仕様の相違が土壁の構造性能に及ぼす影響に関する実験的調査
INFLUENCE OF DIFFERENT SPECIFICATION OF MUD WALL ON STRUCTURE PERFORMANCE USING EXPERIMENTAL INVESTIGATION

岡本 滋史*, 村上 雅英**, 稲山 正弘***
Shigefumi OKAMOTO, Masahide MURAKAMI and Masahiro INAYAMA

The wall strength magnification ratio of mud wall of the defined specification was revised by the Ministry of Land, Infrastructure and Transport notification No. 1543 in 2004. The used material and the manufacture method for mud wall change with areas. While manufacture method and used material differ, the specifications of mud wall differ, which causes structure performance differ. In this paper, the various lathwork of mud wall and materials from mud of wall which are performed in various areas have been investigated. Based on investigated results the experimental variable of the lathwork of mud wall and use material have been determined. In order to predict the shear behavior of the mud wall in various manufacture states, tests on 129 different types of partial wall have been carried out.

Keywords : Japanese traditional structural system, Mud wall with uncovered posts and beams, Groundwork Specification, Structural performance, Regionality

伝統構法、土壁真壁、下地、仕様、構造性能、地域性

1. はじめに
土壁の壁倍率は国土交通省告示第1543号により改正され、70mm以上の塗厚の特定の仕様の両面塗りの土壁では1.5に引き上げられた。告示の下地の組み方に関しては、三芳・大橋の実験によって確認された仕様を基に定められているが、その根拠は3尺角試験体と壁厚が1間の耐力試験体による実験結果に基づいている。従って、それらの試験体ではせん断破壊最大耐力が決まっているものが多数、仕様の違いによる検討は、せん断破壊を対象とした場合に限られることとなる。一方、土壁の破壊モードにはせん断破壊しない場合も存在し、せん断破壊するか否かは壁長に依存することが、既往の研究で抵抗機構に基づいた力学モデルにより説明できている。しかし、土壁は、地方によって施工方法や使用材料が多種多様である上、下地の組み方などの仕様が異なる場合の土壁の破壊挙動、とりわけ破壊モードに関する実験に関して不明な点が多い。そのため、抵抗機構毎に仕様による影響を調べ、力学モデルを用いて各破壊モードに対する影響を考察する方法が、根本的な解明につながり、合理的な手法となる。

本研究（本論文を含む一連の研究）は、土壁の構造性能評価法を開発するため基礎理論の構築を行った（詳細は文献6に割愛する）

山田ら[2090]は数値解析により壁材材料特性の土壁への影響を検討しているが、土の圧縮性状の仮定のみを変えており、下地の違いなどは考慮していない。そこで、本論文では、筆者らの今までの研究成果2090に基づき、力学モデルに基づいて土壁の抵抗機構を評価するために開発された部分壁体試験体[209]を用いて、全国各地で行われている様々な施工方法や使用材料の調査結果に基づき、使用材料や下地の組み方など相違が土壁の各抵抗機構に対する影響を実験的に調査することを目的とする。

2. 土壁の仕様に関するアンケート調査と実験計画
2.1 アンケート調査

全国各地で行われている様々な施工方法や使用材料を調査するために、インターネットで全国各地の土壁の施工を行っている工務店を拾い出し、各工務店に出前で承諾を得て調査表をFAXで送り、回答いただいた。その結果、新潟県、長野県、愛知県、滋賀県、三重県、奈良県、愛媛県、福岡県の9件の工務店に調査にご協力いただいた。アンケート調査の回答結果のまとめを表1に示す。また、中尾ら[209]も全国の左官職人の209人にある土壁の仕様に関するアンケート調査を行っており、今回のアンケート調査と同じような結果を得ている。

* TE-DOK 工博
** 京都大学理工学部建築学科 教授・工博
*** 東京大学大学院農学生命科学研究科 准教授・工博

TE-DOK, M. Eng., Prof., Dept. of Architecture, Graduate School of Science & Engineering, Kinki Univ., Dr. Eng.
Assoc., Prof., Graduate School of Agricultural and Life Sciences, The University of Tokyo, Dr. Eng.
2.2 土壁の仕様の考察と実験計画

アンケート結果から下記の組み方の仕様を下記の観察に考察し、仕
様の相違が土壁の構造性能に及ぼす影響を調べるための実験変数を
定めた。

○小屋・間渡しの素材

小屋は近江・中国・四国・九州等では基本的に割竹を使用してい
るが、新潟・長野等では木（杉）、丸竹、竹が使用され、寒冷地
では竹の採取が困難であり、昔は木や材が用いられていた名残であ
る。間渡しは当地に親しまれずかしらか改修工法によって異なってお
り、近畿や四国でも丸竹が使用されていたが、厚壁によって割竹や
木（杉）を使い分ける場合もある。実験変数として、小屋・間渡しの
素材が割竹・木（杉）、丸竹、無について検討する。本実験で使用
した割竹、木（杉）、丸竹を写真1に示す。

左から木、竹、割竹（小屋）、割竹（間渡し）、丸竹
写真1 小屋下地

○小屋・間渡しの幅（直径）

小屋の幅は施工者により異なり、割竹は10mm～30mm程度で使
用され、丸竹、竹・柱は寸法にほんとど差異はみられず直径が10mm前
後のものが多い。間渡しの幅も施工者により異なり、割竹は25mm～
40mm、丸竹や柱は10mm前後で使用されている。割竹や木（杉）は
幅を調整できるが、丸竹や柱は加工せずそのまま使われるので、
幅に関して差異がないと考えられる。実験変数として、割竹の小
屋の幅を10mm・20mm・30mmにして検討する。

○小屋・厚さの厚さ（直径）

小屋の厚さは5mm～9mmの間で、使用される竹の内厚に依存し
ている。間渡しの厚さあるいは直径は5mm～12mmの間で割竹の
場合は小屋とほぼ同じ厚みである。厚みに関して大して差異はな
いが、丸竹の場合の間渡しの直径は小屋より少し大きめである。実験
変数として、厚さを変えやすい木小屋で厚さを5mmと10mmにして
検討する。

○小屋と小屋の間隔

小屋と小屋の間隔は30mm～75mmと広範囲で施工されている。
これは小屋を組み込む過程での施工性で決まっていると考えられ、
アンケート結果からは小屋の種類や地域に関係なく、施工者によっ
て差異が生じていると考えられる。実験変数として、小屋と小屋の
間隔を40mm・50mm・60mmにして検討する。

○一定量の小屋に対する小屋の幅

小屋の断面積比（一定面積の壁断面積に対する小屋の断面積の比）
が同じ場合の小屋の間隔が関係して、力学性能に与える影響を調
べる必要がある。そこで、実験変数として、小屋の間隔を変える
ずに小屋の幅を変えることによって、小屋を細く密にする場合に
と大きく密になる場合について検討する。

○貫と貫の間隔

貫の段数は3本・5本が多く、それらが標準的な仕様となっている。
2本・4本など特殊的な例もみられるが、一般的ではない。そこで、貫
のこじり試験体と隅角部圧縮試験体の試験体寸法を実験変数として、
貫の本数が3本・5本について検討する。

○地質と横架材の間隔

地質と横架材の間隔は260mm～500mmまで、ほとんどの地域で
300mm前後で使用されている。隅角部圧縮試験体の試験体寸法を実
験変数として、間隔の狭い場合（215mm）と広い場合（430mm）に
して検討する。

○壁土の塗り厚

壁土は36mm～70mmで60mm前後で塗られていることが多い。
また、中塗りは片面の塗り厚で6mm～15mmとなっており、10mm
前後で塗られていることが多い。壁土と中塗りの厚さをあわせ全
体の厚みは60mm～90mm程度となっている。実験変数として、壁
土40mm・中塗り15mmずつの壁厚70mmと壁土60mm・中塗り
15mmずつの壁厚90mmにして検討する。

○壁土の硬度

壁土は各工場の地域の付近で産出された土を使用していた。ま
た、壁土の特性が産地により異なることから、壁土・中塗りの調合

--- 1276 ---
は施工者によって異なっている。ここでは、構造物側面から壁面の調査は研究対象とせず、壁面に関しては圧縮強度のみで整理することとする。実験変数として、地域の異なる荒木村・土見・播磨の3種類の土を使用して検討する。特に播磨の土は、荒壁の上に中塗りを5mmずつ塗り後に中塗り塗装を10mmずつ塗った。中塗り塗装と、塗装の層に使用した塗料の調合に近い調合である白塗りを混ぜた強度の高い土である。播磨の土により強度の高い中塗りの影響を調べる。

3. 実験概要
3.1 検証用試験体
アンケート結果を考慮した実験変数に対して、文献6)で提案した部分壁面試験体(図1)を用いて基準仕様の試験体から実験変数の仕様のみを変えた試験体を比較し、各種下地の影響を実験的に調べる。部分壁面試験体は、隅角部での圧縮力による抵抗を評価するための『隅角部圧縮部分壁面試験体』、中央部の土壌内の回転に対する抵抗力を評価するための『貫のこじり部分壁面試験体』、中央部の土壌内の回転に対する抵抗力を評価するための『貫のこじり部分壁面試験体』、土壌のせん断による抵抗力を評価するための『つぶれ断部分壁面試験体』の2種類である。示す仕様を基に定めた【基準】の試験体の仕様を表2に、【基準】の試験体の下地を組んだ軸組を表1に示す。そして、【基準】に対して各実験変数のうち1つのみを変化させて下地を組んだ試験体群を表3のように計画した。過去に2体ずつ行った京都仕様と秋田仕様の部分壁面試験結果(図2と表4)から、土壌の個体差が構造性能に及ぼす影響（ばらつき）をみてみると、隅角部圧縮部分壁面試験体から求めた最大せん断応力と材料のばらつきは見られなかった。貫のこじり部分壁面試験体では、荒壁の乾燥収縮の度合いにより剛性が異なったが、最大耐力を降のモーメント-変形関係の挙動にばらつきは見られなかった。よって、図2で示した実験結果においては、土壌の個体差が構造性能に及ぼす影響が顕著であるといえる。
はあまりないと考えられる。これらのことから、壁土の圧縮変位に及ぼす影響はあまりないと考えられ、限られた予算内でこれらの実験数変数に対して、より多くの観点を得るために、壁土の種類が異なるいくつかの変数の組み合わせを仮定して、壁土を3種類ごとに、各実験変数に対して1体ずつ実験的調査を行う。そして、各種下地の影響に関する比較は、同一の下地による3種類の壁土の傾斜角を総合的に判断する。壁土は、荒木田・伏見・播磨の3種類の土を使用して試験土を製作した。壁土の配合を表4に示す。軸組に対し荒壁土を片面に塗り、4日後にうめ片を塗った後、およそ3週間乾燥させた後に中塗り土を塗った。そして、中塗り土を塗った後、1ヶ月ほど壁土を十分に乾燥させ、実験を行った。検討対象とした部分壁試験体は各1体ずつの計129体である。比較検証は土壁の抵抗要素による比較と耐力壁による比較で行う。抵抗要素による比較は、部分壁試験体ごとに軸組の耐力も考慮して行う。耐力壁による比較は、文献6)で報告された方法で、部分壁試験体の試験結果から水平せん断力を変形角関係を推定して行う。3.2 試験体、試験方法及び比較方法 ○隅角部圧縮部分壁試験体：貫心間柱部分壁試験体実験は100kN万能試験機を用いて、加力点に曲率を置いて一方向単調加力で行った。計測は図1中の変位計測位置で行い、式(1)、式(2)で求めたモーメント−変形角関係で各試験体の性能を評価して、実験数毎の比較を行う。

\[M=P(268+105/2) (N \cdot mm) \]
\[R=b(402.5+105) (rad) \]

(1) (2) P: 部分壁試験体の所定変形時荷重 (N) R: 部分壁試験体の所定荷重時変位 (mm) ○純せん断部分壁試験体実験は繰り返し履歴がみかけの変形角1/600、1/450、1/300、1/200、1/150、1/100、1/75、1/50radによるときに各変位振幅で油圧ジャッキにより正負1回繰り返し加力により行った。土台はボルト2本で試験装置に固定した。ボルトでピン接合とした軸組と小壁下地を1本つづけに差し込み石膏で固定した。実験では、浮き上がり変形を防止するためボルト間を金物で固めた。計測は図1中の加力位置（みかけの水平変位）と壁体表面の変位計測位置で行い、せん断強度で各試験体の性能を評価して、実験数毎の比較を行う。せん断強度は、実験で得られた最大せん断力Qmax(N)を土壁の断面積で除して算出した。

\[\tau=Q_{max} / (415 \cdot t) (N/mm^{2}) \]
\[t: 壁土の壁厚 (mm) \]

○IP耐力壁IP耐力壁とは壁厚が910mmの耐力壁のことで、IP耐力壁の実験変数毎の比較は、文献6)で検証した(図3に検証結果を示す)ように、隅角部圧縮部分壁試験体と貫のこじり部分壁試験体の試験結果から水平せん断力−変形角関係を推定して行う。

4. 壁土ブロック圧縮試験荒木田・伏見・播磨の3種類の土の圧縮強度を調べるために、荒壁と中塗りの壁土ブロック (200×200×60mm)を各4体づつ製作し、圧縮試験を行った。圧縮試験は図4に示すように上下を軸材でさみ、石膏でキャップングして加力した。壁土ブロックの圧縮試験結果を図5に示す。荒壁では、伏見と播磨の剛性はほぼ同じであったが、最大耐力に関しては伏見の方が低く、荒木田は伏見と播磨に比べ剛性と最大耐力ともに低い結果となった。中塗りでは、3種類とも荒壁と比べて剛性と最大耐力が高く、播磨は荒木田・伏見よりも剛性が約2倍程度あり、最大耐力時の縮み量も2/3程度小さい結果となった。

5. 隅角部圧縮部分壁試験体5.1 試験体の破壊状況試験体の破壊状況を写真3に示す。破壊モードは2種類あり、横軸の圧縮によって隅角部の土壁が圧壊し、横軸材付近から貫下に至るまで小壁や間隔しが座屈して、壁土が面外に押し出されて壁体全体で剥離する破壊(破壊a)と、貫付近を中心として小壁と間隔しが座屈し、貫が座屈して、壁土が面外に押し出されて貫付近の壁土が剥離する破壊(破壊b)が確認された。また、破壊状況から最大耐力後の耐力低下は、小壁や間隔しの座屈で始まるため、小壁や間隔しの座屈耐力
5.2 試験結果の比較

下地を同一として3種類の壁土の違いのみで比較した【基準】の試験結果を図6に示す。変形角が0.01rad付近までを比較すると、【相見】と【荒木田】は同じようなモーメント-変形関係を示し、【播磨】は耐力が高かった。これは、主に隅角部の壁土の圧縮抵抗が支配的であり、中塗りの剛性が【相見】と【荒木田】に比べて【播磨】は約2倍高かったことに起因すると考えられる。

0.01rad以降、【相見】と【荒木田】は剛性が低下し、【播磨】は耐力が低下した。0.01rad付近の変形角で比較してみると、【相見】と【播磨】は同じようなモーメント-変形関係を示し、【荒木田】のみ若干耐力が低かった。文献31の『比較実験』で得られた各耐力要素の負荷割合の推移（図7）によると、0.01rad付近までは隅角部の圧縮抵抗が支配的であるが、0.01rad以降では壁のこじり抵抗が支配的であることがわかる。これは、土壁の隅角部において変形が進むと、大変形時には図8の様に小舞竹が面外へ座屈して、壁土が厚み方向へ膨らみ、横壁材に直接土壁から作用する圧縮抵抗力は低下し、貫のこじり抵抗が支配的となり、その時の抵抗要素は主として荒壁である。したがって、荒壁の耐力が【相見】と【播磨】に比べて【荒木田】は若干低かったため隅角部圧縮壁土試験体においても【荒木田】の大変形時耐力が低かったと考えられる。図9に示す【荒木田】のH1、【播磨】のA2・B2・D2のみ印で囲まれた部分が他の壁土の場合と異なる挙動を示したが、それぞれの実験変数において、他の2種類の壁土では同じような傾向となっている。したがって、これらの試験体の下地の壁土が他の試験体と比べて優れたため、耐力が高くなり挙動が異なったと思われる。しかしながら、これら以外のすべての試験体では、下地の仕様毎に3種類の壁土で比較してみると、図6に示す【基準】の試験結果と同じような傾向となった。

このことより、0.01rad付近までは主に壁土（特に中塗り）の圧縮抵抗が支配的であるが、0.01rad以降では壁のこじり抵抗が支配的であることがわかる。これは、土壁の隅角部において変形が進むと、大変形時には図8の様に小舞竹が面外へ座屈して、壁土が厚み方向へ膨らみ、横壁材に直接土壁から作用する圧縮抵抗力は低下し、貫のこじり抵抗が支配的となり、その時の抵抗要素は主として荒壁である。したがって、荒壁の耐力が【相見】と【播磨】に比べて【荒木田】は若干低かったため隅角部圧縮壁土試験体においても【荒木田】

図7 各耐力要素の負荷割合の推移

図8 隅角部の破壊状況

図9 隅角部圧縮壁土試験結果（挙動が異なった試験体）
図12 壁角部圧縮部分壁体試験結果の0.01rad 以降の耐力の最大値の比較

抗により耐力が増大したが、0.01rad付近で壁体が圧壊したため、壁士の圧縮抵抗が減少することによって耐力が低下しており、0.01rad 以降では主として開渡し小舞による下地の圧縮抵抗を重視していると考えられる。【基準】の1/120rad(播種の最大耐力時の変形角)の耐力と壁士の圧縮強度の関係を図10に示す。相関係数 (図10のR)から、隅角部の圧縮抵抗は壁士より中塗りの方が耐力発現に寄与しているといえる。

壁士を同一として下地の違いのみで比較した【見見】の試験結果を図11に、隅角部が開渡しや小舞による下地の圧縮抵抗のみで抵抗していると考えられる0.01rad 以降の最大耐力の比較を図12に示す。

小舞の種類[A]では、0.01rad付近までは主に下地(特に中塗り)の圧縮抵抗により耐力が増大したため耐力の差は見られなかったが、0.01rad 以降では基準(1本)[A5]→基準(3本)[A4]→割竹【基準】→丸竹[A2]→木(厚さ10mm)[A1]の順で耐力が高い結果となった。また、下地の厚さ[C]では、木(厚さ5mm)[C1]→木(厚さ10mm)[A1]の順で耐力が高い結果となった。【A1】と【A11】及び【C1】と【C11】の比較による下地下地の耐力への影響を示しているが、開渡しや小舞の耐力が高いことがわかりました。開渡しの仕様が同じで下地の仕様のみが異なる実験結果（小舞の幅[B]、小舞の間隔[D]、小舞の幅と間隔[E]）では、【基準】の同等的なモーメント変形角関係を示す。【基準】に対する強度の差は見られなかったことから、0.01rad 以降の下地の圧縮抵抗は開渡しの強度負担の割合が高いと考えることができる。その理由は、開渡しの強度を説明するにあたり、軸組に対して入力で固定されており、小舞は軸組と10mm程度の間隔を設けて編んでおり（図1中のスク）開渡し小舞より圧縮力を負担するためである。貫間距離[F]では、【基準】と同じようなモーメント変形角関係を示し、【基準】に対する強度の差はほとんど見られなかった。貫間と軸組の間隔が広いといいがどおりの結果が隅角部の破壊に影響することによる交互の破壊による影響が少なく、大変形時まで耐力がやや高かった。塗り厚が異なる塗り【H】では、壁士の隅角部の圧縮抵抗は壁士で比較して大きくため、大変形時まで耐力が高かった。【荒木田】においても、変形角が0.01rad付近まではそれぞれ図6の【基準】と同じような挙動となり、変形角が0.01rad 以降になると3種類の壁士の違いによる強度の差は見られず、図11の【見見】と同じような挙動となった。

これらのことより、隅角部の圧縮抵抗は、0.01rad付近までを主として壁士の圧縮抵抗により、0.01rad以降は主として下地の圧縮抵抗により生じていると考えられる。また、0.01rad 以降の下地の圧縮抵抗では、開渡しの強度負担の割合が高いと推測される。

6. 貫のこじり部分壁体試験体
6.1 試験体の破壊状況

試験体の破壊状況を図4に示す。破壊モードは、貫が小舞に沿って荒壁を崩らすように回転しながら下がり、貫が通った部分の壁士が剥離する破壊であり、荒壁の圧縮強度が貫のこじり部分壁体の最大耐力に影響を及ぼすと推測される。

6.2 試験結果の比較

下地を同一として3種類の壁士の違いのみで比較した【基準】の試験結果を図13に示す。荒壁の乾燥収縮により貫と荒壁との間に隙間ができるため、初期変形時の荒壁の乾燥収縮の倍率が初期1.0倍より小さかった。最大耐力は、荒壁の圧縮強度と同様に高い耐力の差となり、荒木田→見見→播種の順で高い結果となった。また、0.02rad までの【播種】の耐力は【見見】と【荒木田】に比べて隅角部圧縮部分壁体試験ほど高くなかった。【基準】の最大耐力と壁士の圧縮強度の関係を図14に示す。相関係数 (図14のR)から、貫のこじり抵抗は中塗りよりも荒壁の方が耐力発現に寄与しているといえる。

壁士を同一として下地の違いのみで比較した【見見】の試験結果を図15に、試験結果の最大耐力の比較を図16に示す。荒壁の乾燥収縮による初期変形時の挙動は荒木田付近を以下でみると、最大耐力付近以降の挙動で比較してみると、小舞の種類[A]と小舞の幅と間隔[E]以外は、すべての試験体において【基準】とほぼ同じような挙動を示した。小舞の種類[A]ではA4の【基準】と比較して耐力が低かったが、「荒木田」と【播種】を見てみると (図17)。【荒木田】ではA2とA3が【基準】と比較して耐力が高く、【播種】ではすべて【基準】と比較して耐力が高い、【播種】ではすべて【基準】と同じような挙動を示している。よって、A2とA3では、【見見】と【播種】で【基準】と比較した挙動を示しており、
図15 軌のこじり部分壁体試験結果（下地）

図16 軌のこじり部分壁体試験結果の最大耐力の比較

A4では、「荒木田」と「播磨」で「基準」と同じような挙動を示しているので、1体だけはばらついたとして下地の違いによる影響は少ないと判断できる。また、小築の幅と間隔 [E] では「基準」と異なる挙動を示したが、「荒木田」と「播磨」を見比べると（図18）、「基準」と同じような挙動を示しているので、1体だけはばらついたとして下地の違いによる影響は少ないと判断できる。「荒木田」と「播磨」に関しても、荒壁の乾燥収縮による初期すぺりにより初期変形時の挙

7. 純せん断部分壁体試験

7.1 試験体の破壊状況

試験体の破壊状況を写真5に示す。初期変位では、隅角部の圧縮が見られ、その後、2種類の破壊モードが確認された。ひとつは、壁体中央部付近の表面に放射状のせん断ひび割れが入り、試験体の変形増大に伴い土壁の中心から中塗り地が剥離していく破壊（破壊a）であり、荒木田と狭覇で多く見られた。他方は、土壁の中塗り地
中央部分にせん断ひび割れは全く入らず、周辺部から中塗り土が徐々に剥離していく破壊（破壊 d）であり、挿入で多く見られた。

7.2 試験結果の比較
各試験での最大耐力の比較を図19に示す。また、[基準]の最大せん断応力度と壁土の圧縮強度の関係を図20に示す。試験結果は壁土の圧縮強度と同じように荒木田を変形角 [枕] 撃圧した順で高い結果となった。また、関係係数（図20のR）からは、せん断抵抗は若干ではあるが荒壁よりも中塗りの方が耐力発現に寄与しているといえる。仕様の違いによるせん断強度の差は、挿入では仕様の違いによる強度の影響を確認できたが、荒木田と枕圧では、ほとんど確認できず、壁厚が厚い場合[11]のせん断強度が低くなった。壁厚が厚い場合[11]では、荒壁のみが[基準]より20%厚いだけなので、圧縮強度の低い荒壁の割合が増えて、全断面で応力換算することによりせん断強度が低い結果となった。また、挿入では中塗りの剛性が高く、中塗りのせん断力が高いため、中塗りの隅角部の圧縮後に、荒壁のせん断変形に中塗りが追従できず、荒壁と中塗りの境界面で付着応力度の大きい周辺部から剥離が生じたと考えられる。このような剥離が生じる原因としては、小舞は特別に工夫されており、小舞を介して荒壁を伝わり、荒壁を中塗りに付着力を介して伝えているためと考えられる。そのため、小舞の間隔が同じ場合、小舞の断面が大きい（挿入の[A2]→[A1]→[基準]）ほどせん断強度が高くなった。また、小舞の目入し面積（小舞間で表と裏の荒壁がつながっている部分の面積）が大きい方が荒壁の表と裏との一体性があるため、同じ小舞の断面であれば、間隔が広い（挿入の[D1]→[基準]→[D2]）ほどせん断強度は高くなった。小舞の断面比が同じ（挿入の[基準]と[E1]）場合、目入し面積が小さい方がせん断強度は低くなった。

これらのことよろ、純せん断部分壁体試験体から得られた土壁のせん断強度は、土壁の強度が少ない場合には下地の影響が少なく、土壁の強度が高い場合には下地の影響が現れがたいといえる。

8. 部分壁体試験結果から推算したP 耐力壁の比較
隅角部圧縮壁体壁体試験体と貫のこじり部分壁体試験体の試験結果から部分壁体試験体の想定壁長である1P ネット壁の水平せん断力～変形角関係を3.2節の方法で推算し、下地を同一として3種類の壁土で比較した[基準]の1P 耐力壁の比較を図21に示す。文献13の『土質改良』で得られた各耐力要素の負荷割合の推移（図7）によると、0.01rad付近までは隅角部の圧縮抵抗が支配的であるが、0.01rad以降
が2本分多くなるので、貫の耐力分だけ[基準]より耐力が高くなっ
った。[荒木田]と[播磨]に関しても、変形角が0.01rad付近までは
隅角部の圧縮抵抗が支配的であるので図20の[基準]と同様な
挙動となり、変形角が0.01rad以降になると3種類の壁の違いに
よる強度の差は見られず、図22の[見解]と同じような挙動となっ
た。

9. まとめ

本論文では、全国各地で行われている様々な施工方法や使用材料
の調査結果を基に実験を定めて、力学モデルに基づいて土壁の
抵抗機構を評価するために開発された部分壁体試験体を用いて実
験的調査を行った。仕様の相違が土壁の構造性能に及ぼす影響を、
壁体の種類が異なっても各種下地の影響は同じに現れると仮定
して、壁体を3種類かえて各実験変数に対して1体ずつ実験を実施
した。各種下地の影響に関する比較は、同一の下地による3種類の
壁体の傾向から総合的に判断した。その結果、抵抗機構に得られ
た知見を以下に要約する。

①隅角部の圧縮抵抗に関しても、0.01rad付近までは主として壁面の
圧縮により抵抗しており、荒壁よりも中塗りの方が耐力発現に寄与
している。0.01rad以下では主として下地の圧縮により抵抗しており、
間違いの仕様が同じ小数の幅や小数の間隔の違いによる実験変数
では、同じようなモーメント変形角関係を示し、強度の差は見られ
なかったことから、下地の圧縮抵抗は間違いの強度負担の割合
が高いことがわかった。また、間違いの圧縮強度は、仕様の違いで
比較すると、[薬(1本)]→[薬(2本)]→[薬(3本)]→[薬(竹)]→[丸竹]→[木
(厚さ10mm)]の順で耐力が高く、厚みで比較すると、厚さの方が耐
力が高かった。

②貫のこけりによる圧縮抵抗に関しては、中塗りよりも荒壁の圧縮
強度が大きく影響しているため、初期変形時では荒壁の乾燥収縮の
度合いにより初期へれば方が異なった。また、使用材料や下地の組み
方など相違による影響は少ないことがわかった。

③土壁のせん断強度に関しては、壁面の強度が低いときは下地の影
響が少なく、壁面の強度が高い場合には使用材料や下地の組み方な
ど相違による影響が見られた。壁面の強度が高い場合の使用材料や
下地の組み方など相違による影響は、外の間隔が同じ場合、小数
の間隔が大きいほどせん断強度は高く、小数の目透かし面積（小数
間で表と裏の荒壁がつながっている部分の面積）が大きい方が荒壁の
表と裏の一体性はあるため、同じ小数の間隔であれば、間隔が広
いほどせん断強度は高く、小数の断面積比が同じ場合、目透かし面
積が小さい方がせん断強度は高かった。また、貫の相違で比較し
てみた結果、せん断抵抗は若干ではあるが荒壁よりも中塗りの方が
耐力発現に寄与していることがわかった。

④IP耐力壁(幅910mm)に関しては、0.01rad付近までは、隅角部の
圧縮抵抗が支配的であるので、隅角部圧縮部分壁体試験体の試験結
果と同じような挙動となる。0.01rad以降では、貫のこけりによる圧
縮抵抗は使用材料や下地の組み方など相違による影響は少ないため、
隅角部圧縮部分壁体試験体の試験結果と同じような挙動が見られた。
よって、使用材料や下地の組み方など相違による影響は、隅角部の
圧縮抵抗と同じように間隔の圧縮強度によるもの大きいことが
わかった。しかし、1P耐力壁の比較では、せん断破壊しないものと
して比較しているため、せん断破壊する場合の壁面が長い耐力壁で
は、土壁の最大耐力が土壁のせん断強度と同じような下地の影響が
見られると考えられた。

今後は、部分壁体試験で得られた播磨のように、中塗りの強度が
高い場合の挙動が他と異なっており、その様相が実大の土壁でも現
れるか検証する必要がある。

参考文献
1) 三芳紀美子，大橋好光：土壁の強度に関する研究 その2 実大面内せん断
試験，日本建築学会大会講演概要集，構造III，C-1，pp.409-410，2003.9
2) 村上雅英，景山誠，鈴木有，福山正弘：静的水平加力実験に基づく土壁の
耐荷機構の解明ーせん断破壊しない土壁の力学挙動ー，日本建築学会構造
論文集，第582号，pp.103-108，2004.8
3) 村上雅英，景山誠，岡本進，鈴木有，福山正弘：要素試験による土壁の
水平耐荷機構の検証ーせん断破壊が先行しない土壁の力学挙動(統)，日
本建築学会構造系論文集，第594号，pp.111-118，2005.5
4) 村上雅英，景山誠，岡本進，鈴木有，福山正弘：水平力耐荷機構に基づ
く土壁の耐震性と耐力の算定方法に関する提案と検証，日本建築学会構造系
論文集，第605号，pp.119-126，2006.7
5) 関田利，岡本進，村上雅英，川端篤行，鈴木有：耐荷機構に基づく
開口部土壁の耐力と耐力の推定，日本建築学会構造系論文集，第620号，
pp.93-100，2007.10
6) 岡本進，景山誠，村上雅英，鈴木有：部分壁体試験に基づく
土壁のせん断力ー変形角関係及び壁厚比の推定方法と検証，日本建築学会構
造系論文集，第621号，pp.103-110，2007.11
7) 山田邦司：壁体強度のばらつきの土壁耐力への影響，日本建築学会構造系
論文集，第620号，pp.87-92，2007.10
8) 中央法人，山崎市：土塗り壁の耐力および変形性能の推定に関する実験的
研究，その9 真壁形式の土塗り壁工法に関するアンケート調査，日本建築
学会大会講演概要集，C-1，pp.237-238，2007.8

（2008年10月27日受理、2009年4月13日採用決定）