FUNDAMENTAL STUDY ON BUILDING-ELEVATOR SYSTEM FOR REDUCTION OF EARTHQUAKE DAMAGE TO MAIN ROPE

Asami Mitsui and Masayuki Kohiyama

Due to past several earthquakes, damage of elevators, especially in rope, were reported. It is quite important to maintain the function of an elevator for rescue activity after a severe earthquake. This study clarifies the correlation between vibration of a main rope of an elevator and the characteristics of a building (stiffness and damping factor). Influence of the setting position of a driving machine is also investigated. A model of a thirty-story building with elevator system is analyzed on vibration modes and dynamics responses to several seismic ground motions. It is shown that two-elevator system, which sets a transfer floor in the middle height of a building, can reduce the response of a main rope, and that increased damping factor can also reduce the response.

Keywords: elevators, building and elevator systems, seismic response, main rope, modal participation vectors

1.はじめに

現在、都市における建築物の高層化や本格的な高齢社会の到来により、エレベーターは建築物の観の移動手段としてなくてはなくてはならないものとなっている。車椅子利用者など身体に障害を持つ人々の積極的な社会参加の推進を推進するためにも、建築物は全ての人々が利用できるような配慮が必要となるべきである 1). しかし、高層建築物に設置された高速エレベーターは基本的には避難に用いられることとなっている。高層化によって建築物の固有振動数は小さくなるが、一方でエレベーターロープは長くなるため、昇降時の高さによっては建物とエレベーターロープの共振が生じる場合がある。地震や風により共振現象でメインロープ、コンベンロープ、調整用ロープ、等の横揺れが増幅されてしまう現象はロープスウェイ問題と呼ばれている。

このロープスウェイ問題に対処する基本的な考え方は、ロープと建物の固有振動数を一致させることである。現状ではエレベーターの管路運転を行う、ロープの揺れを抑える把持装置を何箇所かに設置して制御的に抑制するなどの対策が取られている 2). ここで、管路運転は気象や地震時において建物の揺れに応じてエレベーターを最寄り階に停止させたりするもので、地震時においては、機器の損壊や閉じ込め事故などの二次災害を防ぐために、機械室に設置した地震感知器が、設定値を超える加速度を感知した際には、エレベーターを最寄り階に停止させ、かごが2階以上にある場合、特低設定値（15 Gal）以上の建物の振動を感知すると最寄り階に一定時間停止し、低設定値（30 Gal）以上の揺れを感知しなければ運転を自動的に再開する。感知した際には、乗客を解放した後、点検を受けた上で運転を再開するも。このため、大都市付近で地震が発生した場合には、多数のエレベーターが同時に停止し、復旧に多くの時間を必要とすることになる。また、2004年に発生した新潟県中越地震ではエレベーターロープが振動し、機器に絡まり非常停止し、復旧にかなりの時間を要した 3). 2005年の千葉県南北部の地震は震源が高層ビルの多い都心近くであったため、エレベーターの被害が多く報告された 4). したがって、運転効率の改善や安全性の向上のみならず災害復旧の時間短縮や地震時損傷の面からロープの振動を抑制する必要性が高まっている。

一般に高層建物の耐震性を高めるには、建物の固有周期を長くする、減衰を付加するといったことが行われる。このような対策により、建物の地震被害が軽減されるが、エレベーターシステムの応答に何らかの影響を及ぼす可能性がある。したがって、建物・エレベーター連成系の応答特性を把握することが必要であるといえる。

このような背景のもと、本研究ではエレベーターのメインロープの地震応答と建築物の震動特性の関係を建物・エレベーター連成系モデルで用いて明らかにする。建物は30階建てを想定し、一般に建てるされる建物の多様な振動特性を考慮するために、剛性と減衰定数が異なるときにエレベーターシステムの応答がどのように変わるか、図
有価解析ならびに時刻歴応答解析によって傾向を把握する。また、
巻上機の設置場所が異なる場合に応答がどのように変化するか分析
を行う。そして、解析により得られた知見をもとにメインロープの
被害低減策を提案する。

2. 解析対象

本研究の解析対象は吊ロープ式エレベーターメインロープ、巻
上機、かごとそれを設置した建物である。一般にエレベーターのか
ごとつい合いおりである巻上機にかかる複数本のメインロープによ
って吊り下げられ、その下にはメインロープの張力を一定に保つた
ためのコンパロープとコンパシップが設置されている。本研究で
は、簡単のためコンパロープとコンパシップを省略したモデル
を考えて、建物とメインロープの挙動に注目する。

2.1 建物のモデル化

本研究では高さ33mの30階建ての100m級の高層ビルを対象と
し、自由度は30のせん断モデルを使用した。巻上機を含む建物の
運動方程式を以下のように表す。

\[M_s \ddot{x}_s + C_s \dot{x}_s + K_s x_s = F_s \] (1)

ここで、\[M_s \]: 関物の質量マトリックス（既存の建物データを考
参考に各階質量を1.5×10^4 kgとした）、\[C_s \]: 関物の減衰マトリックス（剛性比例型、巻上機：4.7×10^5 N・s/m）、
\[K_s \]: 関物の剛性マトリックス（設定した1次固有周期となるよう
AI 分布から導出、巻上機の剛性：3.0×10^5 N/m）, \[\ddot{x}_s \]: 関物の変位
ベクトル, \[F_s \]: 関物に加わる外力ベクトル, \[x_s \]: 関物の\(n \)層目
の質点の地表面からの相対水平変位, \[\ddot{x}_s \]: 巻上機の地表面からの
相対水平変位である。エレベーターボードを含む構造物のモデ
ルを図1に示す。

![図1 解析モデル（巻上機が最上階に設置されている場合）](image)

2.2 ロープのモデル化

エレベーターのメインロープは数十本ものワイヤーロープによっ
て構成される。しかし、本文においては構造物とメインロープの応答の
関連性の把握に重点を置いているため、ロープ一本のモデルとして
扱った。ロープはせん断方向のみに変化する弦として、有限要素法
に基づき離散化モデルを構築した。

今、長さ\(L_i \)のロープを\(N_i \)分割した弦として扱うと、要素\(i \)の運動
方程式は次式で表される。

\[\frac{\rho_i L_i}{6N_i} \left[\begin{array}{c} \ddot{x}_i \\ \dot{\theta}_i \\ \phi_i \\ \rho_i L_i \end{array} \right] + \left(\begin{array}{c} -1 \\ 1 \\ -1 \\ 1 \end{array} \right) \left[\begin{array}{c} 6N_i \ddot{x}_i \\ \ddot{\theta}_i \\ \phi_i \\ \rho_i L_i \end{array} \right] = \left(\begin{array}{c} \ddot{f}_i \\ \dot{f}_i \\ \phi_i \\ \rho_i L_i \end{array} \right) \] (3)

ここで、\[\rho_i \]: ロープの線密度 (1.7 kg/m), \[L_i \]: ロープの全長（かご
の位置によって変化）, \[N_i \]: ロープの分割数 (30), \[r_i \]: 点\(i \)の水平
変位, \[f_i \]: 点\(i \)に加わる外力である。ロープの張力\(T_i \)とロープの減
衰係数\(C_i \)は以下の式から導出した。

\[T_i = (r_i T + m_i g) \] (4)

\[C_i = 2\pi G(r_i T + m_i g) \] (5)

ここで、\[m_i \]: かごの質量, \[G \]: 重力加速度, \[r_i \]: ロープの減衰比 (0.008)
である。メインロープはこの運動方程式を重ね合わせることにより
構築され、以下のようになる。

\[M_x \ddot{x}_s + C_x \dot{x}_s + K_x x_s = F_s \] (6)

\[x_s = (x_{s1}, x_{s2}, \ldots, x_{sn})^T \] (7)

ここで、\[M_s \]: ロープの慣性マトリックス, \[C_s \]: ロープの減衰マトリ
クス, \[K_s \]: ロープの剛性マトリックス, \[x_s \]: ロープの変位ベクトル,
\[F_s \]: ロープに加わる外力ベクトル, \[\ddot{x}_s \]: 建物に対するロープの相対
変位である。

また、かごと反対側に設置されているつり合いおもりはかごとほ
ぼ同程度の質量を持つため、つり合いおもりはかごと同じモデルと
して扱い、つり合いおもり側のメインロープについても考慮した。

2.3 かごのモデル化

エレベーターのかごはエレベーターロープで上下が繋がられてお
り、昇降中にガイドレールでローラーに固定されライドするよ
うになっている。かごはレールの曲がりやゆがみによる振動抑制の
ために複数のパネやダンパがついている。また、ロープの振動の影
響低減のための装置も取り付けられているが、本研究では簡単のた
め、かごを1質量と考え、ガイドレールにパネとダンパで取り付け
られているモデルとして扱った。また、かごの鉛直方向の運動は考
慮しなかった。かごの運動方程式を以下の式で表す。

\[m_c \ddot{x}_c + c_c \dot{x}_c + k_c x_c = f_i \] (8)

ここで、\[m_c \]: かごの質量 (7.5×10^4 kg), \[k_c \]: かごと建物の間の
剛性係数 (2.7×10^5 N/m), \[c_c \]: かごと建物の間の減衰係数 (9.0×10^5 N/
m), \[\ddot{x}_c \]: 建物に対するかごの相対水平変位, \[f_i \]: かごに加わ
る外力である。

2.4 システム全体のモデル化

以上で導出した構造物・巻上機・ロープ・かごの運動方程式から、
システム全体の運動方程式を構築する。構造物の1質量目にかごが
ある場合の運動方程式は式(1), (4), (6)を連立し、次の一連節条件(9),
(10)を考慮すると、式(11), (12)のようになる。

\[r_s = x_s \] (9)

\[r_{x_s} = x_s \] (10)

\[M_s \ddot{x}_s + C_s \dot{x}_s + K_s x_s = -M_s \ddot{x}_s \] (11)

\[x_s = [x_{s1}, x_{s2}, \ldots, x_{sn}]^T \] (12)

ここで、\[M_s \]: システム全体の質量マトリックス, \[C_s \]: システム全体

NII-Electronic Library Service
の減衰マトリクス、\(K_s \): システム全体の剛性マトリクス、\(x_s \): システム全体の変位ベクトル、\(z \): 地動加速度である。

2.5 模型の妥当性の検討

本研究で使用する解析モデルの妥当性を実際の被害事例を参考に検討する。2004年10月に発生した新潟県中越地震では、六本木ビルズ森タワーにおいてメインロープの損傷が発生した[[13]]。詳細な実被害データの入手が困難であったため、ビルディングレター[[13]]を参考に建物モデルを構築し、建物・エレベーター達成系の地震応答解析を行い、メインロープが被害を生じる応答レベルになるか検討を行った。建物モデルは各層質量7.8×10^3 kg、階高4.0 m、減衰定数0.01、1次固有周期5.8 s、自由度60のせん断モデルとした。

新潟県中越地震のK-NET新宿EW波を入力したときの、各かご位置における建物とロープの最大相対変位を図2に示す。建物とロープの最大相対変位は0.27 mに達しており、つり合いおもり側ではメインロープが昇降路に引っかかりる変位となっていることが確認できる。よって、被害発生有無の検討に本研究のモデルが適用できる可能性を示しているといえる。

![建物とロープの最大相対変位](image)

図2 六本木ヒルズ森タワーを参考にしたモデルに新潟県中越地震K-NET新宿EW波を入力したときの建物とロープの最大相対変位 [m]

2.6 解析ケース

本研究では、(1) 建物の剛性とロープの振動、(2) 建物の減衰とロープ、(3) 巻上機の設置高さとロープの振動の関連性の把握を行う。建物は多様な振動特性を持つと考えられるため、以下のようなモデルを用いた解析を行った。

1. 建物の剛性を標準的な1次固有周期から算出した剛性を基準に、0.5、0.75、1.0、1.25、1.5、1.75、2.0 倍の7通りに設定。
2. 建物の減衰定数を0.01、0.02、…、0.05の5通りに設定。
3. 巻上機の設置場所を建物最上階 (30階目)、建物中間階 (15階目) と建物の2次モードの節のある階 (23階目) の3通りに設定。

(3) は乗り換え後の有無と乗り換え後の高さの比較である。解析モデルを図3に示す。モデルAは乗り換え後のエレベーターのロープを想定している。巻上機は最上階に設置されており、かごとつり合いおもりは1〜30階のいずれかにいる。モデルBは建物中間階に乗り換え階がある場合とし、巻上機が最上階に設置されているエレベーターのロープをモデルB上部 (かご、つり合いおもりは15〜30階)、中間階に設置されているものをモデルB下部とした (かご、つり合いおもりは1〜15階)。モデルCは乗り換え階が23階である他のモデルBと同様である。

3. 固有値解析

3.1 固有値解析の概要

地動に対するシステムの挙動の概略を調べるため、まず固有周期と固有ベクトルを求める。次に刺激関数を用いて、外乱によって励起される各振動モードの振幅比を比較する。

刺激関数は以下のように表される[[13]][14]。

刺激関数：\(\beta \in \mathbf{u} \)

\[
\begin{align*}
\beta_i &= \frac{u_i M_s}{u_{i-1} M_s} = \frac{u_i}{u_{i-1}} \frac{M_s}{M_s} \quad (i = 1, \ldots, r)
\end{align*}
\]

ここで、\(u_i : s \) 次の固有ベクトル、\(M_s : 質量マトリクス \)である。本研究では簡単のために実用的に固有値解析を行った。

3.2 固有値解析の結果

モデルA。建物剛性1.0倍、かご位置1階の場合のシステム全体の刺激関数を図4に示す。図4から、次4次モードでロープがよく揺れることがわかる。また、固有周期は0.95 s (3次モード) と0.91 s (4次モード) などのように近接している。さらに、6、7次モードではロープの2次モードが現れ、ロープの2次モードも励起されやすいことがわかった。

システム全体の刺激関数を求めたときの、同じ高さの建物質点とロープ要素節点の刺激関数値の差の絶対値、すなわち、建物とロープの対象な位置ずれを各質点毎に表したものを \(\beta_{\text{M}} \) とする。ここで、\(\beta_{\text{M}} \) とは刺激関数における建物の質点位置とロープの節点位置の差をとっているもので、ロープの節点と建物の質点が同じ高さにある場合はその質点における刺激関数値を直線内挿した値との差をとった。本研究ではロープを30分間しているため、31節点分められた、各モデルにおける \(\beta_{\text{M}} \) を図5に示す。図5において各かご位置、各次数における、全節点位置の中での \(\beta_{\text{M}} \) の最大値 (以下、max(\(\beta_{\text{M}} \)) とする) をそれぞれ61次まで求めた。各かご位置におけるmax(\(\beta_{\text{M}} \))を横軸に各次固有周期をとり、図6に示す。同図では各建物剛性について固有周期とmax(\(\beta_{\text{M}} \))の関係を比較している。

ここで、後述するように、モデルCはモデルAに比べて応答は小
建築構造1.0倍、かご位置1階の場合

<table>
<thead>
<tr>
<th>モデルA、建物剛性1.0倍、かご位置1階の場合の固有周期[s]</th>
<th>モデルA、建物剛性1.25倍、かご位置3階の場合の固有周期[s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ロープのみ</td>
<td>建物のみ</td>
</tr>
<tr>
<td>1次</td>
<td>0.915</td>
</tr>
<tr>
<td>2次</td>
<td>0.457</td>
</tr>
<tr>
<td>3次</td>
<td>0.305</td>
</tr>
<tr>
<td>4次</td>
<td>0.227</td>
</tr>
<tr>
<td>5次</td>
<td>0.181</td>
</tr>
<tr>
<td>6次</td>
<td>0.150</td>
</tr>
<tr>
<td>7次</td>
<td>0.128</td>
</tr>
<tr>
<td>8次</td>
<td>0.111</td>
</tr>
<tr>
<td>9次</td>
<td>0.098</td>
</tr>
<tr>
<td>10次</td>
<td>0.088</td>
</tr>
</tbody>
</table>

図4 システム全体の変形関数
（モデルA、建物剛性1.0倍、かご位置1階の場合）

図5 受想、モデルB上部、モデルB下部
（建物剛性1.0倍、かご位置1階の場合）

図6 各建物剛性におけるmax(βω)

さいがモデルBよりも若干応答が大きかったため（図9）, 乗り換え階を設けたエレベーターに関してはより良い結果を示したモデルBにのみ結果を示す。また、ロープのみ、建物のみ、システム全体のそれぞれの場合の固有周期を表1に示す。

図3を見ると、モデルBはモデルAに比べてmax(βω)のピークが小さくなっている。特に、モデルBの下部は他に比べて小さく、max(βω)が大きいほど、地動が入力されたときに建物
れーパ間の相対変位への影響が大きくなるといえるため、地震が発生した際にモードBの下部は他のそれに比べて被害が小さくなると考えられる。また、max(Δu)が卓越している個所（建物剛性 1.25 倍のモード A では 0.85 s 付近）は、乗り換え階を設けることで見られなくなっている。このことから、巻上機を最上階に設置した場合はご位置が低層の 1から 15階の間で max(Δu)が大きくになっていることがわかる。これは建物剛性 1.25 倍のときにだけでなく、他の建物剛性でも確認できる。また、この現象はシステム全体の固有周期とロープのみの固有周期が一致する、または近い値をとっているときに生じることが表 1から明らかとなった。

以上のことから、max(Δu)のみを考えた場合にはモード B の方が良いといえる。なお、建物の 1次固有周期近傍では max(Δu)が他に比べて非常に小さい値であった。これは建物の1次固有周期が、ロープのみの固有周期の範囲外であるためだと考えられる。

4. 時刻歴応答解析
4.1 時刻歴応答解析の概要
本研究では、近年エレベーター被害をもちたらした、2005年7月23日千葉県北西部地震 (M6.0) の東京都有立区で観測された EW 成分波、2004年10月23日新潟県中越地震 (M6.8) の新潟県川口町で観測された EW 成分波と東京都新宿区でK-NETにより観測された EW 成分波、ならびに、長周期地震動として2003年9月26日十勝沖地震 (M8.0) の北海道小樽市で観測された NS 成分波を入力地震動として用いる。各地震動のパワースペクトル密度を図7に示す。本研究では、時間刻み0.005 sで平均加速度法を用いて解析を行った。

(2) 建物の減衰とロープの振動の関連性
建物の減衰定数による比較を表したものを図8に示す。図7から、ほとんど全ての条件において建物の減衰定数が大きくなるにつれて建物とロープの相対変位の最大値が小さくなることがわかった。

新潟県中越地震川口町 EW 波を入力した際の減衰定数の下部の応答のみわずかに増大する結果となった（図8 b）。本研究で得ていない巻上機の設置場所や入力地震動によって応答が大きく異なる可能性があるため、一概に建物の減衰定数が大きくなれば被害が小さくなるとは言えない。標準的な減衰定数（0.1倍）では、減衰定数と被害は相関する関係にあり、減衰定数が 0.01から 0.05の範囲では、大きい方がロープの被害は小さいといえる。

(3) 巻上機の設置場所とロープの振動の関連性
まず、モデル A、B、C の比較をする。新潟県中越地震 K-NET 新宿 EW 波、十勝沖地震小樽市 NS 波においてモデル C はモデル A よりも被害が少なくなったが、モデル B に比べて応答が大きくなくなった。これは、ご位置が1階のときにロープが長くなるので、長周期地震動の影響を受けやすくなったためである。十勝沖地震を入力した際のモデル A、B、C の比較を図9に示す。

また、千葉県北西部地震足立区 EW 波、新潟県中越地震川口町 EW 波を入力した際は、モデル B とほぼ同様の結果を示した。しかもロープが설置する場所は、記載の 23階よりも 15階に乗り換え階を設けた方が良いといえる。

これを比較する。モデル A と B の巻上機の設置場所による比較を図10に示す。図10を見ると、千葉県北西部地震 EN 区 EW 波や新潟県中越地震川口町 EW 波のような短周期の地震動を入力した場合には、モデル A とモデル B の上部の建物とロープの相対変位の最大値は変わらない。

表2 各地震波において応答が最も小さな建物剛性荷下

<table>
<thead>
<tr>
<th></th>
<th>模型 A</th>
<th>模型 B</th>
<th>模型 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>千葉県北西部地震</td>
<td>0.5</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>新潟県中越地震</td>
<td>1.25</td>
<td>1.25</td>
<td>1.75</td>
</tr>
<tr>
<td>新潟県中越地震 (新宿区)</td>
<td>0.75</td>
<td>0.75</td>
<td>0.5</td>
</tr>
<tr>
<td>十勝沖地震</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

図7 入力地震動のパワースペクトル密度

4.2 時刻歴応答解析の結果
全てのご位置、ロープの全ての節点の中での建物とロープの相対変位（変位における建物の質点位置とロープの節点間隔の差）の最大値について考察を行った(1)。時刻歴応答解析の結果も同様に、モデル A とモデル B についてのみ述べる。

(1) 建物の剛性とロープの振動の関連性
まず、建物の剛性に注目する。表2は建物とロープの相対変位の最大値が最も小さい建物剛性を示したものである。これより、地震波によってロープの相対変位応答が小さくなる建物剛性が異なっていることがわかる。地震動が入力される場合、建物とロープの相対変位が大きくなる要因として、システム全体の固有周期とロープのみの固有周期が一致し、または近接することに加え地震波の卓越周期と建物・ロープの固有周期が近いことも考えなければならない。したがって、入力される地震波によって応答が異なるため、どの地震波においても応答が最も小さなような建物剛性は存在しないといえる。
図8 建物剛性ならびに建物減衰定数に関する建物とロープの最大相対変位の最大値の比較

つまり、巻上機が最上階にある場合にはかご位置が15〜30階にあるとき、建物とロープの相対変位が最大になっているといえる。一方、新潟県遠震K-NET新宿EW波や十勝沖地震小牧市NS波のような長周期の地震を入力した場合には、モデルAとモデルBの上部で建物とロープの相対変位の最大値に違いが見られる。モデルAとモデルBの上部巻上機の設置場所は同じであるが、かご位置の範囲が異なり、モデルBの上部はかご位置が15〜30階しか変化しないのに対し、モデルAはかご位置が1〜30階と変化する。これ
図10 坂上機の設置場所に関する建物とロープの最大相対変位の最大値の比較（ζ=0.03 の場合）

図11 各かご位置における建物とロープの最大相対変位（建物剛性1.0倍，ζ=0.03 の場合）
のことから、ロープが長くなると長周期地震の影響が出やすいと考えられる。ここで、建物剛性 1.0 倍のときの応答を見ると、モデル B の上半分の応答はモデル A の 0.7 倍となっており、建物とロープの最大相対変位が低減されていることがわかる。したがって、長周期地震の力を想定すると、乗り換え階を設けたほうが被害を軽減できると考えられる。また、各々の位置における建物とロープの最大相対変位を図 11 に示す。図 11 から、巻上機とロープの両側の両方のメインロープを考慮した際には、メインロープが全長の半分の長さになる位置にかごが停止しているときが建物とロープの最大相対変位が小さいことが分かった。したがって、エレベーターの利用頻度の少ない深夜などはかごを中間階に停止させておくことで地震被害を低減できると考えられる。

なお、千葉県北西部地震では、44 台のエレベーターに故障・損傷が発生しており、うち 19 台はつい合わせがガイドオーロから外れるなど、エレベーターのかごとつり合いが崩れ、キャリフラスを傷害の可能性もあるもであった。1998 年に制定された「昇降機耐震設計・施工指針」（新耐震基準）に基づいて作られたエレベーターでは、脱レール被害はなかったが、それ以前の耐震基準で作られたエレベーターでは被害が発生していた。よって、特に古い耐震基準で作られたエレベーターはかごとつり合いの安全性の危険性も考慮すべきである。

5. まとめ

本研究では、30 階建物を想定した建物・エレベーター連系モデルを用い、固定値解析ならびに時刻履歴応答解析により、建物の動特性とエレベーターのメインロープの地震応答の関係を分析した。建物の動特性（剛性、減衰）と巻上機の設置場所が異なるときの、剛間固有周期の建物の質点位置とロープの質点位置の差（うねり）、建物とロープ間の相対変位に着目して比較検討を行い、以下の知見を得た。

・建物剛性により建物とロープの相対変位が違いが見られた。しかし、入力地震動により応答が最も変動が異なったため、どの地震波にどのような影響があるか確認していると良い。また、多くの条件で、建物の減衰定数が大分大きくなるために建物とロープの相対変位は著しく減少する。（≤ 0.05）。

・巻上機の設置場所については、建物の最上段に取り、中間階に乗り換え階を外す方が建物とロープの相対変位が低下した。

・長周期地震を入力した場合はかご位置は低層の 1・15 やあるときに大きな応答を示すため、乗り換え階を設けることで被害軽減が可能と考えられる。

・ロープが全長の半分の長さになる位置にかごとつり合い合いがあり、建物とロープの相対変位が小さくなった。これらのことから、30 階建物の建物・エレベーターを設置する場合は、建物の減衰を高く、中間階に乗り換え階のあるエレベーターを設置することで被害軽減できると考えられる。したがって、新しく建物を建設する際には、乗り換え階のないエレベーターだけでなく、乗り換え階を設けたエレベーターを併用することで避難時間の冗長性を確保し、地震時の救出・消火活動や避難活動のためのエレベーター利用の可能性を高めることができるといえる。また、エレベーターの運用に関しても、利用頻度の少ない深夜などにおいてかごを中間階に停止させておくことで地震被害を低減できると考えられる。

今後の課題としては、今回は建物とロープの間の相対値のみに着目したが、建物の動きやメインロープ以外のエレベーター各部の応答についても詳細な検討し安全性を確保することが必要である。さらに、実際のエレベーターは各階に停止しているだけでなく上下に移動しているため、かごが昇降している場合についても調査の必要がある。また、かごとつり合いの往復の衝突に対する検討も必要である。個別の解析については、減衰・ミトロックスを考慮した数値計算で行うことや、時刻履歴応答解析において非線形の建物の応力特性を考慮した形で結果を検討すること、ロープ搬送時の直交方向の加速度の影響を考慮するための多原子応答解析などが挙げられる。

謝辞

本研究で用いた地震記録は、気象庁地震防災標識監視器強震監視係および防災科学技術研究所より提供された。関係機関に感謝の意を表す。}

参考文献

1) 財団法人日本建築設計・昇降機センター：エレベーターの避難時利用に関する検討委員会報告書，2004。
2) 兵庫県名古屋市，木村弘之，藤本茂：エレベーターロープのロータス振動制御，日本機械学会論文集（C 編）71 巻 703 号，pp.95-102，2005。
3) 財団法人日本建築設計・昇降機センター：エレベーター，エスカレーターの維持保全，建築防災，pp.3-21，2006.6
4) 財団法人日本建築設計・昇降機センター：エレベーター，エスカレーターの維持保全，建築防災，pp.3-21，2006.6
5) 日本建築学会 東海地震等巨大災害への対応特別調査委員会：巨大地震による長期地震動の予測と既存建築物の耐震性と今後の課題，2006 年度日本建築学会大会（東海）特別調査部門研究発表資料，pp.268-279，2006.9
6) 事故予防対策委員会，技術委員会，防災技術センター（千葉県北西部地域）：建物を機能する地震対策検討指針「昇降機耐震設計・施工指示」の見直し，2005.12.20
7) 日本建築学会 東海地震等巨大災害への対応特別調査委員会：巨大地震等による長周期地震動の予測と既存建築物の耐震性と今後の課題，2006 年度日本建築学会大会（東海）特別調査部門研究発表資料，pp.268-279，2006.9
8) 大平正規，吉田和夫，元就義，木村弘之，中川秀俊：高層ビルのエレベーター・ロープ振動抑制，日本機械学会論文集（C 編）68 巻 676 号，pp.131-138，2002。
9) 喜田敬之，福岡市，市原純：強震時利用サイド力特性とその耐震性，日本建築学会論文集（C 編）68 巻 676 号，pp.131-138，2002。
10) 藤田栄一，丸山知惠：強震工学，解説から設計まで，北星出版株式会社，pp.233-235，2002。
11) 藤田栄一，福岡市，市原純：強震工学，解説から設計まで，北星出版株式会社，pp.233-235，2002。
13) 橋田明徳，最新型建物耐震解析，第 2 版，北星出版株式会社，2003。
14) 前田和明，応答性能に基づく「対策設計」入門，財団法人，pp.79-80，2004

（2007年 3月 10日最終受付，2007年 7月 30日採用決定）