繰返し水平力を受けるコンクリート充填鋼管構造骨組の
付着性状に関する実験的研究
BOND BEHAVIOR OF CONCRETE FILLED STEEL TUBULAR FRAMES
UNDER CYCLIC HORIZONTAL LOAD

中 原 浩 之*, 崎 野 健 治**, 河 野 昭 彦**

Hiroyuki NAKAHARA, Kenji SAKINO and Akihiko KAWANO

Tests were carried out on six frame specimens consisted of square concrete filled steel tubular (CFT) columns and H-shape steel beams. These specimens were open frames which included one-bay and two-story. These specimens were around one-fourth scaling model of lower part of a prototype model structure. The steel tube of the column was 150x150x4.5mm with square section, and the steel beam were H-150x90x6x6mm and H-150x150x6x9mm. They were subjected to cyclic lateral load at the beam of the second story under constant axial load. The main objective of the tests was to investigate the seismic behavior of the CFT frames basically. In particular, the bond behavior of the inside wall of the square steel tube and inner concrete was also studied. The test parameters were mechanical slip stopper, vacant space of the top of the columns and magnitude of axial load ratio. The load-deformation relations and the transfers of sustained axial force of steel tubes were investigated corresponding to the specimens with different types of mechanism of the stress-transfer between steel tube and concrete.

Keywords : concrete filled steel tubular column, mechanical slip stopper, axial load ratio

1 序
日本におけるコンクリート充填鋼管（CFT）構造に関する最初の設計規準は、1967年に建築学会より刊行されているが、この時点では、CFT構造は建築基準法の対象外であったという事情によりCFT構造が普及することはなかった。しかしながらCFT構造に関する研究は、その後の30年近くにわたり著しい進歩がみられた。1996年から新都市ハブ構想進行協議会が大蔵省の委託を受けて、構造設計、耐火設計、施工設計について検討できるようになって、これを契機として、CFT構造の実施設計・施工も広く行われるようにになってきている。

2000年以降、新しい建築基準法が全面的に施行され、これにともないCFT構造も2002年5月の国土交通省告示①により一般化され、大臣認定の取得無しで建設できる道が開かれたに至った。この新基準に従って、コンクリート構造の普及が求められているが、このような問題が解決されると期待されている。この告示によると、柱・梁接合部において内部ダイヤフラム形式を採用する場合は、コンクリート充填について細心の注意が必要とされる。そのため、これからのCFT構造においては内部ダイヤフラム形式を採用する場合が多くなることが考えられる。この場合、充填コンクリートに軸力を負荷させるためには、鋼管と充填コリントの間の付着点を必要とする。軸力のみを受けるCFT柱の付着による軸力伝達についての研究は古くより行われているが②、軸力受側など水平力を同時に受けるCFT柱における付着状態に関しては海外の研究を含めても森下らの研究③のみに留まり、十分な検討がなされているとは言い難い。また、柱梁接合部に内部ダイヤフラム形式を採用する場合には、内部ダイヤフラムが機械的滑り止めとして機能するため付着応力による軸力伝達は必ずしも必要とはならないが、付着応力により軸力伝達がなされる場合と機械的滑り止めにより軸力伝達がなされる場合のCFT柱あるいは骨組の性状の違いについては殆ど検討がなされていない。

そこで、本研究では、鋼管と充填コンクリートの間の付着あるいは機械的滑り止めがCFT骨組の復元特性に及ぼす影響を実験によって検討する。この実験を通じて、付着設計が必要となる条件と付着応力を明示し、更なるCFT構造の普及の一助となる知見を得ることを目指す。

2 試験体
本研究の実験に用いた試験体は、2層1スパンのCFT骨組である。試験体の基本形状はFig.1に示す。試験体のスパンは、柱の芯－芯間距離を1600mmとして、また、2層ともその芯－芯間距離を1000mmとしている。この試験体は、スパン6400mmで高架4000mm程度の建物における基礎部の一部を取り出した骨組の1/4モデルに相当する。試験体は厚さ150×150×4.5mmの角
形鋼管を用いたCFT柱と、BH150×90×6×9の1階壁とBH150 ×90×6×6mmの2階壁から成っている。基礎部は、H200×204 ×12×12mmを使用している。ここでは、Fig.1に示すように、基 础底層はGround floorとして、頂に1st (1階)、2nd (2階) floor と呼ぶことにする。鋼管材質は市販のSTKR400で、幅厚比は33 である。表は、SS400の9mm厚および6mm厚の鋼板よりダイア フラム板も一体としてレーザーカットしたフランジに、6mm 厚の鋼板から切り出したウェブを溶接して製作した。鋼材の機械 的性質をTable 1 に示す。また、コンクリートの配合表をTable 2 に示す。6体の試験体とも同一パッチのコンクリートを使用し た。実験期間中に合計12体のシリンダ試験を行った結果、コ ンクリートの圧縮強度の平均値は47.1MPa、標準偏差は1.19であっ た。非常に小さくばらつきが安定した強度が得られている 一方で、側面強度よりも側面強度の低さが示された。 円形パラメーターをFig.2およびTable 3に示す。Fig.2を示す ように、主な実験パラメーターは耐力を導入する柱部材に対称 の空間の有無と、柱梁接合部における内部コンクリートと鋼管の 滑り止めの有無である。これらの他に耐力比を実験変数として いる。柱梁接合部の詳細はFig.3に示す。本実験では、(a)の外ダ イアフラムと(b)の内方ダイアフラムの2通りの接合部を設定し ている。(a)の接合部は、コンクリートの充填について何ら支障 が無い状態を想定したものである。一方、実際の工事例では、(b) の内方ダイアフラムが採用されることが多い。(b)では、ダイア フラムが鋼管内表面から5mm分内側に入り込んだ状態となって いる。これは、鋼管からコンクリートへの耐力伝達が可能で、かつ コンクリートの充填の障害となっていることを意図したためである。実際の場合は、鋼管内表面に小さい機械的耐力差があるが、文献5)の結果を参照して、この程度の大きさの滑り止めとして鋼管からコンクリートへの耐力伝達が充分 に可能と判断した。
実験用試験体を表している。なお、降伏ヒンジを計測している骨組試験体の 1 階柱柱脚の形状に注意すると、これまでに数多く実施された曲げとせん断を受ける CFT 柱単材の材断面条件に最も近いのは SV 試験体で、次に近いのが NF 試験体である。

この骨組試験体において計測している崩壊機構を Fig. 4 の載荷 Ns - 曲げモーメント M の関係曲線を用いて説明する。(a) に示し、端部及び端部の耐力は乾湿に示している。ここでは柱筋管の寸法は公称径を採用してコンクリートの柱の内部は無視している。また、コンクリートの耐久性は Table 1 の平均値である 395MPa を採用した。以下に示す CFT 柱の一般化変形エネルギーを求めて示している。ここでは、コンクリート強度はコンクリートのスケール効果を考慮して、シリコンの強度を 5% 低減した値の 44.7MPa を採用している。同図には、実験で載荷した載荷 Ns と Ns を示している。小さいほうの載荷 Ns は、基礎梁上端（1 階柱脚）から基盤間の高さを基準に示す。載荷 Ns は、載荷 Ns を 0.1MPa として、柱 1 本の反力繊維を増加するのに使用した。ここで、実験体に垂直に影響する載荷 Ns を 240kN として 0.1MPa とした。これにより、実験体の柱脚部の耐力は 2 倍の 240kN を Ns として採用している。一方、高耐力に対する試験体では、降伏線先行の崩壊機構が保証できる最大の耐力下を考慮した。これは、(b) に示すように、2 階梁の最大耐力と中空鋼管柱の耐力がほぼ等しくなる点に相当し、柱 1 本に 600kN の載荷を導入している。水平力が載荷された状態では梁からのせん断力により、風下側の柱の荷重が 47kN 増加するが、この影響は小さいこと、また、付着応力が完了に消失しないことを考慮し、降伏線先行の崩壊機構が保証できるものとして実験を計画した。一階梁の位置の 1 階梁柱脚部においては、CFT 柱 2 本に載荷 1 本付りで、付着応力が零で全崩壊線先行の耐力が得られなくても崩壊状態となった。Fig. 4 から、Nt と Ns が載荷された場合の柱の載荷 Ns については、それぞれ 0.12、0.31 となることがわかる。6.4m の均等スパンである正方形プラント建物を想定すると、前者は、およそ 10 階建ての建物、後者は 30 階建ての建物に相当する耐力となる。

3 加力および測定方法

載荷装置を Fig. 5 に示す。試験体は加力ビームで締め付け固定し、試験体の下層の柱脚を固定支持の条件となるようにして載荷実験を行った。骨組の各層の柱梁面内に変形しないように、2 階梁梁端にある水平力パッドに補装装置を取り付けていた。

加力は、5MN 試験機と 500kN 油圧ジャッキにより行った。まず 5MN 試験機により柱頭部に圧縮力を導入し、これを一定に保つした状態で、負荷変位を導入し水平力を油圧ジャッキにより載
荷した。骨組に作用させる水平力は2階の梁のみとしている。油圧ジャッキが圧縮力の場合、ロードセル先端に取り付けたピンを介して試験体の水平加力板に圧縮力を作用させ、油圧ジャッキが引張力の場合には、2階の梁の長方向に平行に配した16φのPC鋼棒4本に引張力を作用させて、載荷装置図の右側のピンを介して試験体の水平加力板に圧縮力を作用させた。従って、2階梁には常に圧縮力が導入されることになる。

骨組に作用させた鉛直方向圧縮力は5MN試験機の測定部で、水平力は500kN油圧ジャッキの先端に取り付けたロードセルで測定した。変形の測定は、アルミ製のフレームに変位計を取り付けて行った。変位の測定ポイントは、各層の柱及び截荷部位の中心位置であり、これ等の変位計の水平面と鉛直変位計を16台の変位計で測定した。

試験体に貼付したひずみゲージの位置をFig.6に示す。ゲージは、試験体の中心について対称に貼付している。図では試験体の半分を示している。柱1本には鋼管の内外の変動と材端部の降伏現象を観察するために合計20枚のゲージを貼付した。截荷部近傍の変位計の上下面には合計8枚のゲージを貼付し、梁の降伏とダイアフラムの局所ひずみを測定した。なお、ゲージは全長で5mmの弾性1線ゲージを用いた。

載荷は水平加力点である2階梁の中心の水平変位にによって制御した。水平変位の載荷プログラムをFig.7に示す。図の載荷は、加力点の水平変位を加力点における高さ2000mmで除して、平均ペリエ形をラシとして表している。R=2/100radまでは5/100radを単位とし、その後は1/100radを単位として各変形角で2回繰り返す増加変位振幅の載荷法を採用した。
4 実験の最大耐力と荷重-変形関係

実験より得られた荷重-変形関係を Fig.8 に示す。縦軸は載荷点の水平力 Q で、横軸は平均層間变形角 R である。耐力比が 0.12 の低耐力下の実験結果を上段に、耐力比が 0.31 の高耐力下の実験結果を下段に配置している。実験より得られた水平耐力を定量的に評価することを意図して、CFT 柱と梁の全塑性耐力を用いて算出したメカニズムラインを Fig.8 に破線と点線で示している。2 節と同じく、CFT 柱の耐力には、一般化累加強度を採用している。破線で示す耐力は、Fig.9 (a) に示す崩壊メカニズムを仮定したものである。しかしながら、実際には、柱および梁端部に耐圧が存在するので、(a) ではかなり安全側の評価となることが予測される。従って、崩壊を考慮した Fig.9 (b) に示す崩壊メカニズムから算定される耐力も同様に点線で示している。ここで、柱とコンクリートの全塑性耐力をそれぞれ M_{c1}, M_{c2}, M_{bc} とおくと、Fig.9 (a) の場合の水平力 Q と柱の部材角 θ の関係は、式 (1) の様に表される。

\[Q = \frac{2M_{c1} + 2M_{c2} + 2M_{bc}}{H} - 2N\theta \]

(1)

なお、H と L の値は、それぞれ 2000mm, 1600mm である。また、Fig.9 (b) の場合の Q と θ の関係は、式 (2) の様になる。

\[Q = \frac{(2M_{c1} + 2M_{c2})L}{(L-2L_f)(H-H_f)} + \frac{2M_{bc}}{H-H_f} - \frac{2N}{H-H_f} \theta \]

(2)

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Test results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q'' (kN)</td>
</tr>
<tr>
<td>NV-L</td>
<td>159</td>
</tr>
<tr>
<td>NF-L</td>
<td>158</td>
</tr>
<tr>
<td>SV-L</td>
<td>153</td>
</tr>
<tr>
<td>NV-H</td>
<td>131</td>
</tr>
<tr>
<td>NF-H</td>
<td>140</td>
</tr>
<tr>
<td>SV-H</td>
<td>146</td>
</tr>
</tbody>
</table>

式 (2) で与えられる水平力 Q を以後 Q_{sys} と表す。Hc と Lf のאתめ方については後述する。式 (1) および式 (2) では、梁からのせん断力による柱軸力の変動を考慮しているが、梁の軸力は考慮していない。これは、同一材料で作成した梁の耐力を一定

![Fig.9 Collapse mechanism](image)

(a) Neglecting rigid area (b) Considering rigid area
にして、柱の耐力負担の変化を観察することを意図したためである。

実験より得られた水平耐力 Q_c と耐力時の平均開裂面積を R_{eq} を Table 4 に示す。表には、柱間軸荷重を正として、正荷重側の Q_c と R_{eq} を示している。水平耐力において、1 階と 2 階の柱の上下フランジに貼付けたひずみゲージの値を観測すると、これらは全て降伏ひずみに達しており、水平耐力時に Fig. 9 のメカニズムが形成されていると考えることができる。

Table 4 には Q_c を水平耐力計算値 Q_{cal} で無次元化した値も示している。ここで、$Q_{cal} = \theta = R_{eq}$ として式 (2) で求めた計算値である。ここで、Q_{cal} を得るためには、H_{ij} と L_{ij} の値が必要となる。L_{ij} の値は、Fig.3における横梁接合部の図を 175mm とした。一方で、H_{ij} の値は、Table 4 に示しておく必要がある。これは、実験終了後、試験体の開裂を剥取し、基礎梁上面からコンクリートが著しく破壊している部分までの距離を測定したものに、基礎梁のせん断力分 100mm を加えたものである。

Table 4 において、低軸力下の試験体を比較すると、各試験体ごとに Q_c と R_{eq} に大きな隔たりは無い。しかし、高軸力下の試験体では、NV-H のみが他と異なった値が得られている。即ち、NV-H では、Q_c の値が、NF-H、SV-H と比べて、明らかに小さい。また、NV-H では $R=1.5/100rad$ ～ $2/100rad$ の間に Q_c が観測され、他試験体においては $2/100rad$ ～ $3/100rad$ の間に Q_c が観測されているのに比べて、明らかに変形性能が低い。NV-H で除去した Q_c / Q_{cal} の値は、1.00 ～ 1.07 の間で収まっており、この方法で精度良く耐力の推定が可能であることが分かる。NV-H のみ、Q_c / Q_{cal} の値が 1.0 を下回っているが、これは、軸力とコンクリートの付着劣化が起きコンクリート部分の作用軸力が低下し、CFT 柱としての全塑性耐力を発揮できなくなったためと考えられる。この問題については今後検討する。なお、他者の実験値が計算値よりも若干大きくなっている主な原因は、鋼材のひずみ硬化と考えられる。

Fig. 8 において、軸力下の実験結果を比較すると、荷重～変形関係では試験体ごとの差異はほとんど見られない。すなわち、滑り止めの有無や柱頭空間の有無によって変化させたコンクリートと鋼管の応力伝達機構の差異、および変形関係に大きな影響しないといえる。一方、高軸力下の実験結果を見ると、NV-H は他の試験体よりも最大耐力と絶縁ループの幅を大きく、エネルギー吸収性能に乏しい性状を示した。

正荷重時における水平力 Q ～平均層間変形角 R 関係の曲線を Fig.10 に示す。低軸力下の実験結果を左側に、高軸力下の実験結果を右側に配置している。この図において、各試験体の柱頭部における開口の降伏（記号：YD）と局部座屈（記号：LB）が生じた点について検討する。降伏点は圧縮側となる柱垂のフランジに贴付けた 1 本ゲージにより判定した。局部座屈は、開口表面を手で触れ、触わらしを感知できた点とした。これらの現象が発生した時点は、軸力比に関係なく、NV が最初であった。この理由は、NV は他の試験体よりも完全コンクリートの耐力軸荷重が小さく、鋼管の受け持つ柱力が大きかったためと考えられる。逆に SV はいずれの現象も大きな変形において発生しており、滑り止めが開口の降伏や局部座屈の早期発生を防ぐのに有効であると考えられる。

Fig.11 に骨組全体の軸方向変形 Δ_r と平均層間変形角 R の関係を示す。Δ_r は、2 個柱接合部の中央点鉛直変位を測定した変位計の値であり、左右両方の値の平均で表している。左側の軸力下の試験体を見ると、試験体による値の違いはほとんど見られない。一方で、高軸力下の試験体では、軸方向変形の大きさは、NV-H が 20mm を超える変形となっているのに比して、NF-H、SV-H は、およそ半分の 10mm 程度の変形で受まっている。軸方向変形を抑えるためには、NF-H のように約 2 層厚さに設けた柱頭や、SV-H のように柱座接合部ごと機械的に滑り止めを設ける手法が有効であることが分かる。

Photo 1 に NV-H と SV-H の柱頭および柱頭の破壊性状を示す。これらの試験体では、実験開始時において柱頭に 30mm の空隙を設け
けている。NV-H は、写真から分かるようにコンクリートの上面が約 20mm 上昇しているのに対して、SV-H は初期状態と同じ空間を保持している。柱脚については NV-H の鋼管が激しい局部破壊を起こしているのに対して、SV-H では緩やかな座屈形状となっている。前者の場合、終局時においてコンクリートは鋼管との間に大きな相対位を生じており、付着による軸力伝達はある程度期待できるものの、断面の一般化変形を発揮するほどにはコンクリートが軸力を負担していないと考えられる。一方で、後者は、内部コンクリートの圧縮を伴う CFT 柱における特徴的な破壊状態で、軸力の伝達は充分行うことができたものと考えられる。

5 付着応力に関する検討

Table 5 に付着のみで軸力を伝達する NV-L と NV-H 試験体の付着応力の算定結果を示す。表中の下線部は、それぞれ鋼管とコンクリートの軸力を付着応力で、\(h \) は付着応力である。ここで、\(N \) は 1 階床の中央部に貼付したひずみゲージ（Fig.6 を参照）の値から求めた鋼管の付着軸力である。NV-L の \(N \) はコンクリートによる R=3/100rad の 1 回目ベーク時の值である。一方で、NV-H の \(N \) は正側軸力における R=3/100rad の 1 回目ベーク時の値である。これらの値は、各試験体で最大耐力に達した加力サイクル時の付着応力として使用する。\(\tau \) は、柱の付着部から、\(\tau \) を差し引いて計算した。\(\tau \) は、\(N \) をこの計測点より上部の鋼管の表面を除したプロットとした付着応力と捉えることができる。添え字の 1 は、正側荷重時に引張側となる柱を示しており、添え字の 2 は、正側荷重時に圧縮側となる柱を示している。\(\tau \) の値は、NV-L で 0.191MPa、NV-H で 0.131MPa となった。試験体の引張側柱においては、梁からのせん断力が柱を引張るのでは、平均付着応力はそれほど大きさならない。\(\tau \) の値は、NV-L で 0.297MPa、NV-H で 0.235MPa となった。NV-H は、前述のように明らかに付着すべきが生じており、0.235MPa 付着強度となる。この値は、一定側荷重の伝達し水平荷重を載荷した片持ち柱の実験で得られた角形 CFT の平均付着強度 0.15 から 0.35MPa の範囲に含まれており、既存の実験結果と値の整合性が見られる。一方、NV-L の \(\tau \) は 0.297MPa となっており、NV-H の値よりも大きいが実験からは明確な付着すべきは観測されていない。しかしながら、次サイクルでは \(\tau \) は 0.286MPa と若干下がることから、NV-L の付着強度は 0.297MPa と考えられる。この値も、前述の文献 4) で得られた付着強度の範囲内におさまっており、片持ち梁試験体と本当に試験体から同等の付着強度が得られることが分かった。

Fig.12 に(a) NV-L と(b) NV-H の CFT 柱の一般化変形を示す。梁からのせん断力を考慮すると、メカニズム時の柱の軸力は、NV-L の引張側で 131kN、圧縮側で 349kN となり、NV-H の引張側で 491kN、圧縮側で 709kN となる。これらの軸力は破壊における軸力と示されており、実験で示す CFT の耐力との交点が付着強度が無い場合の最大耐力となる。

NV-L と NV-H の圧縮側柱（引張側柱）の付着強度をそれぞれ 0.297MPa（0.191MPa）と 0.235MPa（0.132MPa）と仮定すると、\(N \) と \(N \) から柱の強度設計における鋼管とコンクリートの負担軸力が計算される。\(N \) と \(N \) は、各試験体での付着応力から \(N \) と \(N \) を求める。\(N \) と \(N \) は、Table 5 に示すように計算される。

<table>
<thead>
<tr>
<th>Table 5 Average bond stress</th>
<th>windward column</th>
<th>leeward column</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_1) (kN)</td>
<td>(N_2) (kN)</td>
<td>(\tau_1) (MPa)</td>
</tr>
<tr>
<td>NV-L</td>
<td>48.0</td>
<td>179</td>
</tr>
<tr>
<td>NV-H</td>
<td>367</td>
<td>124</td>
</tr>
</tbody>
</table>
Fig.12 Interaction curves between axial load and bending moment

4節で述べたように、付着によってのみコンクリートが軸力を伝達される試験体の水平耐力実験値は、低軸力を受ける試験体の場合には一般化常加速度理論による計算値Q_mを上回るが、高軸力を受ける試験体の場合はQ_mに達しないといった結果となった（Table 4参照）。このような実験結果が、付着強度を考慮することにより定量的に説明できたといえる。付着強度を用いてCFT部材の設計する必要があるのは、1）機械的耐力が無く、2）十分な付着強度が無く、3）軸力比が大きい状況で、現実的に付着設計の対象となる部材は少ないと考えられる。ただし、倉庫や貨物船のような中低層スパンの建物にCFT構造が採用される中、上記の条件に合致する部材が生じる可能性がある。このような場合には、本論の手法を利用してCFT部材の耐力を評価できると考えられる。

6 結論

本論文では、一定軸力下におけるCFT骨組の凝縮と水平耐力実験について述べた。実験のパラメータは、柱頭の無限、柱頭部部における機械的耐力の無限と軸力比で、得られた結果を以下に示す。

1）軸力比が0.12の低軸力下での実験からは、実験のパラメータの違いによる顕著な差異は観測されなかった。
2）軸力比が0.31の高軸力下での実験からは、鋼管とコンクリート間の付着のみでは、軸力比が非常に高く、鋼管の軸力をコンクリートに伝える機械的なデバイスが必要があることが分かった。
3）付着のみで軸力を伝達する試験体から得られた圧縮側の平均付着強度は0.24〜0.30MPaとなり、既往の文献4で得られている付着強度の範囲内に値が含まれる。ただし、引張側の付着強度は、0.13〜0.19MPaで、圧縮側よりも若干大きい値となった。

4）上記の付着強度を用いてCFT柱の終局曲げ耐力を算定することができる、骨組の水平耐力をより精度良く評価できる。

謝辞

本研究は、平成15年度、社団法人日本鉄鋼連盟の建築鋼構造研修会金受金を受け行われました（研究者氏名：福丸展義、水戸市立大学助教・中原浩之、「コンクリート充填鋼管構造をより普及させるための研究」）、また、実験にあたっては、九州大学大学院生の内川充秀氏と九州大学の山川裕介氏、二木英也氏、鹿児島大学の横田勇之氏の多大な協力を得ました。ここに記して関係各位に謝意を表します。

参考文献

1）平成14年5月25日 国土交通省告示第464号
4）Moriyama,Y., Tomii,M. and Yoshimura,K.: Experimental Studies on Bond Strength between Square Steel Tube in Concrete Filled and Encased Concrete Core under Cyclic Shearing Force and Constant Axial Force, Transactions of the Japan Concrete Institute, Vol. 4, pp.363-370, 1982.
7）中原浩之,松尾利彦,崎野健治: コンクリート充填鋼管柱の一定軸力下における繰り返し曲げ性状,日本建築学会構造論文集, 第568号, pp.139-146, 2003.6.