セメントの水和反応・組織形成モデルを用いた
コンクリート部材の初期温度上昇予測

PREDICTION OF TEMPERATURE RISE OF CONCRETE MEMBER
USING MATHEMATICAL MODEL FOR CEMENT HYDRATION
AND MICROSTRUCTURE FORMATION

杉山 央*, 梶田 佳寛**

Hisashi SUGIYAMA and Yoshihiro MASUDA

The interior of a large-size concrete member is heated and cured under high-temperature condition in early ages by internal storage of the heat of cement hydration. This temperature rise of concrete is numerically predicted using the mathematical model for cement hydration and microstructure formation, which has been proposed in our previous study. The hydration rate is predicted using the model. The heat of cement hydration is calculated with its hydration rate. The heat transfer inside the concrete member is simulated by solving a heat conduction equation with heat of cement hydration as the heating element. The predicted concrete temperatures are compared with the concrete temperatures measured in various types of concrete members. The simulation system proposed in this study is useful for predicting the temperature rise of concrete member.

Keywords: Prediction of concrete temperature, Heat of cement hydration, Concrete member, Heat conduction, Hydration model, Three-dimensional FEM

コンクリート温度予測、セメント水和熱、コンクリート部材、熱伝導、水和反応モデル、3次元FEM

1. はじめに

鉄筋コンクリート造建築物の高層化・大型化への進展に伴い、コンクリート部材も大型化・高強度化の方向に進んできている。特に、高強度コンクリートを用いた場合は単位セメント量が多くなるため、さらに著しい温度上昇が生じる。この初期材齢での温度上昇は、コンクリートの強度発現に影響を及ぼし、また温度ひずみを引き起こすこともある。従って、コンクリートの調製、製造および養生計画を検討する場合には、あらかじめ温度上昇特性を十分に把握しておく必要がある。一般的にコンクリート部材の初期材齢での温度上昇を予測する場合には、便宜的に指数関数による断熱温度上昇式を用いることが多い。しかし、実際のコンクリート部材では位置（中層、表面など）によって温度および温度上昇の水和発熱速度が異なることから、単純な断熱温度上昇式では実情に即した評価ができていない等の問題も指摘されている。

このような背景から、近年ではセメントの水和反応機構を精密に表現したモデルを用いてコンクリートの温度上昇を予測する手法が提案されている。例えば、下地は反応生成物が未反応固溶体と表面を覆いながら反応が起こる過程において未反応核の水とセメントの水和反応に応じたモデルを構築し、このモデルを用いてコンクリートの断熱温度上昇予測や実大コンクリート部材の温度履歴予測を試みている。Bentzらは浸透理論（パーコレーション理論）に基づく水和反応モデルを構築し、コンクリートの断熱温度上昇予測を試みている。Brégouはセメントの粒子径分布を考慮したセメント粒子が反応に及ぼす影響を数値的に取り込んだ水和反応モデルを構築し、コンクリートの断熱温度上昇予測や実大コンクリート部材の温度履歴予測を試みている。また、丸山らは、水とセメントのモデルでセメント粒子間の接触やセメントの粒子分布の影響を加味することでモデルを発展させ、断熱温度上昇予測やマスコンクリートの温度履歴予測を試みている。

著者らもセメントの水和反応・組織形成モデルを構築し、このモデルを用いたコンクリートの発熱シミュレーションを試みている。著者らのセメントの水和反応・組織形成モデルでは、セメント粒子と水の物質収支を考え、セメント粒子内に拡散する水と粒子内部で水とセメントが反応するという二方向拡散の理論を導入しており、セメントの水和反応率のみならずセメント粒子内外の組織の形成状況をシミュレートできるという特徴を有している。これにより、初期温度履歴を受けるコンクリートでは初期強度発現は著しいが、長期の温度履歴が適切な動向を定量的に予測できる。また、セメントの種類ごとに特殊な係数値を設定する必要なく、セメント試験結果等で入手可能なセメントの特性値だけを入力値として用いている。既報では、セメント種
この一連の計算過程が1ステップである。算出されたコンクリート温度は以降の水和反応過程に影響を及ぼすため、次ステップに順次フィードバックする。これらの計算ステップを繰り返し、コンクリート部材の内部温度の上昇・下降過程をシミュレートする。

3. セメントの水和反応・組織形成モデル
3.1 モデルの概要および特徴
本モデルは、非定常拡散過程にあるセメント成分と水が反応してセメント水和物を生成し、そのセメント水和物によりセメント組織が形成されていく過程を定量的に表すものである。本モデルでは、次のような理論を導入している。

2. コンクリート部材の内部温度予測の流れ
コンクリート部材の内部温度予測の流れをFig.1に示す。セメントの水和反応・組織形成モデルでは、セメントの水和反応率および水和物の組織形成率を算出される。セメントの水和反応率を時間微分して水和反応速度を求め、セメントの発熱速度、コンクリートの発熱速度を計算する。続いて、コンクリートの発熱速度を熱源としたコンクリート部材の熱伝導方程式を解くことにより、部材内の各位置における温度を計算する。なお、コンクリート部材内の各位置（例えば、中心、表面、上部、下部など）によって温度が異なるのでに対応して、セメントの水和反応・組織形成の進行状況が異なる。このため、コンクリート部材内のそれぞれの位置に対してもセメントの水和反応・組織形成シミュレーション計算を個別に行う。
(1) セメント粒子と水の物質収支を考え、セメント粒子内に拡散する水とつまった量のセメント成分がセメント粒子外に拡散する。（二方向の拡散理論）

(2) セメント成分と水の化学反応は、セメント粒子の内側にかかわらず、セメント成分と水が出会った位置で進行する。また、反応速度はセメント成分の濃度および水の濃度の両方に比例する。（2次反応の理論）

(3) セメント成分としてCaSおよびCaSを取り上げ、セメントの水和反応はCaSによる反応過程とCaSによる反応過程がそれぞれ独立して進行する。CaSおよびCaSの水和反応を合計したものでセメントの水和反応量とする。なお、本モデルの対象はポルトランドセメントであり、混合セメントは対象外である。本モデルは、次のような特徴を有している。

(a) セメントの水和反応過程に加え、水和セメント組織の形成過程をシミュレートできる。例えば、Fig.2に示すようにセメント粒子内における水和セメント組織の形成状況を定量的に表現できる。

(b) セメント中のCaSおよびCaSの質量割合が異なることにより、セメントの水和反応特性が異なる性状を表現できる。

(c) セメントに関する初期入力情報は、密度、比表面積、化学物質割合等の特性値である。普通、早強、低熱などのセメント種類ごとに係数の値を定め、変更する必要はない。

本モデルでは、アスベストとしてセメントの水和反応と水和物による組織形成が計算される。主として、前者はセメントの発熱特性に関し、後者はセメント硬化体の力学的性質に関し。

3.2 偽想セメントおよびセメントベーストセル

実際のセメントは種々の化合物により構成されているが、その中でも主成分であるCaSおよびCaSを取り上げ、この2つの成分により構成される仮想セメントを考えた。すなわち、CaA、CaAF、セメントに5％程度含まれる混入物等の反応特性は考慮していない。仮想セメント中のCaSの質量割合Mₐ、CaSの質量割合Mₐ、CaSの容積割合Vₐ、およびCaSの容積割合Vₐは、それぞれ次式に従って算出した。

\[
Mₐ^* = \frac{M_{CaS}^*}{M_{CaS}^* + M_{CaS}}
\]

\[
Mₐ^* = \frac{M_{CaS}^*}{M_{CaS}^* + M_{CaS}}
\]

\[
Vₐ^* = \frac{Mₐ^* / \rho_{CaS}}{Mₐ^* / \rho_{CaS} + Mₐ^* / \rho_{CaS}}
\]

\[
Vₐ^* = \frac{Mₐ^* / \rho_{CaS}}{Mₐ^* / \rho_{CaS} + Mₐ^* / \rho_{CaS}}
\]

ここに、Mₐ*: 実際のセメント中のCaSの質量割合、Mₐ*: 実際のセメント中のCaSの質量割合、ρₐ*: セメントの密度(kg/m³)、ρₐ*: CaSの密度(kg/m³)である。

セメント粒子を球形と仮定し、Fig.2に示すように1個のセメント粒子とその粒子を取り巻く水により構成されるセメントベーストセルを考えると、セメント粒子の半径R(m)およびセメントベーストセルの半径R(m)は次式により算出される。

\[
R = \frac{3 \rho_{CaS}}{\rho_{CaS}}
\]

\[
R = R \left[\frac{\rho_{CaS}}{\rho_{CaS}} \right]^y
\]

ここに、ρₐ*: 水の密度(kg/m³)、ρₐ*: セメントの比表面積(m²/kg)、y: セメント比である。

3.3 水和反応をともなう非定常拡散

水和反応速度に2次反応の理論を導入すると、水、CaSおよびCaSについてのセメントベーストセル内の非定常拡散方程式は、それぞれ次のように表すことができる。

\[
\frac{\partial C_w}{\partial t} = \frac{D_r \partial}{\partial r} \left[r \cdot \frac{\partial C_w}{\partial r} \right] - v_s \cdot k_s \cdot C_w - v_s \cdot k_s \cdot C_w
\]

\[
\frac{\partial C_a}{\partial t} = \frac{D_r \partial}{\partial r} \left[r \cdot \frac{\partial C_a}{\partial r} \right] - k_a \cdot C_a
\]

\[
\frac{\partial C_s}{\partial t} = \frac{D_r \partial}{\partial r} \left[r \cdot \frac{\partial C_s}{\partial r} \right] - k_s \cdot C_s
\]

ここに、CaS: CaSの濃度(mol/m³)、CaS: CaSの濃度(mol/m³)、CaS: 水の密度(mol/m³)、t: 時間(s)、r: 球面座標で表したセル内の位置(m)、Dr: 拡散係数(m²/s)、k₁: CaSの反応速度定数、k₄: CaSの反応速度定数、vs: 水和反応によるCaSに対する水の化学量論比(s=3)、va: 水和反応におけるCaSに対する水の化学量論比(s=2)である。

3.4 反応速度定数および拡散係数の温度依存性

反応速度定数および拡散係数の温度依存性をArrheniusの法則に従って表した。20℃を基準値とし、任意の温度(T)におけるkₛ、k₄およびDₐは、それぞれ次のように表される。

\[
k_s = k_{293} \exp \left(\frac{E_a}{R \cdot 293} - \frac{1}{273 + T} \right)
\]

\[
k_s = k_{293} \exp \left(\frac{E_a}{R \cdot 293} - \frac{1}{273 + T} \right)
\]

\[
D_r = D_{293} \cdot e^{\frac{E_o}{R \cdot 293} - \frac{1}{273 + T}}
\]

ここに、k₄₃₉₃: CaSの20℃における反応速度定数、k₄₃₉₃: CaSの20℃における反応速度定数、δₙ₄: 水和が生成されていない時の20℃における水の拡散係数(m²/s)、Eₐₚ: CaSの活性化エネルギー(J/mol)、Eₐₕ: CaSの活性化エネルギー(J/mol)、Eₗ: 拡散の活性化エネルギー(J/mol)、R: 気体定数 8.314 J/(mol·K)、Eₙ₉: 水和物の生成にともなう拡散係数の変化を表す関数である。

3.5 CaSおよびCaSの水和反応率

CaSの水和反応率αₘおよびCaSの水和反応率αₕₐₙは、次のようにセメントベーストセル全体における各成分の密度の減少率として
て表すことができる。

\[\alpha_s = 1 - \frac{3}{\bar{v}_a R_c^2 C_a} \int_0^{\bar{w}_a} r^2 C_a \, dr \] \hspace{1cm} (13) \\

\[\alpha_s = 1 - \frac{3}{\bar{v}_a R_c^2 C_a} \int_0^{\bar{w}_a} r^2 C_s \, dr \] \hspace{1cm} (14)

ここで、C_a: C_s の相対容積が1であるときの濃度(mol/m^3)、C_a: C_s の相対容積が1であるときの濃度(mol/m^3)である。

3.6 水和物の組織形成率

セメントベーストセメント中には水、C_s、C_s および水和物が存在するが、水和物の割合が多いほど緻密で強固な水和セメント組織が形成されている。そこで、水和セメント組織中に占める水和物の容積割合を水和物の組織形成率と呼ぶ指標で表すこととした。水和物の組織形成率 \(\alpha_s \) は、次式で表すことができる。

\[\alpha_s = \frac{3 \bar{v}_a}{\bar{v}_a R_c^2 C_a} \int_0^{\bar{w}_a} r^2 C_a \, dr \] \hspace{1cm} (15)

ここで、C_a: C_s より生成される水和物の相対容積が1である時の濃度(mol/m^3)、C_s: C_s より生成される水和物の相対容積が1である時の濃度(mol/m^3)、\(\alpha_s \): 水和反応におけるC_sの化学量論比(\(\alpha_s = 0.5 \))、\(\alpha_s \): 水和反応におけるC_sの化学量論比(\(\alpha_s = 0.5 \))である。

3.7 水和物の生成にもとむ拡散係数の変化

緻密で強固な水和セメント組織が形成されるのに従い、水、C_s およびC_s の拡散抵抗は増大する。この水和物の生成にともなう拡散係数の変化を次式に示す \(\chi_{ax} \) を変数とした関数 \(\exp \) によって表した。

\[\chi_{ax} = \exp (-x \chi_{ax}) \] \hspace{1cm} (16)

ここで、h: 定数である。セメントの水和反応・組織形成モデルの諸係数にはTable に示すように既報で設定した値を用いた。

4. コンクリート部材の発熱・熱伝導モデル

4.1 コンクリートの発熱特性

セメントの完全水和発熱量 \(H_a(J/kg) \) は次式で表される。完全水和発熱量とはセメントが完全に水和反応した時の総発熱量である。

\[H_c = H_a C_a M_c + H_s C_s M_s + H_{ca} C_{ca} M_{ca} + H_{ca} C_{ca} M_{ca} \] \hspace{1cm} (17)

ここで、\(H_{ca} \): C_sの完全水和発熱量(J/kg)、\(H_{ca} \): C_sの完全水和発熱量(J/kg)、\(H_{ca} \): C_sの完全水和発熱量(J/kg)、\(H_{ca} \): C_sの完全水和発熱量(J/kg)、\(H_{ca} \): 実際のセメント中のC_sの質量割合、\(H_{ca} \): 実際のセメント中のC_sの質量割合である。

セメントの水和反応・組織形成モデルでは、C_sによる反応特性とC_sによる反応特性のみを取り上げている。しかし、セメントの水和発熱量を計算する際には他の化合物の発熱量を無視することはできない。このため、(17)式によるセメントの完全水和発熱量を仮想セメント中のC_sおよびC_sに分配することとした。すなわち、仮想セメント中のC_sの完全水和発熱量 \(H_{ca} \) およびC_sの完全水和発熱量 \(H_{ca} \) は、 \(H_a = H_{ca} / H_c \) の関係に従った関係にあると仮定し、それぞれ次式で表すこととした。

\[H_a = \frac{H_a}{H_{ca}/H_a M_{ca} + H_{ca}/H_a M_{ca}} \] \hspace{1cm} (18)

\[H_a = \frac{H_a}{H_{ca}/H_a M_{ca} + H_{ca}/H_a M_{ca}} \] \hspace{1cm} (19)

コンクリート1kg中のC_sの完全水和発熱量 \(H_{ca}(J/kg) \) およびC_s の完全水和発熱量 \(H_{ca}(J/kg) \) は、次式で表される。

\[H_{ca} = \frac{H_{ca} M_c}{M_c + M_s + M_o} \] \hspace{1cm} (20)

\[H_{ca} = \frac{H_{ca} M_c}{M_c + M_s + M_o} \] \hspace{1cm} (21)

ここで、M_c: コンクリート1m^3中のセメントの質量(kg/m^3)、M_s: コンクリート1m^3中の水の質量(kg/m^3)、M_o: コンクリート1m^3中の骨材の質量(kg/m^3)である。

セメントの水和反応による発熱量は水和反応率に依存し、セメントの発熱速度は水和反応速度に依存する。このため、コンクリートの発熱速度 \(Q_{ax}(W/kg) \) は、次のように表すことができる。

\[Q_{ax} = \frac{H_{ca} M_c}{M_c + M_s + M_o} \] \hspace{1cm} (22)

コンクリートの比熱 \(c_{p}(J/kg\cdotK) \) は、次式で表される。

\[c_{p} = \frac{c_c M_c + c_w M_s + \sum c_{aw} M_{aw}}{M_c + M_s + M_o} \] \hspace{1cm} (23)

ここで、c_c: コンクリートの比熱(J/(kg\cdotK))、c_w: 水の比熱(J/(kg\cdotK))、c_{aw}: コンクリート1m^3中に含まれるそれぞれの骨材の比熱(J/(kg\cdotK))、M_{aw}: 各々の骨材の質量(kg/m^3)である。

セメントベーストで発生した水和熱が骨材に伝導してコンクリート全体の温度が上昇するため、セメントの温度上昇特性を考慮にモデル化するためには、セメントベーストと骨材間の熱伝導をモデル化する必要がある。そこで、既報で示した1個の骨材とそれを取り巻くセメントベーストにより構成されるコンクリートセレクトをモデル化し、熱伝導解析を行った。その結果、一般的な骨材の熱拡散係数はセメントの水和発熱速度に対して十分に大きな値であるため、セメントベーストと骨材間の温度勾配はほとんど発生せず、両者は同じ温度で推移していくことが確認された。このため、(23)式によってコンクリートの発熱速度を計算しても問題はない。
4.2 コンクリート部材の熱伝導モデル

コンクリートを熱源とした次のようなコンクリート部材の3次元熱伝導方程式を設定した。

\[
\frac{\partial T}{\partial t} = \frac{k}{\rho c_p} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{Q}{\rho c_p}
\] (24)

[初期条件]

\[T = T_0 \] (25)

[境界条件]

\[X = X_0, Y = X_{max}, Z = Z_0, Z = Z_{max} \]

\[q = -k \frac{\partial T}{\partial x} = \alpha (T - T_a) \] (26)

ここに、\(T \):コンクリート温度(\(^\circ\)C), \(t \):時間(s), \(\rho \):コンクリートの密度(\(\text{kg/m}^3\)), \(k \):コンクリートの熱伝導率(\(\text{W/(mK)}\)), \(T_0 \):初期温度(\(^\circ\)C), \(q \):熱流束(\(\text{W/m}^2\)), \(\alpha \):熱伝導率(\(\text{W/(m}^2 \cdot \text{K)}\)), \(T_a \):外部空気温度(\(^\circ\)C)である。

なお、(26)式はX軸方向の境界条件を示したが、YおよびZ軸方向についても同様の境界条件式を設定した。1次元を解くことにより、コンクリート部材内の各位置の温度を算出できる。

本モデルで取り扱う範囲のスケールレベルをFig.3に示す。計算の流れはFig.1に示したとおりであり、まずセメントの水和反応・組織形成モデルによりセメントの水和反応を計算し、これを時間微分して水和反応速度、セメントの発熱速度、コンクリートの発熱速度を順次計算する。続いて、コンクリートの発熱速度を熱源としたコンクリート部材の熱伝導方程式を解き、部材内の各位置における温度を計算する。この一連の計算過程が1ステップである。算出されたコンクリート温度は以降の水和反応過程に影響を及ぼすため、次ステップに順次フィードバックする。これらの計算ステップを繰り返し、コンクリート部材の内部温度の上昇・下降過程をシミュレートする。

(7)式、(8)式および(9)式の解法として差分近似法を、また(24)式の解法として3次元FEM解析法を用いたコンピュータシミュレーションプログラムを構成し、以降の数値計算に用いた。Fig.3に示すように、(7)式、(8)式および(9)式についてはセメント粒子を8つの球殻、周面以外の水分を4つの球殻に分割して計算を行った。(24)式についてはコンクリート部材の形状が非対称であるため、YおよびZ軸方向を分割して計算を行った。なお、コンクリート部材内の各位置(FEM分割要素)における温度が異なるために対応して、セメントの水和反応・組織形成の進行状況も異なる。このため、コンクリート部材のそれぞれの分割要素に対応したセメントの水和反応・組織形成シミュレーション計算を個別に行った。時間については1日を4000ステップに分割した。すなわち、材齢5日まで計算する場合は20000ステップの計算を繰り返すことになる。

以降の解析で使用するコンクリートの発熱に関する諸数値は、Table 2に示すように既報10)で設定した数値を用いた。なお、熱伝導率\(k\)については使用骨材の種類および量、セメント比等による数値が異なり、この数値を最も単純に設定する必要があるが、本研究では文献11)12)を参考にして一般的なコンクリートの値を設定した。熱伝導率の変化の数値を著者の一人が過去の研究13)を実施しており、硬化初期のコンクリートの熱伝導率の変化をはそれほど顕著でなく、硬化したコンクリートの熱伝導率の値を採用しても問題ないことを明らかにしている。

熱伝導率\(a\)については、型枠の種類、有無等のコンクリートの表面状態によって大きく異なり、各々のケースについて実測値を入手する必要がある。以下、以下の実験によって詳細に検討した。

Table 1 Values of the coefficients for hydration

<table>
<thead>
<tr>
<th>coefficient</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho) (kg/m(^3))</td>
<td>1000</td>
</tr>
<tr>
<td>(\rho c_p) (kg/m(^3)K)</td>
<td>3140</td>
</tr>
<tr>
<td>(k) (W/mK)</td>
<td>3280</td>
</tr>
<tr>
<td>(k_{es}) (W/mK)</td>
<td>5.0x10(^{-10})</td>
</tr>
<tr>
<td>(k_{es}) (W/mK)</td>
<td>2.3x10(^{-10})</td>
</tr>
<tr>
<td>(E_s) (kJ/mol)</td>
<td>28.0</td>
</tr>
<tr>
<td>(E_e) (kJ/mol)</td>
<td>48.0</td>
</tr>
<tr>
<td>(D_w) (m/s)</td>
<td>6.0x10(^{-17})</td>
</tr>
<tr>
<td>(E_0) (kJ/mol)</td>
<td>8.0</td>
</tr>
<tr>
<td>(C_{es}) (mol/m(^3))</td>
<td>13800</td>
</tr>
<tr>
<td>(C_{es}) (mol/m(^3))</td>
<td>19100</td>
</tr>
<tr>
<td>(C_{es}) (mol/m(^3))</td>
<td>3950</td>
</tr>
<tr>
<td>(C_{es}) (mol/m(^3))</td>
<td>5650</td>
</tr>
<tr>
<td>(h)</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 2 Values of the thermal coefficients

<table>
<thead>
<tr>
<th>coefficient</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_{cs}) (kJg)</td>
<td>5.0x10(^2)</td>
</tr>
<tr>
<td>(H_{cs}) (kJg)</td>
<td>2.6x10(^2)</td>
</tr>
<tr>
<td>(H_{cs}) (kJg)</td>
<td>1.36x10(^6)</td>
</tr>
<tr>
<td>(H_{cs}) (kJg)</td>
<td>4.19x10(^5)</td>
</tr>
<tr>
<td>(a) (kJ/gK)</td>
<td>921</td>
</tr>
<tr>
<td>(a) (kJ/gK)</td>
<td>4186</td>
</tr>
<tr>
<td>(a) (kJ/gK)</td>
<td>987</td>
</tr>
<tr>
<td>(a) (kJ/gK)</td>
<td>943</td>
</tr>
<tr>
<td>(\lambda) (W/mK)</td>
<td>2.7</td>
</tr>
</tbody>
</table>
5. コンクリート部材および型枠面の熱伝達率の検討

コンクリート部材と外部空気との境界条件としては、型枠設置状態と脱型後のコンクリート面露出状態の2つに大別される。型枠設置状態では型枠中で熱伝導および熱の蓄積が生じているが、型枠の厚さがコンクリート部材の厚さに比べると十分に小さいので、それらを無視し、(26)式の境界条件式で表すこととした。ここでは、コンクリート試験体の表面の温度を計画的に上昇・下降させ、これに対応するコンクリート温度の応答性を調べることによりコンクリート部材および型枠面の熱伝達率を検討した。

なお、本研究で対象としているのは初期材齢におけるコンクリートの温度上昇特性であり、熱伝達率についても初期材齢における値を測定することが望ましい。しかし、セメントの水和反応により温度上昇過程にあるコンクリートの正確な熱伝達率を測定すること自体は困難である。硬化初期における熱伝達率の経時変化はそれほど大きくないことが明らかとなっているため(3)、本研究では熱伝達率の経時変化も著しいものではないと仮定し、セメント水和熱による温度変化が終了して十分に硬化したコンクリートを試験体として用いた。さらに、コンクリート表面から水分が蒸発して熱を奪う影響（蒸発潜熱）を避けるため、なるべく試験体を密閉状態に保ちながら乾燥した状態で熱伝達率を測定する実験を計画した。

5.1 コンクリート面および型枠面の熱伝達率を調べるための実験

(1) コンクリートの使用材料および調製：セメントについては(3)に示す普通ポルトランドセメント(N)を使用した。骨材には亜羽田産川砂（最大寸法5mm、表向き密度2.82g/cm³、吸水率4.27%、粒度2.88）を、粗骨材には岩田産石砕（最大寸法20mm、表向き密度2.66g/cm³、吸水率5.68%、相対密度66.6、実験値59.8%）を使用した。コンクリートの調合は(4)に示すN50とし、(2) コンクリート試験体：試験体は(4)に示す試験体Wおよび試験体Sである。試験体Wでは、側面および底面の型枠として樹脂塗装合板（厚さ12mm）を使用した。試験体Sでは、側面および底面の型枠として鋼板（厚さ2.3mm）を使用した。試験体の小口断面には押出し発泡ポリスチレン断熱材（厚さ100mm、熱伝導率0.031W/(m・K)）を配置した。型枠にコンクリートを打ち込んだ後、上面をポリ塩化ビニル製フィルム（厚さ：約0.03mm）で覆って温度20℃、湿度60%RHの条件下で28日間養生した。このようにセメント水和反応による温度変化が終了したコンクリートを以降の試験に用いた。

(3) 温度測定実験：測定温度は、コンクリート内温度をFig.5に示す温度パターンに制御しながら、セメントおよび側面のポリ塩化ビニル製フィルムを取り付けた状態の試験体の中心および側面部温度を測定した。空気中の水分が試験体表面で蒸発し、熱を伝達する現象（凝縮潜熱）を避けるため、シャルバー内の温度は30%RHとした。

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Properties of cements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>Type of portland cement</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>Normal</td>
</tr>
<tr>
<td>N2</td>
<td>Normal</td>
</tr>
<tr>
<td>H</td>
<td>High-strength</td>
</tr>
<tr>
<td>L</td>
<td>Low-heat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Mixture proportions of concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>Kind of cement (%)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>N50</td>
<td>N1</td>
</tr>
<tr>
<td>N28.5</td>
<td>N1</td>
</tr>
<tr>
<td>N30</td>
<td>N1</td>
</tr>
<tr>
<td>N48.4</td>
<td>N1</td>
</tr>
<tr>
<td>N40</td>
<td>N2</td>
</tr>
<tr>
<td>N40</td>
<td>H</td>
</tr>
<tr>
<td>N40</td>
<td>L</td>
</tr>
</tbody>
</table>

* Ad:1 Water-reducing admixture, Ad:2 Air-reducing admixture

Fig.4 Schematic details of specimens and concrete columns
(4) 温度測定試験comfortable: 温度測定試験 comfortabeの終了後、試験体Wの型枠を取り外した。続いて、試験体からの水分の蒸発を防ぐため、側面、底面および上部をポリ塩化ビニル製フィルムで密封した。これを試験体Nとし、これに用いて comfortabeと同様の温度測定試験を行った。

5.2 コンクリート表面の熱伝達率の検討

4に示したコンクリート部材の発熱・熱伝導モデルを用いて温度測定試験 comfortabeにおける試験体Nの熱を計算した。なお、FEM解析では、X、YおよびZ軸方向をそれぞれ6分割し、全216要素とした。断熱材が設置された試験体S表面の熱伝達率は0W/m²K とし、コンクリート露出面である試験体側面、底面および上部の熱伝達率を1〜30W/m²Kの範囲で1W/m²K間隔に变化させた。その結果、コンクリート表面の熱伝達率を17W/m²Kにした場合、計算値と実測値の差が最小となった。なお、試験体の側面、底面および上部はポリ塩化ビニル製フィルムで覆われているが、厚さは十分小さいため、コンクリート露出面と大差ない熱伝達率を示すと仮定した。

Fig.5に温度測定試験 comfortabeの実測値とコンクリート表面の熱伝達率を17W/m²Kに設定した場合の計算結果を示す。なお、参考としてFig.5には最適値である熱伝達率12および22W/m²Kにおけ

5.3 型枠の熱伝達率の検証

4に示したコンクリート部材の発熱・熱伝導モデルを用いて温度測定試験 comfortabeにおける試験体Wの熱を計算した。コンクリート露出面である試験体側面の熱伝達率は5.2で設定した17W/m²K とし、樹脂塗装合板型枠が設置された試験体側面および底面の熱伝達率を1〜30W/m²Kの範囲で1W/m²K間隔に変化させた。その結果、樹脂塗装合板面の熱伝達率を5W/m²Kにした場合、計算値と実測値の差が最小となった。

次に、鋼板型枠が設置された試験体側面および底面の熱伝達率を1〜30W/m²Kの範囲で1W/m²K間隔に変化させて試験体Sの温度を計算した。その結果、鋼板型枠面の熱伝達率を11W/m²Kにした場合、計算値と実測値の差が最小となった。

Fig.5に温度測定試験 comfortabeの実測値と樹脂塗装合板面の熱伝達率を5W/m²Kに設定した場合および鋼板型枠面の熱伝達率を11W/m²Kに設定した場合の計算結果を示す。

6. 温度予測結果と実測値の適合性の検証

コンクリート構造部材試験体の温度測定実験を行い、この実測値とコンクリート部材の発熱・熱伝導モデルによる計算結果を比較し

Fig.5 Heat transfer coefficients of various specimens
Fig.6 Results of simulation of concrete temperaturate (N28.3)
て適合性を検証した。なお、模擬部材試験体は使用型枠の種類により2つに大別される。
6.1 コンクリート模擬部材試験体の温度測定実験
(1) 模擬部材試験体(合板型枠使用)：Fig.4に示すように側面（4面）が樹脂塗装合板（厚さ12mm）で囲まれた柱部材A、柱部材Bおよび柱部材Cを作製した。セメントにはTable 3に示す普通ポルトランドセメントN1を使用した。骨材としては茨城県行方市産砂（最大寸法5mm、表乾密度2.61g/cm³、吸水率2.27%、粗粒率2.66%）、細骨材には茨城県新治村産砕石（最大寸法20mm、表乾密度2.70g/cm³、吸水率0.63%、粗粒率6.68、実積率61.2%）を使用した。コンクリートの調合はTable 4に示すN28.3、N30およびN48.4の3種類とした。実験室内でコンクリートを打ち込み、そのまま材齢27日まで型枠および断熱材を存置した。実験室内の温湿度の制御を行っていない。なお、N30の実験は既発表論文をもとに実施したものである。
(2) 模擬部材試験体（鋼板型枠使用）：Fig.4に示すように側面（2面）が鋼板（厚さ2.3mm）、底面が樹脂塗装合板（厚さ12mm）、上面がコンクリート露出（ビニールシートで覆って水分蒸発をなるべく抑止）である模擬部材Dを作製した。コンクリートの調合はTable 4に示すN40、H40、L40であり、それぞれTable 3に示す普通ポルトランドセメントN2、早強ポルトランドセメントHおよび低熱ポルトランドセメントLを使用した。使用骨材は5.1(1)と同様である。屋外でコンクリートの打込みおよび養生を実施し、材齢3日で型枠を除去した。なお、本実験は既発表論文の一部として実施したものである。
(3) 温度測定：Fig.4に示すように、それぞれの模擬部材試験体の中心部および表面部にT型熱電対を埋め込み、温度を測定した。また、試験体近傍の気温も測定した。
6.2 コンクリート模擬部材試験体の温度予測計算
4に示したコンクリート部材の発熱・熱伝導モデルを用いて、それぞれの模擬部材試験体の温度を計算した。なお、3次元FEM解析ではX、YおよびZ軸方向をそれぞれ10分割し、全1000要素とした。熱伝達率は樹脂塗装合板で5W/(m²·K)、鋼板で11W/(m²·K)、コンクリート面で17W/(m²·K)、断熱材で0W/(m²·K)とした。
6.3 温度履歴の予測値と実測値の適合性検証
模擬部材試験体の温度測定実験におけるそれぞれの試験体の実測値とコンクリート部材の発熱・熱伝導モデルによる計算結果をFig.6、Fig.7、Fig.8およびFig.9に示す。Fig.6およびFig.7では温度上昇過程において計算値と実測値にやや差が認められた。この原因としては、セメントの水和反応・組織形成モデルにおいてC3Aのよう
な急速な反応過程が組み込まれていないこと、コンクリート部材の熱伝導計算において必ずしも最適な熱伝導率が設定されていないこと等が考えられる。また、Fig.9では試験体上面が密閉されているため、水分蒸発が少なく発生し、潜熱が温度測定結果に影響を及ぼしたことも考えられる。計算値ではこのような現象を考慮していないため、実測値との差が生じたことも推測される。

細部においては計算値と実測値に差が認められたが、計算値は以下の傾向を的確に表現しており、全体的に実測値との相対性が高いことがわかる。

(1) 部材の断面寸法が大きいほど温度上昇が大きくなる。
(2) 部材の断面寸法が小さいほど部材の中心部と表面部の温度差が大きくなる。
(3) 水セメント比が小さい（単位セメント量が多い）ほど部材の温度上昇が大きく、また中心部と表面部の温度差が大きくなる。
(4) 早強ポルトランドセメントのようにCSの割合が多いセメントを使用すると部材の温度上昇が大きく、低水セメントのようにCSの割合が少ないセメントを使用すると部材の温度上昇が小さくなる。

(5) 型枠の種類が異なっても、適切な熱伝達率を設定することにより、部材の温度を的確に計算することができる。

7. まとめ

セメントの水和反応・組織形成モデルを用いてコンクリートの発熱過程をシミュレートし、さらにその発熱がコンクリート部材に伝導する過程をシミュレートすることにより、コンクリート部材の初期材齢における温度上昇を予測計算する手法を検討した。また、各種実大コンクリート部材の実測値と比較して計算値の適切性を検証した。本研究で示された温度予測手法は、使用セメント・骨材の特性値、コンクリートの調合、コンクリート部材の形状、型枠の熱伝達率、外気温などの情報を取り入れることにより、各種実大コンクリート部材の初期材齢における温度上昇を的確に予測できることが示された。

参考文献
1) 友部史紀、野呂貴文：主にセメントの水和反応モデルに関する研究~セメントの水和反応モデルを用いたコンクリートの発熱過程と温度予測の解析研究~、コンクリート工学協会、pp.25-30, 1996
2) 岩本、友部史紀、野呂貴文：コンクリート部材の内部温度分布予測に関する研究、第49回コンクリート技術大会講演集、セメント協会、pp.550-555, 1995
5) 松尾正平、野呂貴文、松下哲生：水和反応モデル（CCBM）によるポルトランドセメントを用いたコンクリートの断熱発熱上昇予測、日本建築学会構造系論文集, 第 609 号, pp.1-8, 2006.2
6) 松尾正平、野呂貴文、佐藤良一：水和反応モデルを用いたコンクリートの発熱過程予測解析、日本建築学会構造系論文集, 第 609 号, pp.1-8, 2006.11
7) 松尾正平、樫田浩之：非定常拡散理論に基づくセメントの水和反応・組織形成モデル、日本建築学会構造系論文集, 第 53 号, pp.50-57, 1999
8) H. Sugiyama and Y. Masuda: Mathematical model for the hydration of cement and the formation of microstructure based on the unsteady diffusion theory, International Workshop on Control of Cracking in Early-Age Concrete, pp.107-118, 2000
9) 松尾正平、樫田浩之：セメントの水和反応・組織形成モデルを用いた発熱過程予測、セメント・コンクリート論文集, 第 54 号, pp.64-65, 2000
10) 松尾正平、樫田浩之：セメントの水和反応・組織形成モデルを用いたコンクリートの発熱シミュレーション、日本建築学会構造系論文集, 第 565 号, pp.9-16, 2003.3
11) 日本コンクリート工学協会：マスコンクリートソフト作成委員会報告書、2003
12) 土木学会：コンクリート標準示方書 施工編、2002
13) 佐木利郎、樫田浩之：モルタル・コンクリートの変形過程における熱伝導性状、日本建築学会論文報告集、第 134 号, pp.1-8, 1976.3
14) 松尾正平、安田正志：各種形状・断面形状を有する高強度コンクリート部材の温度変形特性および強度特性に関する研究、日本建築学会構造系論文集, 第 594 号, pp.1-8, 2003.8

Fig.9 Results of simulation of concrete temperature (N40, H40, L40 - Steel form)