがわかる。\(h=0.1\)の場合の \(F(h)\)、\(F(h)\)を用いて08式から得た \(\delta F(h)\)の値が表2中に示されている。また、08式により得た \(F(h)\)の値も表2中に示されている。ただし、\(h=0\)の場合、\(S_T = V_E\)であり、\(F(h) = 1.0\)としてある。

5. \(F(h)\)の応用と \(f\)の算定

(9)式を拡張して次式が成立するかを検討する。

\[
\frac{S_T}{V_E} = F(h)
\]

\(V_E\)としては \(V_{E,0.1}\)を用いる。図2には、\(F(h)\)として06式を用い、06式より得た \(F(h)\)を用いた場合の \(S_T\)の予測値 \(V_T \times F(h)\)（図中の波形）と \(S_T\)を比較して示す。 \(h \geq 0.05\)において予測精度は良好である。このことが、図2で成立する。同時に \(F(h)\)を求める際には \(h=0.1\)の場合に \(S_T\)、\(F(h)\)を用いることの根拠を与える。

表3には単位地震動の反復数を求める結果を示す。地震継続時間に変化を持たせるために、比較的単調時間の長い地震記録を集めた。この多くは震源を特定して得られた模擬地震波である\(^{(11)-(16)}\)。図3には地震記録の反復数 \(f\)と地震継続時間 \(t_o\)の関係を示す。\(t_o<50\)の
八戸記録や神戸記録はほぼ $f = 1.0$ を示し、El Centro 記録と同様に单位地震動に相当すると考えられる。$a_0 \geq 50$ の地震記録では a_0 に比例して f 値は増加傾向を示す。これらから f と a_0 の関係式を次のように設定する。f 値の算定においては式を用い、$a_0^{F}(h)$ として $n = 3$ とした式式を用いた。f と a_0 の関係は概ね次のようなのである。

\[a_0 < 50 \times , \quad f = 1.0 \]

\[a_0 \geq 50 \times , \quad 1 + 0.004(a_0 - 50) \leq f \leq 1 + 0.030(a_0 - 50) \]

中央値 $f = 1 + 0.017(a_0 - 50)$

6. 最大変形 δ_n、残留変形 δ_r、累積塑性変形 δ_s

構造物の変形応答を論ずる際には、基本的な構造形式に着目する必要がある。基本的な構造形式として、図 4 に示す柔剛混合構造が挙げられる。柔剛混合構造は、弾性挙動する要素と塑性挙動する要素との混合構造である。柔要素の塑性変形に比べ剛要素の弾性変形は大きいので、柔、剛の違いが明確にみられる。柔要素と剛要素の変形比は変形で示される δ_0 によって定義される。

\[r_0 = \frac{\delta_0}{\delta_r} \]

ここで、δ_0: 柔剛混合変形
\[\delta_0 = \text{最大変形の柔要素の負担せん断力} \]
\[\delta_r = \text{剛要素の降伏せん断力} \]

柔要素が存在しない構造体は普通の骨組であり、$r_0 \geq 1.0$ の領域において柔剛混合の特性が明確なものになる。柔剛混合構造では柔要素の存在により最大変形が抑制され、δ_s/δ_n の比率が大きくなる。また、残留変形は殆ど生じなくなる。文献 8 には、$f = 1.0$ 対応する地震における δ_n, δ_r, δ_s の関係が求められている。δ_s は変形によると最大塑性変形 δ_{pm} に置換して評価している。

\[\delta_{pm} = \delta_n - \delta_r \]

ここで、δ_s: 降伏変形

要素の変形特性が完全弾塑性型の場合、設計参考値として次の結果が得られている 16)。

\[r_0 = 0 \text{の場合（非柔剛混合構造の場合）} \]
\[\alpha = -\frac{\delta_n}{\delta_{pm}} = 2.0 \sim 5.0 \]
\[0 \leq \frac{\delta_n}{\delta_{pm}} \leq 1.0 \]

\[r_0 \geq 1.0 \text{の場合（柔剛混合構造の場合）} \]
\[\alpha = -\frac{\delta_n}{\delta_{pm}} = 8.0 \sim 12.0 \]
\[\delta_n = 0 \]

これらの値を参考にして、$f = 1.0$ 対応する地震動下の変形を次のように仮定する。

\[r_0 = 0 \text{の場合（非柔剛混合構造の場合）} \]
\[\alpha = -\frac{\delta_n}{\delta_{pm}} = 4.0 \]
\[\delta_n = 0 \]

\[r_0 \geq 1.0 \text{の場合（柔剛混合構造の場合）} \]

\[\alpha = -\frac{\delta_n}{\delta_{pm}} = 0.5 \]

\[r_0 \geq 1.0 \text{の場合（柔剛混合構造の場合）} \]

図 5 例題の復元力特性

図 6 α_n 値と予測式の比較

NII-Electronic Library Service
\[
a_n = \frac{\delta_r}{\delta_p} = 10.0
\]
\[
\frac{\delta_r}{\delta_p} = 0
\]

\[f > 1.0\]の場合の変形応答を以下に設定する。

\[r_0 = 0\]の場合、単位地震動が繰り返すことに残留変形が蓄積する。

従って、最大塑性変形 \(\delta_p \) は、04式より \(\delta_p = 0.5\delta_0 \) であることを考慮すれば次の値となる。

\[
\delta_p = \delta_0 + (1-1/2) \delta_0 = 0.5\delta_0 + 0.5/2 \delta_0
\]

ここで、\(\delta_p \)：単位地震動時の最大塑性変形
\(\delta_0 \)：単位地震動時の残留変形
一方、累積塑性変形 \(\delta_s \) は次の値となる。

\[
\delta_s = f \delta_0
\]

ここで、\(\delta_s \)：単位地震動時の累積塑性変形
従って、\(a_s \) の値は次のようになり、

\[
a_s = \frac{\delta_s}{\delta_p} = \frac{f \delta_0}{\delta_p (0.5+0.5/2)} = \frac{f}{1+f}
\]

\[r_0 \geq 1.0\]の場合、\(\delta_p \)、\(\delta_s \) は次の値となる。

\[
a_s = \frac{\delta_s}{\delta_p} = 10f
\]

以下の1質点振動系の応答解析結果と88. 88式の予測値を比較する。

1質点系の復元力特性は図5に示すものである。非柔剛混合構造の初期弾性剛性に対応する固有周期は次の値である。

\[
T = 2\pi \sqrt{2 \over \omega_0^2 g}
\]

ここで、\(\omega_0 \)：剛要素の降伏せん断力係数
柔剛混合構造は、\(r_0 = 1.0\)とする。その固有周期は、次の値である。

\[
T = 2\pi \sqrt{0.5 \over \omega_0^2 (1+1/6) g}
\]

ここで、\(g \)：重力加速度（390cm/s²）
88. 88式により、\(T \) に対応する \(a_s \) を算出し、地震加速度記録に慣率 \(a_s \) を乗じて、\(\delta_s \) を求め、所定の \(\delta_0 \)（非柔剛混合構造に対して6.0 cm、柔剛混合構造に対して3.0 cm）を満たす \(a_s \) を試行錯誤によって求め、\(a_s \) の下における \(a_s \) を算出する。

図6に時刻歴応答解析により得た \(a_s \) の値と69. 69式による予測値（図中の線図）を比較して示す。\(T \) の値によっては部分的に予測値は実応答値に大きな隔たりを示すが、第1近似として実応答値と予測値は概ね対応していることがわかる。

7. 結論
地震動を同一の単位地震動の単純な繰り返し事象としてとらえ、単位地震動の反復数 \(n \) と単位地震動のスペクトルを用いて、地震動のスペクトルを表現することを試みた。結果は次のように要約される。

1）単位地震動のエネルギースペクトルを \(a V_s \) とする。

単位地震動の速度応答スペクトル \(a S_r \) と \(a V_s \) は次で対応付けられる。

\[
a S_r = \frac{1}{a V_s} \sqrt{1/1+12f h}
\]

ここで、\(a V_s \) : 0.1における単位地震動のエネルギースペクトル

2）地震動のエネルギースペクトルを \(V_s \) とする。

地震動の速度応答スペクトルを \(S_r \) とする。\(S_r = a S_r \) であり、

\[
S_r = \frac{1}{a V_s} \sqrt{1/1+12f h}
\]

ここで、\(V_s \) : 0.1における地震動のエネルギースペクトル

3）88式より、\(f \) の値は次式より求められる。

\[
S_r = \frac{1}{a V_s} \sqrt{1/1+12f h}
\]

ただし、\(f \) は 0.1における地震動のスペクトル

また、\(f \) は地震動の実験値 \(a_s \) と概略次式で対応する。

\[
a_s < 50 \text{cm/s, } f = 1.0
\]

\[
a_s > 50 \text{cm/s, } f = 1 + 0.017(a_s - 50)
\]

4）地震時における構造物の最大変形と累積塑性変形の対応関係は、\(a_s \) の反復数に依存する。

謝辞
本論文の図表の作成にあたって、東京理科大学大学院の梅原浩也氏の協力を得た。ここに記して感謝の意を表す。

参考文献
3) 大崎順彦, 渡部 菜, 再建実験: 災害定数と応答スペクトル形状との関係, 日本建築学会大会学術講演会概要, pp.603-608, 1978.9
4) Jacobsen, L.S.: Damping in Composite Structures, II WCEE, Tokyo, 1969
5) 萩平寛: 最新耐震構造解析講座, 東北出版, 1981
6) 秋山 俊: 建築物の耐震状態設計, 第1版, 第2版, 東京大学出版会, 1980, 1987
8) 高橋 誠, 秋山 俊: 地震時における多層構造の最大変形とエネルギー応答, 日本建築学会建築学術講演大集, 第515号, pp.59-66, 1988.1
9) 北村高史, 田村和也: 耐震周期の地震時変動の現象解釈, 日本建築学会技術報告集第22号, 2006年12月
10) 佐藤俊明: 耐震設計手法の最大応答と累積応答の関係に関する考察, 日本建築学会建築子分論文集, 第599号, 2006.1.1
11) Katsuhiko KAMAE, Hidenori KAWABE, Kojiro IRIKURA: Strong Ground Motion Prediction for Large Subduction Earthquakes Using a Characterized Source Model and Several Simulation Techniques, 13th WCEE, Paper No. 655, Vancouver, B.C., Canada, August 1-6, 1994
12) 美濃野建築住宅センター: 名古屋市中央区における地域特性を考慮した耐震対策のための基盤地動の製作 (概要), 04愛知県建築住宅センター耐震構造委員会設立入会式耐震検討会, pp.1-14, 2004.6
13) 佐藤俊明, 原 一男: 関東地震による都市圏の耐震構造解析, 耐震構造設計の指針, 日本建築学会, pp.263-274, 2001
14) 土方秀一, 上田幸也, 金城一幸, 真下 尚, 川崎 嬢, 池田基史, 佐藤俊明: 東海地震の関東平野における長周期地震応答解析, 日本建築学会論文集2004年度秋季大会, B200, 2004
15) 佐藤俊明: 久保哲夫, 郷原邦男, 大西 純, 佐藤俊明: 茨城県名古屋市を
対象とした設計用地震動の策定（その1-7）、日本建築学会大会学術講演梗概集、B-2、pp.81-94、2001.9

16) 関口春子、吉見雅行、吉田邦一、根川晴夫：海溝型巨大地震の広域域地震動予測のためのマルチスケール不均質震源モデルと南海地震への適用一、土木学会・建築学会・地震学会災害対策研究連絡会地震動部会、海溝型巨大地震を考える—広域域地震動の予測2—シンポジウム論文集、2006.2.18

17) 北村春幸、山根尚志、村上勝英、寺本隆幸：観測地震動の変位特性を用いた設計用人工地震動について（その1-2）、日本建築学会大会学術講演梗概集、1990.10

（2006年3月6日原稿受理、2006年6月27日採用決定）