An analytical solution is presented to predict the sloshing response of a cylindrical liquid storage tank with a single-deck type floating roof under seismic excitation. The floating roof is considered to be composed of an inner deck which may be idealized as an isotropic elastic plate with uniform stiffness and mass, and an outer pontoon which can be modeled as an elastic curved beam. The contained liquid is assumed to be inviscid, incompressible and irrotational. The dynamic interaction between the floating roof and the liquid is taken into account exactly within the framework of linear potential theory. By expanding the response of the coupled deck-pontoon system into free vibration modes in air and employing the Fourier-Bessel expansion technique in cylindrical coordinates, the solution is obtained in an explicit form which will be useful for parametric understanding of the sloshing behavior and preliminary study in the early design stage. Numerical results are provided to investigate the effect of 2-directional ground motions on the sloshing response of the floating roof.

Keywords: Liquid storage tank, Floating roof, Single-deck, Sloshing, Potential theory, Long-period ground motion

1. 序
2003年の十勝冲地震では、苦小牧地区の石野町7基でスロッシングにより浮屋根が沈没し、2基（うち1基は浮屋根が沈没した時点）で火災が発生するという甚大な被害に見舞われた。この地震による苦小牧での最大動加速度はEW方向に76cm/s²、NS方向に69cm/s²が観測されている。加速度としては決して大きくはないが、浮屋根の応答スペクトルを見ると周期5〜8sにピークを有するやや長周期成分が卓越した地震動であることが特徴的である。その大きさは従来の防火法規定に定める設計用速度応答スペクトル100cm/s²を大きく上回るものであった。これを受けて2005年4月には地域補正係数の導入を盛り込んだ防火法告示の改正がなされ、設計用速度応答スペクトルが従来の2倍程度に高められるとともに、旧告示では雨水の滞留に関する強度基準のみ定められ、耐震強度については特に規定のなかった浮屋根の構造強度について、新たに長周期地震動を考慮した耐震強度評価による技術基準が加えられたことにより、浮屋根の耐震強度評価の必要性が高まってきている。

浮屋根の耐震強度の評価に関しては、浮屋根を質量の無視し得る剛体板と仮定しボテンシャル理論を適用して内部液体との連成動問題を解いたNakagawa, 山本らの研究や、浮屋根を質量のある弾性体として扱い液体との連成振動問題を境界積分型の変形原理に基づくリッチ法(有限要素法)により解いたSakai et al.の研究がある。さらに最近では、汎用の有限要素解析ソフトを利用して、浮屋根と内部液体との連成振動を、層間・塑性化、大変形、有限振幅波など、様々な構造・流体非線形効果を含めて詳細に解析することも行われている。このような現状では、浮屋根型液体貯槽のスロッシング対応を理論的に検討するための解析ツールは十分に整えられている状況にはあるが、計算に多大な労力を必要とする非線形詳細解析はスロッシング基本性状のパラメトリックな把握や初期設計段階での予備的な検討には必ずしも適さない。たとえ線形理論の範囲内であっても、浮屋根と内部液体との連成振動を解析的に表現した解があれば、基本性状の把握や初期設計段階での検討に有用であると思われるが、このような理論解析を示した研究は見当たらない。

このような観点から、著者は既報において、一つの剛性・質量分布の浮屋根を有する仮定平底円筒液体貯槽を対象に、浮屋根と

* 名城大学理工学部建築学科 教授・工博
Prof., Dept. of Architecture, Faculty of Science and Technology, Meijo Univ.,
Dr. Eng.
内部液体との連成作用を考慮した地震時スロッシング応答の解析解を線形ポテンシャル理論に基づき導出している。また前述11）では、デッキ部を等厚の等方弾性平板、ボンツーン部を弾性曲線ばかり仮定することにより、内部デッキと周辺ボンツーンから成るシングルデッキ型浮屋根荷重に適用できる解を提示している。しかし、そこではデッキ部の変位とボンツーン部の変位が独立した仮定として扱われ、デッキ部の変位はボンツーン部の変位に伴って生じる準静的変位を周辺を固定した場合のデッキ部の空中固有振動モードの重ね合わせにより表現されていたため、運動方程式は非対称の質量・剛性マトリックスを有する複雑な解表示となっていた。本稿では、その後の検討の結果に基づき、浮屋根の変位をデッキ・ボンツーン連成系の空中固有振動モードに展開することにより、対称な質量・剛性マトリックスを有するより簡潔な解表示に改め、さらに適用例として、2方向同時入力を受けける場合の応答解析結果を示し、1方向入力時の応答との相違について考察する。

2. 理論解の導出
2.1 境界値問題
図1に示すような平底円筒形貯槽の地震時に液面動揺問題を扱う。
貯槽は剛体であると仮定し、その半径を \(R \)，液体の深さを \(H \) とする。液面は対称の剛体部と外周の剛体の比較的高いボンツーン部とで構成されるシングルデッキ型の浮屋根で覆われており、浮屋根と液面は常に接触していると仮定する。デッキ部は等厚の等方弾性平板であると仮定し、その半径を \(R_p \)、単位面積当たりの質量を \(m \)，曲げ剛性を \(D \)、ポアソン比を \(\nu \) とする。ボンツーン部は弾性曲線ばかりであると仮定し、その曲率半径を \(R_p \)、単位長さ当たりの質量を \(M \)，ねじり慣性モーメントを \(T \)，曲げ剛性を \(EI \)、ねじり剛性を \(GJ \) とする。

貯槽底面の円心を原点をもつ円柱座標系 \((r, \theta, z)\) で \(z \) 軸が鉛直上向きになるようにとる。内容液は理想流体で線形ポテンシャル理論が成立すると仮定すると、\(\theta = 0 \) の方向に水平運動変位 \(x(t) \) を受けた場合の速度ポテンシャル \(\phi \) の境界値問題は次のように記述される。

\[
\begin{align}
 V^2 \phi &= 0 \quad \text{(流体内で)} \\
 \frac{\partial \phi}{\partial r} &= x(t) \cos \theta \quad \text{側壁 } r=R \quad \text{で} \\
 \frac{\partial \phi}{\partial z} &= 0 \quad \text{底面 } z=0 \quad \text{で} \\
 \frac{\partial \phi}{\partial z} &= w \quad \text{デッキ下面 } z=H, \quad R_p \leq r \leq R \quad \text{で} \\
 \frac{\partial \phi}{\partial z} &= W+(r-R_p)w \quad \text{ボンツーン下面 } z=H, \quad R_p \leq r \leq R \quad \text{で}
\end{align}
\]

ここで、\(w \) はデッキ部の鉛直変位を、\(W \) と \(\psi \) はボンツーン部の鉛直変位をそれぞれ不連続で、は表面 \(z \) に関する微分を示す。

浮液面に働く動圧力 \(p \) は、線形化されたベルヌーピ式により

\[
p = -\rho \left(\frac{\partial \phi}{\partial z} \right)_{z=H} - \rho gw \quad r \leq R_p \text{ で} \tag{2a}
\]
ここで，J_1は第1次の第1種ベッセル関数を，I_1は第1次の第1種変形ベッセル関数を示す。また，κ_{i}は無次元変数で，デッキ・ボンツーン連成系の空中における1次の固有円振動数のα_{i}と次式によって関係づけられる。

$$\kappa_{i}^{4} = \frac{mRd^{4}}{D} \omega_{i}^{2} \tag{11}$$

ここで，\n
$$c_{11} = \frac{D}{Rd^{2}} \left[(\kappa_{i}^{2} + 1 - v) \kappa_{i} J_{1}(\kappa_{i}) - (1 - v) I_{1}(\kappa_{i}) \right] \tag{12}$$

$$c_{12} = \frac{D}{Rd^{2}} \left[(\kappa_{i}^{2} + 1 - v) \kappa_{i} J_{1}(\kappa_{i}) - (1 - v) I_{1}(\kappa_{i}) \right] \tag{13}$$

$$c_{21} = \frac{D}{Rd^{2}} \left[(\kappa_{i}^{2} + 1 - v) \kappa_{i} J_{1}(\kappa_{i}) - (1 - v) I_{1}(\kappa_{i}) \right] \tag{14}$$

$$c_{22} = \frac{D}{Rd^{2}} \left[(\kappa_{i}^{2} + 1 - v) \kappa_{i} J_{1}(\kappa_{i}) - (1 - v) I_{1}(\kappa_{i}) \right] \tag{15}$$

2.3 速度ポテンシャルの解表現

連続方程式(1a)，側壁条件(1b)および底面条件(1c)を満たす速度ポテンシャルϕの解は次式で与えられる。

$$\phi = \left[i_{\phi}(t)r + \sum_{i=1}^{n} A_{i}(t) \cos \left(\psi_{i}(z/R) J_{1}(\phi_{i} r/R) \right) \right] \cos \theta \tag{14}$$
で与えられる。

2.4 運動方程式の解

運動方程式(3), (4), (5)を次の重み付き弦差方程式に置き換えて解く。

\[
p = \rho g \left[\sum_{i=0}^{\infty} \frac{2}{\Omega_i^2 \epsilon_i^2 - 1} J_i(r_i / R) \sum_{n=0}^{\infty} a_n \sigma_i^2(t) \right] \cos \theta \\
- \rho g \sum_{i=0}^{\infty} Z^2 \sigma_i^2(t) \cos \theta \quad r \leq R_e \\
\]

(22a)

\[
p = \rho g \left[\sum_{i=0}^{\infty} \left(\frac{2}{\Omega_i^2 \epsilon_i^2 - 1} J_i(r_i / R) \sum_{n=0}^{\infty} a_n \sigma_i^2(t) \right) \cos \theta \\
- \rho g \sum_{i=0}^{\infty} \left(\frac{2}{\Omega_i^2 \epsilon_i^2 - 1} J_i(r_i / R) \sum_{n=0}^{\infty} a_n \sigma_i^2(t) \right) \cos \theta \right] \\
- \rho g \sum_{i=0}^{\infty} \left[\frac{2}{\Omega_i^2 \epsilon_i^2 - 1} \left(\frac{r}{r_i} \right)^2 \right] \sigma_i^2(t) \cos \theta \quad R_e \leq r \leq R \\
\]

(22b)

運動方程式(25)において，左辺の \(\mu_d \) は液体の付加質量係数を，

\(K_d \) は浮力変化に伴う静的復元力係数を表す。 (25)は前稿\(^{10}\)の (26),

(34), (53)に対するものであり，これらを比較すれば，対称密度・
剛性マトリックスを有する簡単な形式を有している。

(25)は非減衰の運動方程式であるが，適当な減衰（剛性比例減衰
あるいはレーリー型減衰など）を考慮してこれを解けば，モード
変位 \(\xi_n(t) \) (n = 1, 2, ..., \infty) の解が得られる。

2.5 解の最終表示

モード変位 \(\xi_n(t) \) が得られれば，それらを(7), (8), (21)および(22)
に代入することによって浮力変位 \(\psi, \theta \)，速度ポテンシャル
\(\phi \) および動変位 \(p \) の解が得られる。

\[
\sum_{n=0}^{\infty} \left[\delta_{\mu_d} \dot{M}_n + \mu_d \dot{\psi}_n \right] + \delta_{\mu_d} \dot{M}_n \sigma_\mu + K_d \dot{\psi}_n(t) = \gamma_{\mu_d} \dot{\psi}_n(t) \\
(n = 0, 1, ..., \infty) \\
\]

(25)

ここに， \(\delta_{\mu_d} \) はクロネッカ記号を示し，

\(\dot{M}_n = mR_d^2 \Delta_n + MR_d \dot{\xi}_n + 2 + TR_p \dot{\psi}_n \)

(26)
\[k_{e0} = \sum_{n=1}^{\infty} \frac{\hat{e}_n(t) \alpha_{n} \left(\frac{\kappa_n - \beta_n I}{R_p} \right)}{n \omega_n} \sin \theta \]

となり、曲げモーメントとねじりモーメントは

\[m_x = -D(\kappa_x + \nu \kappa_x), \quad m_y = -D(\kappa_y + \nu \kappa_y) \]

\[m_{e0} = -D(1 - \nu) k_{e0} \]

により算定される。
またポンツーンに生じる曲げモーメントとねじりモーメントは

\[M_x = \frac{EI}{R_p} \sum_{n=1}^{\infty} \frac{\hat{e}_n(t)}{n \omega_n} \left(\Xi_n - \frac{\kappa_n - \beta_n I}{R_p} \right) \cos \theta \]

\[M_y = \frac{EI}{R_p} \sum_{n=1}^{\infty} \frac{\hat{e}_n(t)}{n \omega_n} \left(\Xi_n - \frac{\kappa_n - \beta_n I}{R_p} \right) \sin \theta \]

により算定される (前稿 14 参照)。

3. 解析例および考察

3.1 解析モデル

解析例として用いたモデル形状は前稿 15 と同様であり、その諸元を表 1 に示す。これは実機 4 万キログラム型 10 万キログラム型を参考に設定したモデルで、前者を S-25 モデル、後者を S-40 モデルと呼称する。

1 方向 (EW 方向) 入力時の応答については前稿 15 とほぼ一致する結果が得られているので、ここでは重複を避けるため、2 方向同時入力時の応答解析結果について主として報告する。

ただし、収束解を得るために必要な歯数は前稿 15 の自由面モード 25 次、浮屋根モード 20 次に比べて、自由面面モード 30 次、浮屋根モード 28 次に増加していることに注意する必要がある。

表 1 モデル形状の諸元

<table>
<thead>
<tr>
<th></th>
<th>S-25</th>
<th>S-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>貯槽半径 R</td>
<td>25 m</td>
<td>40 m</td>
</tr>
<tr>
<td>液体深さ H</td>
<td>15 m</td>
<td>20 m</td>
</tr>
<tr>
<td>液体密度 ρ</td>
<td>850 kg/m³</td>
<td></td>
</tr>
<tr>
<td>テンジ部厚さ</td>
<td>4.5 mm</td>
<td></td>
</tr>
<tr>
<td>ポンツーン断面幅 b</td>
<td>3 m</td>
<td>5 m</td>
</tr>
<tr>
<td>ポンツーン断面高さ d</td>
<td>70 cm</td>
<td>80 cm</td>
</tr>
<tr>
<td>ボンツーン上下層板厚</td>
<td>4.5 mm</td>
<td>4.5 mm</td>
</tr>
<tr>
<td>ポンツーン内外層厚 t_ω</td>
<td>12 mm</td>
<td>12 mm</td>
</tr>
<tr>
<td>テンジ部曲げ剛性 D</td>
<td>1.719 kN-m</td>
<td></td>
</tr>
<tr>
<td>ポンツーン曲げ剛性 EI</td>
<td>0.809x10⁴ kN·m²</td>
<td>1.671x10⁴ kN·m²</td>
</tr>
<tr>
<td>ポンツーンねじり剛性 GJ</td>
<td>1.036x10³ kN·m²</td>
<td>2.259x10³ kN·m²</td>
</tr>
<tr>
<td>テンジ部質量 m</td>
<td>58 kg/m²</td>
<td>58 kg/m²</td>
</tr>
<tr>
<td>ポンツーン質量 M</td>
<td>558 kg</td>
<td>819 kg</td>
</tr>
<tr>
<td>ポンツーン質量慣性モーメント T</td>
<td>783 kg·m²</td>
<td>2815 kg·m²</td>
</tr>
<tr>
<td>ポンツーン高さ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>削衰定数</td>
<td>0.1% (for sloshing)</td>
<td>0.5% (for roof)</td>
</tr>
<tr>
<td>採用モード数</td>
<td>30 (for sloshing)</td>
<td>28 (for roof)</td>
</tr>
</tbody>
</table>

3.2 地震応答解析

入力地震震として 2003 年十勝沖地震の際に記録された地震波 (K-NET 公開波 KHD12030920050 NS & EW) を採用し、2 方向同時入力時の時刻歴応答解析を行った。時刻歴応答解析には時間間隔を 0.01s、継続時間を 163.84s としてニューマークの β 法 (平均加速度法: β=1/4) を採用した。また減衰は剛性比型式とし、1 次モード（液体中）に対して表 1 に示す減衰定数を用いた。2 方向入力時の応答は NS 方向を θ=0°として、EW 方向を θ=90°として、これら 2 方向波がそれぞれ単独に作用したときの応答に各方向の方向余弦を掛けて重ね合わせることにより算出した。

入力地震加速度の時刻歴を図 2 に、各方向波の速度応答スペクトル (0.5%減衰) を図 3 に示す。この図を見ると、2003 年十勝沖地震の場合、浮屋根の固有周期は S-25 モデルでは、1 次が 8.28s、次が 4.39s、3 次が 3.46s に対して、S-40 モデルでは、1 次が 10.97s、2 次が 5.52s、3 次が 4.34s である。これらの振動モードが地震波のやや長周期成分に刺激されて共振する可能性が十分に考えられる。各方向波を比較すると、周期 8s よりも長周期傾では EW
図4 応答のフーリエ振幅スペクトル (S-25 モデル)

図5 応答のフーリエ振幅スペクトル (S-40 モデル)
图6 最大応答値の半径方向に沿う分布 (S-25 モデル)

图7 最大応答値の半径方向に沿う分布 (S-40 モデル)
方向がNS方向よりも大きく、45°と135°がその中に存在する傾向が続いているが、それより短周期側では周期の変化とともに各方向波が複雑に交錯しており、周期3.1s付近で135°方向、3.5s付近でNS方向が、それぞれ急激なピークを呈しているのが特徴的である。

方向がNS方向を含む、45°と135°がその中に存在する傾向が続いているが、それより短周期側では周期の変化とともに各方向波が複雑に交錯しており、周期3.1s付近で135°方向、3.5s付近でNS方向が、それぞれ急激なピークを呈しているのが特徴的である。

2. 方向同時入力時の各方向の屋根面変位、動圧および曲げひずみのフーリエ振幅スペクトルを図4および図5に示す。これらの図から分かるように、屋根面変位および動圧においては、S-40モデルで最大の2次モード成分が卓越するものがあり、各方向が支配的である。一方、曲げひずみにおいては、1次モード成分が卓越しているものであり、高次モードの存在も無視できず、特にS-40モデルでは2次モードの、S-25モデルでは2次および3次モードの寄与が顕著である。方向別に大きさを比較すると、1次モード成分は最大であり、NSおよび135°方向が小さくなっている。各方向の屋根面変位、動圧および曲げひずみの最大応答値の方向においての分布を図6および図7に示す。フーリエ振幅スペクトルの傾向を反映し、1次モード成分が卓越する屋根面変位、動圧、NSおよび135°方向が小さくなっている。一方、高次モードの寄与が顕著な曲げひずみにおいては、各方向の大きさが著しくており、SR-25モデルではNS方向が最も大きくなっている。これは3次モードの応答スペクトルがNS方向波の速度応答スペクトルが卓越するピーケを示す周期とまったく一致したためである。

以上の結果から分かるように、2方向同時入力時の応答は入力地震動のスペクトル特性と各次の固有周期との関係に強く依存し、きわめて複雑な模様を呈する。したがって、設計においては、2方向同時入力時の応答解析を行い、最も不利な方向に対して検討することが望ましいということである。

4. 結語

前項11)で導出したシングルデッキ型浮屋根を有する円筒液体貯槽の地震時スロッシング応答の解析解を、浮屋根の変位をデッキ・ボンプなど構成の空洞内に動揺を含むものに展開することにより、対称性・剛性・変形を考慮し、簡潔な解を導出にした。さらに適用例として、2方向同時入力に対する応答解析結果を示し、2方向同時入力に対する応答解析を対称な構造について検討した。その結果、2方向同時に入力時の応答は入力地震動のスペクトル特性と各次の固有周期との関係に強く依存し、複雑な模様を呈することから、設計においては、2方向同時入力時の応答解析を行って、最も不利な方向に対して検討することが望ましいことを指摘した。本稿で提示した解析解はこのような設計段階での検討に直接役立つものとなっている。

浮屋根の変位をデッキ・ボンプなどの構造の空洞内に動揺を含むモデルに展開する本緩の手法は任意形状の浮屋根への適用を容易にするという利点がある。すなわち、浮屋根の空洞内に動揺を含むモデルを有限要素解析等により求め、求解の過程で必要な積分を数値積分により評価すれば、変断面、異方性や不均一な質量分布を有する任意形状の浮屋根のスロッシング解析が可能となる。

謝辞

本研究には平成17・19年度日本学術振興会科学研究費補助金基盤研究（B）ならびに平成18年度名城大学総合研究所学術研究補助金制度研究成果展開事業費の援助が得られている。本研究を遂行するにあたり有益な討論を頂いた鹿島建設技術研究所の内藤幸雄博士ならびに同ITソリューション部の吉川和成氏に謝意を表す。なお、地震波には独立行政法人防災科学技术研究所の強震観測網K-NET公開波を使用した。