LINEAR INVERSE ANALYSIS OF STRESS AND SHAPE CONTROL OF STRUCTURES WITH MEMBERS OF VARIABLE LENGTH

Ken'ichi KAWAGUCHI and Yuki OZAWA

There are many structures that are controlled their shapes and/or stress distribution by being actively varied the length of their members. Some of the structures with vibration control system, so-called variable geometry trusses and many of the tension structures are examples of such structures. One of the difficulties in the design and realization of such structural systems is how to grasp the relationship between the member length change, and their shapes and stress distribution. In this paper a simple and effective linear inverse theory for the control of such structures is described. Then its validity is proved by showing some numerical examples and the comparison with the results of real scale tests of a tensegrity frame.

Keywords: Tension Structure, Tension truss, Tensegrity, Prestress, Stress control, Shape control

1. はじめに

部材長を変化させることで、構造物の形状や応力を変化させる構造物には様々なものがある。部材長をアクティブに変化させる制振構造や、宇宙空間での利用を考えて提案された、可変形トラス (Variable Geometry Truss) などもこのような構造物の一つである。特に張力構造は張力導入により軽量な構造システムを構成する構造であり、この構造の実現にも部材長変化による形態変化と応力変化が重要な要素として常に存在している。

張力構造は従来、軽量構造として多く用いられている。特に、初期張力 (プレストレス、プリテンション) を導入することで、幾何剛性を付与したり、早く柔軟な材料にも屈服を発生させずに圧縮応力を負荷させたりすることができるため、軽量構造への応用は近年でも様々な形で開発が続いていている。しかし、複雑な不静定次数の高い構造システムにプレストレスを導入しようすると、そのプレストレス状態のコントロールは非常に複雑で困難になってしまう場合が多い。設計どおりの張力状態を実現する施工手順の問題や、張力導入に必要な部材長変化が引き起こす構造形状の歪みの問題などは張力構造の現場で顕著に問題になっていている。

2. 張力構造やアクチュエータを有する構造の線形逆解析

線形化されたマトリックス解析法にもとづく応力法では構造内部に適当な応力分布を仮定し、これを外力パラメータと関連付ける (釣り合い式) を出発点とする。構造全体に拡張した釣り合い式の形を次式で表す。

\[An = f \]
料のような面的な連続体であれば厚さ方向へ予め積分したもの（含応力）とされる。\(f \)は外力ベクトルであり、一般的な有限要素法のように節点近似されている場合は節点ベクトルである。\(A \)はこれらを関連付けを行う行列である。本論文では \(n \)を軸ベクトル、\(f \)を外力ベクトル、\(A \)を枠組み行列と呼ぶ。一般に初期張力を形成する自己釣合い力は次式を満たす。

\[
A = n
\]

構造全体を拡張した変位と形変の関係は次式で表される。

\[
Bd = A
\]

ここに \(d \)は構造各部に生じる変位を表すパラメータである。節点近似されている場合は節点ベクトルである。\(\Delta \)は変位テクノロジーの成分を適宜積分した後に列ベクトル形式に並べるものである。トラスやケーブル材などの直線部の部材では対称を考慮方向に関して積分したもの(部材伸び)であり、膜材料のような面的な連続体であれば面内方向へ予め積分したものとなる。\(B \)はこれらを関連付ける行列である。本論文では \(d \)を変位ベクトル、\(\Delta \)を変位ベクトル、\(B \)を変位相互変形の呼ぶ。釣り合い行列および変位行列の間には反復原理が成立しているので式(2)式のように書くことができる。

\[
A'\dd A = A
\]

ここに上添え字""は行列の転置を表す。構造が \(n \)の変位及び外力自由度数を持ち、軸ベクトル成分数が \(m \)であるとすると、釣り合い行列 \(A \)は \(n \times m \)の長方行列となる。(4)式には材質長変形が弾性変化ではない時に成立する弾性力学的な関係式である。以下、線形部分空間と線形構造解析、線形写像と正方形行列及び一般逆行列理論を用いた知見を用いて定式化を進める。これらの知見を付録1-4にまとめておき、一般逆行列の数学的性質と正方形行列との関係については、文献15)等に詳しく書かれておりので必要に応じて参照された。

初期張力は通常、自己釣合い応力状態を有する構造物の特定部材の材長を変化させることで導入される。この材長変化は弾性的なものとは異なり、その部材の自然長を弾性的に変化させるものであり、この材長変化を発生させるために構造中にアクチュエータやタンパクなどが仕込まれる。

以上のことから、伸びする変位ベクトル \(d \)と対応する変位ベクトル \(d' \)を、弾性変形によるもの \(A', d' \)とアクチュエータやシェルパックなどの操作による強制的部材長変化によるもの \(A, d \)との和として表す。

\[
d = d_1 + d_2
\]

(5)

\[
A = A_1 + A_2
\]

但し、外力が無い場合は、全ての変形の原因は \(A \)に起因するので、\(A \)も最終的には \(A_1 \)で表される。弾性変形による部材長変化については、軸部 \(n \)と部材変形 \(A \)の関係を表す行列 \(F \)を用いて

\[
A = F n
\]

すなわち

\[
A'\dd = F n
\]

という関係が成立する。従って(4)式に(6)-(8)式を代入すると(4)式の幾何学的な関係式

\[
A'\dd n A - A_2
\]

となる。(2)式に戻り、釣り合い列 \(A \)の数値を \(r \)とすると、この構造システムの独立する自己釣合い力は \(q \times r \)個存在するから(12)。これら \(q \)個の独立する自己釣合い力モードを正規直交化し列ベクトルとして並べ \(m \times q \)行列を自己釣合い行列 \(S \)として定義する。

この \(S \)を用いると任意の自己釣合い状態は適当な \(q \)次元ベクトル \(a \)を用いて

\[
A = S a
\]

(10)

と表される。この状態での構造システムに蓄えられたコンプレコンリントエネルギー \(P_e \)は次式で与えられる。

\[
P_e = \frac{1}{2} n^T F n + n^T A
\]

(11)

上式の第1項は部材力により定義されるコンプリメントリエネルギーであり、第2項は部材長の変化によって定義されるコンプリメントリエネルギーである。第2項の正符号は、部材の引っ張り状態を正符号、かつ部材が伸びた状態を正符号として定義している。

(11)式に(10)式を代入すると

\[
P_e = \frac{1}{2} n^T S F S a + a^T S^T A
\]

(12)

システムが釣り合い状態にあるときはコンプレコンリントエネルギーの保存条件から \(\ddot{a} = 0 \) が成立つので、

\[
\ddot{a}
\]

(13)

となる。これを(12)式に適用して、

\[
S^T F S a + S^T A = 0
\]

(14)

となる。これは、

\[
a = -(S^T F S)^{-1} S^T A
\]

(15)

(15)式に(10)式を代入すると強制的な部材長変形 \(A \)による部材の変形力が次式のように得られる。

\[
h = -(S^T F S)^{-1} S^T A
\]

(16)

構造に生じる変位 \(d \)を(9)式を解くことによって得られる。対象としている構造が形態安定的な構造の場合、(9)式に不定解が存在しないことから、\(A \)はラグランジェ行列となり、(9)式に(4)式に幾何学的に適合した解が得られる。

\[
d = (A A')^{-1} (A F n + A)
\]

(17)

\[
= (A A')^{-1} A F (S^T F S)^{-1} S^T I + I A
\]

\[
(9)
\]

これに \(I \)は単位行列を表す。対象としている構造が形態的に不安定な場合には、いわゆる"伸びた変位"が存在し、\(A \)はもはやラグランジェではなくなる。このような場合には一般逆行列理論を用いることにより、幾何学的に適合した解を得ることができる。その解は以下のように表すことができる。

\[
d = (A A')^{-1} (F n + A) + (I - (A A')^{-1} A)
\]

(18)

\[
= (A A')^{-1} (F S^T F S)^{-1} S^T I + I A
\]

\[
(9)
\]

\((A A')^{-1} \)と \(A \)はそれぞれ \(A^T A \)と \(A \)の Moore-Penrose 型一般逆行列である。特に、上記式において \((A A')^{-1} = (A A')^T \)および \((A A')^T = A A' \)の関係を用いている。第1項は弾性変形と強制変形による伸びを表現し、第2項は伸びた変形を表現している。\(B \)は伸びた変形を決定する部材ベクトルであり、伸びた変形と直交しているので、外力の作用を考えていないときは零ベクトルと考えてよい(付録1-4参照)。

ここで、\(A \)について考える。\(A \)は強制部材長変化として任意に与えることができるが、伸び空間の直交直和分解から

\[
A = S S^T A + I - S S^T A
\]

\[
= I - A A^T A + A A^T A
\]

\[
= A + A^T A
\]

(19)

と分解することができる。第1項 \(A \)を自己釣合いモードに比例し
た不適合な部材長変化であり、第2項A_0を自己釣り合いモードと直交する適当な部材長変化である。これを(18)式に代入すると

$$d = -(A^T)FS(S^TS)^{-1}S^T(A^T)F + \theta I - A^T A$$

が得られる。第1項、第2項は共に部材長変化により発生する変位であるが、第1項は、不適合な部材長変化が自己釣り合い力を伴って発生する弾性的な部材長変化による変位であり、第2項は、適当な部材長変化を伴う形に発生する変位である。第3項は伸び無し変位であり、不定解のため部材長変化で制御することとは出来ない。以上より、合計の部材力を発生させることなく構造の形態を変化させるには、適当なA_0を与えればよいことがある。

3. 変位と応力増分を指定する線形逆解析

(16)式と(18)式を連立すると、軸力ベクトルと変位ベクトルを制約部材長変化で制御する式が次式のように得られる。

$$\begin{bmatrix} n^T \end{bmatrix} = G_A \cdot G_0 = \begin{bmatrix} S(S^T S)^{-1}S^T & 0 \\ (A^T)^{-1} - S(FS)^{-1}S^T & I \end{bmatrix} \begin{bmatrix} S(S^T S)^{-1}S^T & 0 \end{bmatrix}$$

さらに、A_0のうち、ターンバックルやアクチュエータなどにより材長可変になっている部材のみを順に並べたベクトルをA_0とし、(21)式の右辺をこの順番に並べ替えると下記のように書くことができる。

$$\begin{bmatrix} n^T \end{bmatrix} = G_0 \begin{bmatrix} G_1 & \cdots & G_l \end{bmatrix}$$

上記式(22)式は、実際的には、次式で表される。

$$\begin{bmatrix} n^T \end{bmatrix} = G \cdot G_0 = \begin{bmatrix} G_1 & \cdots & G_l \end{bmatrix}$$

上記が制約部材長変化により構造に発生する軸力ベクトルの変化と変位ベクトルの関係式である。式(23)式は、変位を与えることにより応力変化と節点変位を指定した線形逆問題として解くこともできる。係数行列Gの Moore-Penrose 型一般逆行列をG^{*}とおくと、まず、解の存在条件は

$$\begin{bmatrix} I - G^* G \end{bmatrix} \geq \theta$$

で与えられ、(24)式が成り立つ時、(23)式は

$$A_0 = G^* \begin{bmatrix} n^T \end{bmatrix} + \begin{bmatrix} I - G^* G \end{bmatrix}$$

と解くことができる。ここでnは余分を表す適当なベクトルであり、θとおき、(25)式はノルム最小解を与える。式(24)が成り立たない時は、設定した軸力変化と変位を実現する解は存在しないが、(25)式是最小二乗解としての最適解を与える。

4. 売エネルギー

自己釣り合い力によってブレストレスが導入された構造物は歪みエネルギーを蓄えられる。ブレストレス導入のために部材長変化させる場合には、当然構造物に不必要な変形が発生するが、部材長変化を与えた部材やその量の選定によって、望ましくない変形をある程度制御することができる。この制御は設計や施工計算に利用することもできる。それには導入ブレストレス最大歪エネルギー変化で評価と部材長変化の間の関係について知ることが重要である。

自己釣り合い力の導入によって蓄えられる歪みエネルギーは次式によって求めることができる。

$$\Pi = \frac{1}{2} n^T F n$$

上式に(16)式を代入すると

$$\Pi = \frac{1}{2} \begin{bmatrix} S(S^T S)^{-1}S^T \end{bmatrix} A_0 + \frac{1}{2} \begin{bmatrix} S(S^T S)^{-1}S^T \end{bmatrix} A_0$$

従って、最終軸力ベクトルと部材長変化ベクトルの内積の半分が外部から与えられた仕事として、構造内部で歪エネルギーとして蓄えられることが分かる。上式により、実現しようとする張力構造物のブレストレス状態を設定すれば、その状態を実現するために最低限必要なエネルギーを計算することができる。この結果と比較することで、施工過程がいかにエネルギー的に無駄なく達成されるかを確かることができる。また、同じブレストレス状態を実現するにも、制約に部材長変化を与える部材の選定によって、高軸力で短い部材長変化を発生させる場合など、異なる施工過程を考えることができる。

ここで、制約の部材長変化ベクトルのノルム$(A_0)^2$を一定にした場合の歪みエネルギーΠの最大化問題を考える。

$$\Pi = \frac{1}{2} (A_0)^2 \cdot \lambda$$

両辺を部材長変化ベクトルA_0で微分し零とおくと、次式が得られる。

$$[S(S^T S)^{-1}S^T] A_0 = \lambda A_0$$

となる。これは、行列$S(S^T S)^{-1}S^T$の固有値問題である。つまり、制約の部材長変化A_0によりどの程度歪エネルギーが導入されるか、は、上式の固有値問題として解かれるが、最大固有値に対応する固有ベクトルに比例した制約の部材長変化を与えた時に最大効率よく歪エネルギーが導入されることが分かる。式(29)式から明らかのように、これらの固有ベクトルは自己釣り合いカーバクトル空間のベクトルA_0として与えられる(19)式参照)。自己釣り合いモードが1つしかない場合は、Sは1つの列ベクトルであり、明らかにSに比例した部材長変化A_0を与えることにより最も効率よく歪エネルギーが導入されることが分かる。また、(20)式より、A_0は適当な部材長変化A_0を含まないので、いたずらに構造形態を変化させることもない。

実構造物としては、1つの自己釣り合い力によって安定化されたユニット構造を多数集積させて大きな構造物を構成する場合がある。このような場合、1つのユニット構造に着目すると、その自己釣り合いカーバードに比例した割合で各部材に制約の部材長変化を与えるのが、ユニットの形態を変化させずに張力導入する方法として効率的であることがわかかる。
5. 定式化計算例

図1に示す簡単な1次不静定平面トラス構造に対して、本論文の定式化を適用してみる。

簡単のため部材の断面積Aとヤング係数Eの積である断面剛性AEは全ての部材で同じとし、部材2の材長lをとる。約合い行列A、自己約合い軸ベクトル、行列Fは以下のようになる。

\[
A = \begin{bmatrix}
\sin \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\cos \theta & 1 & \cos \theta
\end{bmatrix}
\]

\[
S = \frac{1}{\sqrt{2 + 4 \cos^2 \theta}} \begin{bmatrix}
1 & 1 & 1 \\
1 & -2 \cos \theta & 1 \\
1 & 0 & 1
\end{bmatrix}
\]

\[
F = \frac{1}{AE} \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\]

（16）式より、各部材の材長変化（\(\Delta_1, \Delta_2, \Delta_3\)）により生じる内力nは

\[
n = \frac{-AE \cos \theta}{2(1 + 2 \cos^2 \theta)} \begin{bmatrix}
1 & -2 \cos \theta & 1 \\
-2 \cos \theta & 4 \cos^2 \theta & -2 \cos \theta \\
1 & 0 & 1
\end{bmatrix} \Delta_1 \Delta_2 \Delta_3
\]

となる。行列Aの一般逆行列は

\[
(A')^{-1} = \frac{1}{2 \sin \theta(1 + 2 \cos^2 \theta)} \begin{bmatrix}
1 + 2 \cos^2 \theta & 0 & -(1 + 2 \cos^2 \theta) \\
2 \sin \theta \cos \theta & 2 \sin \theta & 2 \sin \theta \cos \theta \\
2 \sin \theta \cos \theta & 2 \sin \theta & 2 \sin \theta \cos \theta
\end{bmatrix}
\]

となるので、変位は（18）式より、

\[
\Delta = \frac{-AE \cos \theta}{2(1 + 2 \cos^2 \theta)} \begin{bmatrix}
\cos \theta(1 - \cos \theta) & 0 & 0 \\
0 & 1 - \cos \theta & 1 \\
0 & 1 - \cos \theta & 1
\end{bmatrix}
\]

となる。上式第1項は不変もし、自己約合い力に比例した

部材長変化により生じる変位であり、第2項が適合な部材長変化により生じる変位である。図1の構造は形態安定なので伸びない変位は生じない。（21）式は下記のようにになる。

\[
B = \begin{bmatrix}
-2B \cos \theta & -2B \cos \theta & -2B \cos \theta \\
4B \cos^2 \theta & -2B \cos \theta & 4B \cos^2 \theta \\
1 & 0 & -1 \\
2 \sin \theta & 2 \sin \theta & 2 \sin \theta \\
\cos^2 \theta & \cos^2 \theta & \cos^2 \theta \\
1 + 2 \cos^2 \theta & 1 + 2 \cos^2 \theta & 1 + 2 \cos^2 \theta
\end{bmatrix}
\]

\[
\Delta = \begin{bmatrix}
\Delta_1 \\
\Delta_2 \\
\Delta_3
\end{bmatrix} = \begin{bmatrix}
n_1 \\
n_2 \\
n_3
\end{bmatrix}
\]

\[
B = \frac{-AE \cos \theta}{2(1 + 2 \cos^2 \theta)} \begin{bmatrix}
1 & -2 \cos \theta & 1 \\
-2 \cos \theta & 4 \cos^2 \theta & -2 \cos \theta \\
1 & -2 \cos \theta & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
n_1 \\
n_2 \\
n_3
\end{bmatrix} = \frac{1}{\sqrt{2 + 4 \cos^2 \theta}} \begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

（39）

\[
\lambda = \frac{AE \cos \theta}{2(1 + 2 \cos^2 \theta)}(2 + 4 \cos^2 \theta)
\]

となる。\(\lambda\)に相当する部材長変化を生じさせた場合、最も効率よく\(\lambda\)の直エネルギーが導入され、形態変化としての変位は弹性変形に起因するのみが生じる。1次不静定構造なので、\(\lambda\)自己約合いモードSと一致している。\(\lambda\)に相当する部材長変化を生じさせた場合は部材力は発生せず、直エネルギーも導入されない。\(\lambda\)方向の変位のみが発生する。従って、プルストロス導入には\(\lambda\)に比例した部材長変化を生じさせることは効率的であり、歪みとしては張力変化に対応する必然的な変形のみが発生する。形状変化のみを行う場合には、\(\lambda\)に比例した部材長変化を生じさせず、不要な歪みを生じさせずに目的の変位のみを生じさせることができる。応力と形状変化の両方を制御したい場合は、（36）式を（25）式に従って解く。

6. 数値計算例

6.1. 計算モデルと解析ケース

図2に示す、ホルン型のケーブル補強膜構造の応力制御についての数値解析例を示す。

| 表1 解析ケース（\(\sigma_{xx}, \sigma_{yy}\)はそれぞれ横無方向の垂直応力度を示す。） |
|---|---|---|
| 解析ケース | 成分数 | 応力変化量 |
| Case1 | 1 | \(\sigma_{yy}=1.0\ N/mm^2\)（円周方向） |
| Case2 | 2 | \(\sigma_{xx}=0.0\ N/mm^2\), \(\sigma_{yy}=1.0\ N/mm^2\)（放射線方向） |

図2 ケーブル補強膜構造の解析モデル概要
図3 解析モデルの解析用番号等
図4 ケース1の解析結果
図5 ケース2の解析結果
外周の支点は直径 10m の円周上にあり、頂部のリングの大きさは直径 1m、外周支点からの高さは 2m である。横構形状は文献 13）に示した手法に従い、補強ケーブル長さの拘束条件を設定した数値曲面を求める。拘束条件は、外周 8 節点及び頂部リング部 8 節点においてピーチ支点として、また、外周変化可能な制御経路は外周の 8 本のケーブル要素（図 2 の○のついた部位）を指す。解析モデル節点番号、ケーブル要素番号、3 角形要素番号を図 3 に示す。

ここでは、要素番号 45（図 2 中「応力変形要素」）の要素に放射方向のひびわれが生じると、周方向へ追加の張力が導入するという場合を想定し、表 1 に示す 2 つの解析ケースに対して数値計算を行った。Case1 では、周方向の張力変化量 1.0N/mm のみを指定している。Case2 では Case1 の応力変形に加えて放射方向の張力は変化させないこと（張力変化 0）、という条件を付け加えている。

膜要素に収縮応力の発生を許容した単純な自己釣合いの数は、240 であるが、(21)式の係数行列 G のラランクは 8 である。応力制御は補強ケーブルの長さを調整することによって行われ、最大でケーブル本数相当の 8 個の自己釣合い力を制御可能であることが分かる。

6.2 解析結果と考察

解析結果の変形図、主応力度図、及び各 3 角形要素において体積当りの歪エネルギー量（歪エネルギー密度）の図を解析ケースごとに図 4、図 5 に示す。また、制御部材の長さ変化及び軸力、導入された歪エネルギー量を表 2 に示す。本モデルでは長さ変化可能なケーブル数を 8 本としたため、最大 8 成分まで応力制御可能である。

今回の解析ケースでは 2 ケースとも(24)式が成り立ち、解が存在し、制御可能であった。

Case1 ではケーブルの長さ変化もほぼ等しく、全域にわたり円周方向・放射方向共にほぼ等しい応力が生じており、等張力に近い応力分布となっていることが分かる。ケーブルの長さ変化及び変形量も Case2 と比較して小さい。エネルギー密度もほぼ等しく、小さなエネルギーで効率よく張力が導入されていることが分かる。

一方 Case2 では、応力指定した要素には、指定した応力変形量の変化が導入されたが、それ以外の要素に結果的に発生し応力変化が大きい。ケーブル長さ変化量や変形量も Case1 と比較して非常に大きくなり、導入された歪エネルギーは Case1 の 9.2 倍に達した。エネルギー密度も最点所により高まる差が大きい。

本構造物は等張力面で形状が決定されているため、Case1 のような等張力状態に比例した応力変形の指定は、周辺ケーブルの対称性の高い材長変形で実現が容易であると考えられる。Case2 のように、等張力状態から外れる応力指定の場合は、(16)式で 8 本のケーブル材長変形に相当する応力変形の組み合わせから解を選ぶなければならない。指定軸要素ののみの応力変形を実現する事は難しい。

以上の結果、本手法を用いることで要素の応力状態を目標通りに制御可能であることが確認された。ただし、Case2 のように応力指定の内容によって、応力を指定していない要素に与える影響も大きく、不要な歪みエネルギーの導入が多くてはならない。実際の構造物の応力制御においては、本手法により、制御部材と自己釣合い状態がどのように制御しているかを予め把握した上で、施工に応用することが望ましい。

7. テンセリティ架橋の張力導入設計と実測

本論文で提案した張力制御法を、実大テンセリティ架橋のモックアップモデルの組み立て時の、張力導入設計に応用した。実験対象としたテンセリティ架橋のモックアップモデルを図 6 に示す。モックアップモデルの張力導入は架橋の組み立てを合わせて、2 段階に分けて行った。第 1 段階の架橋は最も単純なテンセリティ架橋圧縮材 3 本、張力材 9 本として完成した状態であり、第 2 段階を Case1 とする。第 2 段階の架橋は第 1 段階の架橋に張力材を 3 本追加した完成状態であり、この段階を Case2 とする。各段階における部材配置図（平面図）を図 7 に示す。

Case1 の状態での自己釣合いモード数は 1 であり、制御部材として TIA、T2A、T3A の 3 部材（目標張力は各 4kN）を選んだ。

Case2 の状態では、自己釣合いモード数は 3 ある。従って、制御部材に T4A、T4B、T4C 部材の 3（目標張力各 18kN）を選んだ。
表3 計算結果と実測による部材長変化

<table>
<thead>
<tr>
<th>部材長変化 (mm)</th>
<th>計算結果</th>
<th>実測結果</th>
<th>計算結果</th>
<th>実測結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1A: -2.68</td>
<td>-6</td>
<td>T4A: -6.77</td>
<td>-82</td>
<td></td>
</tr>
<tr>
<td>T1B: -2.68</td>
<td>-6</td>
<td>T4B: -6.77</td>
<td>-84</td>
<td></td>
</tr>
<tr>
<td>T1C: -2.68</td>
<td>-6</td>
<td>T4C: -6.77</td>
<td>-78</td>
<td></td>
</tr>
<tr>
<td>T1E: -2.68</td>
<td>-6</td>
<td>T4E: -6.77</td>
<td>-84</td>
<td></td>
</tr>
</tbody>
</table>

歪エネルギー ×10^3(Nmm)

Case 1: 161.52 386.4 1792.8 2307

実測モデルの境界条件は、底面で滑りを用いたローラー支持であるが、計算上は、自重を無視し、全ての節点を拘束無しとしている。
数値計算による予測値と実測値の結果を表3と図8に示す。実験では、解析に盛り込まれなかった様々な要素の影響が現れていくと思われるが、概ね、計算値と実測値の傾向に一致を示した。
Case1では、部材長変化が微小なため実験上の調整が難しく、図8に見るように、全体に実測値が計算値を上回っている。そのため、表3に記載されている実測値に対して(29)式を用いて計算した導入歪エネルギーは実測値高めになっている。

Case2は、6.77cm(実測2cm程度)という長い部材長変化を快速(18Km)で与えている。これに連動し、T1材には150Km程度、T2材には110Km程度という比較的高いプレストレスを入力で導入することが可能となっている。材長変化させた部材には設計張力が多く導入されているが、全体的には、設計導入プレストレスを上回っており、表3に記載されている導入歪エネルギーは計算値より大きめになっている。

まとめ

本論文では、部材長変化による構造物の応力・形態に関する線形逆解析手法についてまとめた。手法は、筆者の既報10,11)の内容をさらに応力制御、形態制御、歪エネルギー観点から定式化を進め、考察したものである。また、簡単な例題により定式化過程を詳細し、構造変化の応力数値計算例を示し、実験変化に応用了した結果について示した。本論文において得られた知見は以下である。

1. 部材長変化による構造物の形態変化は、自己収縮力による弾性的変位と、部材の適合部材長変化による幾何学的変化と、伸びず変位による部分に分ける。

2. 導入歪エネルギーは、最終軸力と材長変化の積の2分の1として与えられ、(29)式の有効性の確認で、効率よく歪エネルギーを導入する部材長変化を見つけることが出来る。

3. 自己収縮力のモードを1つ特異した構造の場合は、自己収縮力モードに比較した部材長変化を与えることで、最も効率的に歪エネルギーを導入することができる。

4. 本手法は、膜構造などの連続的な張力構造物にも応用できる。

5. 本手法は線形計算に基づいているが、増減のような幾何学的非線形性を伴う構造物の施工過程においても適用可能であろうことがわかった。

参考文献

1) 鳳巻&弘, 宇宙構造工学の概要, 本木学会論文集第401号, pp.1-12, 1988.10.

図8 導入された各部材の軸力の計算値と実測値の比較

-855-
付録 1: ペクトル空間の直交直和分解

$n \times m$ 型行列 A が与えられると、m 次元ベクトル空間 V_m、n 次元ベクトル空間 V_n は下図のように直交直和分解される。ここに $R(A)$ は A の列ベクトルで張られる線形ベクトル空間、$N(A)$ は A の零空間、右肩の添字 T は転置を表す。

![図A1](image1)

付録 2: ムーア-ベンローズ型一般逆行列の与える線形写像

付録 1 で示したベクトル空間において行列 A は n 次元ベクトル空間から m 次元ベクトル空間への線形写像を与える。$R(A)$ と $R(A')$ の要素の間には一対一対応を与える。$N(A')$ の要素は全て零ベクトルへと写す。

![図A2-1](image2)

付録 3: 直交直和分解と正射影行列

ムーア-ベンローズ型一般逆行列を用いると、付録 1 で与えられた各ベクトル部分空間へ正射影行列を下表の様に容易に書くことができる。

<table>
<thead>
<tr>
<th>表A3</th>
<th>一般逆行列を用いて表した各部分空間へ正射影行列</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m 次元ベクトル空間</td>
</tr>
<tr>
<td>直交直和分解</td>
<td>$R(A')$</td>
</tr>
<tr>
<td>部分空間への正射影行列</td>
<td>$A'\cdot A$</td>
</tr>
</tbody>
</table>

付録 4: 直交直和分解と正射影行列

約束合う式と伸び変位関係式の解の存在条件と意味についてまとめると。

\[An = f \]
\[A'd = A \]

<table>
<thead>
<tr>
<th>表A4</th>
<th>解の存在条件と一般解の意味</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m 次元ベクトル空間</td>
</tr>
<tr>
<td>鉛直合い式</td>
<td>$R(A')$ 外力と鉛直合いの内力成分</td>
</tr>
<tr>
<td></td>
<td>$R(A)$ 形状内力の内力成分</td>
</tr>
</tbody>
</table>

解の存在条件: 右式の解: 形状内力成分、自己鉛直合い成分と自已鉛直合い成分を合わせて表される。

伸び変位関係式

\[A'd = A \]

伸び変位関係式から見た直交直和分解の意味

<table>
<thead>
<tr>
<th>$R(A')$</th>
<th>不変形変位</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N(A)$</td>
<td>不変形変位</td>
</tr>
<tr>
<td>$R(A)$</td>
<td>形状内力の内力成分</td>
</tr>
<tr>
<td>$N(A)$</td>
<td>内力で表現できない外力成分</td>
</tr>
</tbody>
</table>

解の存在条件: 右式の解: 形状内力成分、自己鉛直合い成分と自已鉛直合い成分を合わせて表される。

伸び変位関係式

\[d = (A')' + [I-\cdot AA']f \]

(2008年10月9日原稿受理、2009年1月23日採用決定)