家具類の地震時挙動と有効質量に関する実験

EXPERIMENTS FOR EFFECTIVE MASS AND SEISMIC BEHAVIOR OF FURNITURE

岡崎 友也*, 五十田 博**, 小塚 直人*, 若鳥 嘉朗***

Tomoya OKAZAKI, Hiroshi ISODA, Naoto KOZUKA and Yoshiaki WAKASHIMA

The evaluating method of seismic load has been studied as the matter how to be ruled safely and reasonably from long ago in Japan. Some calculation formulas to lay down the value of seismic load were suggested, but they were based on incomplete evidence such as by heuristics or expectancy. This seismic load value used the same one ruled over 65 years ago without logical way of evidence by inspection is applied to the current Building Standard Low. In this study, we implemented the shaking table test of furniture with horizontal load cell. By seismic behavior of furniture, the observed value by load cell will be supposed to be reduced cause of their “Effective Mass”, which has an effect on horizontal shear force. The purpose of this paper is: 1) Watching seismic behaviors of furniture in various installation conditions, 2) Working out the “Effective Mass” of furniture in the logical way, 3) Weighing between observed behavior and “Effective Mass”.

Keywords : Effective Mass, Live Load, Dead Load, Shaking Table Test, Seismic Behavior of Furniture

有効質量, 積載荷重, 固定荷重, 振動台実験, 試験体重量, 家具の地震時挙動

1. はじめに

地震時における積載荷重の評価は、昭和初期から建築構造に関す
る法令等で通常時の積載荷重に対する低減係数として規定がなされて
いる。石川・平田らの積載荷重の評価に関する研究によると、これ
らの規定値の設定根拠は外国法令の模倣に端を発し、その後
いくつかの提案式による検討を経て、複数の算出式による日本独自の論理的検証に基づき決定されたとされている。しかし、算出式
に用いる係数等の設定に関しては、根拠が不明なるもの、経験に
基づき提案されたもの、まったくの見込みによるものなど、規定の
根拠としてあいまいな点を内包したまま現在の建築基準法・施行方
等にまで適用されている経緯がある。現在の「建築基準法施行令
第85条(積載荷重)」では、原則の「(前項)当該建築物の実況に応
じて計算しなければならない。」(後項)という規定も、住宅の居室の
地震力設計算定重量は600N/m²として「計算できる」、とも記述して
いる。この値は1943年(昭和18年)に制定された「臨時日本標準規
格第532号」で記された値と等しく、生活習慣が変わり、さらに
家具等の使用状況にも変化が見られるようになったにもかかわらず、
65年以上にもわたり使用され続けており、積載荷重に関する研究は
発展途上という感もある。

ここで、地震時の家具類の挙動を考えた場合、滑り、転倒、ロッ
キングなどの現象によって、家具自体の加速度が減少する、あるいは増加する。その結果、家具類及びその建物への水平せん断力を
計算する際は、床に生じる加速度を基準として考えると、真かけ上
質が小さくなるか、大きくなっていることになる。固定荷重の大
きな鉄筋コンクリート造やデッキフロート上にコンクリート床版を
用いるような鉄骨造では、居室程度の積載荷重の重さでは、積載物
の挙動による荷重増減の多寡が及ぼす影響は小さいと考えられる。
しかし、平田重量2,000N程度以下の木造住宅ではこの積載荷重の
積載が多くによって、床上に必要とされる耐荷力が異なってくると考え
られる。実務設計上は、地震力用重量の大きさや壁からの位置、固
定の状況などにより積載物の挙動が異なり、実際に荷重が減じられ
ることを担保することが難しいため、「実況に応じて計算」したとし
ても実際の重量を減じて設計することは現実的には難しいが、これ
らの挙動を実務上、あるいは学術的な観点から明らかにすることの
重要性は論ずる。例えば、2007年新潟県中越沖地震において、
多数の築書を有する木造建物が被害を受けたが、調査で得た積載
荷重の状況よりこのような建物の積載荷重で生じた地震力を積載
量、建物の層面断耐力に比較する上で、床の加速度を基準にした
場合の家具の見かけ上の重量(以下、有効質量と示す)を明らかに
することは極めて重要である。

るので、本研究では積載荷重として家具を積載し、これらに与え
た振動による挙動によって有効質量がどの程度低下されるのかを把
握すべく振動台実験を実施した。方法は家具を設置した試験体下部に
作用するせん断力を計測するためのロードセルを設置し、このせん
断力と家具の重量に当該床床面の加速度データを乗じた値を比

* 信州大学工学部工学環境科学科開発工学専攻
** 信州大学工学部 鑑定・工博
* 建築研究所 客員研究員
*** 富山県農林水産総合試験センター 農博
2. 実験の概要
2.1 試験体概要
試験体は平面形状 2,730×2,730mm、高さ 2,850mm、天井高 2,400mm の箱型で、一般的な施工による木造軸組法で製作した。全構造型式を写真 1、平面図を図 1 に示す。各部に製作した要素の配置を図 2 に示す。試験体を振動台に設置し、治具とロードセルを介して振動台に設置した。

2.2 試験体重量
試験体の重量は、振動台実験終了後の解体時に、構造の全部を別に計測し、各部の重量配分を設定した。さらに試験体全体を吊り下げる方法で計測した全体の重量を、個別別の計測結果の総和を出力端子の精度で一致することを確認した。表 1 に個別の計測で求めた試験体重量を上部と下部に分けて示す。地震力算定重量を算定する際、試験体重量を鉛直方向の重量（本試験体では床面から 1,400mm）で上下部に分割する方法が一般的であるが、その後の 3.1 章で実施する精度確認の結果、床面から 700mm の高さで分割した場合に加速度を北東に変めた値とロードセルの値が一致したため、表 1 の値は 700mm で上下を分けて示している。また表 1 には計測に使用する鉄骨架台と治具等の重量についても併せて示す。

2.3 計測位置とその方法
データの計測は、試験体の下部に取り付けたロードセルと加速度計を用いた。ロードセルは図 1 の "①通 " "②通 " にそれぞれ等間隔で 3 台ずつ設置した。加速度計は振動台内蔵の振動台加速度と、図 1 の平面図 "① " "② " "③ " "④ " "⑤ " "⑥ " "⑦ " "⑧ " "⑨ " "⑩ " "⑪ " "⑫ " "⑬ " "⑭ " "⑮ " "⑯ " "⑰ " "⑱ " "⑲ " "⑳ " "㉑ " "㉒ " "㉓ " "㉔ " "㉕ " "㉖ " "㉗ " "㉘ " "㉙ " "㉚ " "㉛ " "㉜ " "㉝ " "㉞ " "㉘ " "㉙ " "㉚ " "㉛ " "adoo
上記のようにそれぞれに設置した。なお小屋側の加速度分布を把握する目的で、図 3 に示すように試験の途中から“控通し”小屋側に 2 台の加速度計を追加した。

2.4 入力加振波
入力加振波は、正弦波については周波数と加速度をパラメータとして 880 suppression に応じた最大閾値 5 強 ≦ 7 レベルを目標に 6 種類用意した。これらの正弦波の前後数秒間には減衰をさせ

部分を設け、スムーズに目標波形に達するように作成した。加振時間は、家具の転倒に関する既往の研究で実施された入力波に倣い、25 秒を目標として設定したが、振動台性能の関係上油圧機器への負担が大きいと予想される入力波については加振時間を短くして対応した。一方、地震波の入力として兵庫県南部地震の際に神戸海沿気象台で記録された波形の NS 成分(再構、JMA 神戸 NS 波)と、その波形のプラスマナイスに逆変換した波(以下、JMA 神戸 NS 波)の 2 種類とした。表 2 に入力加振波の一覧表を示す。加振波は基本的に同一の家具類の設置条件に対して、入力加振波の震度階級レベルが低いものから加振 No.の順に 8 波入力した。

<table>
<thead>
<tr>
<th>加振 No.</th>
<th>周波数 [Hz]</th>
<th>最大加速度 [g]</th>
<th>計測震度</th>
<th>加速度時間 [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0.5</td>
<td>150</td>
<td>5-</td>
<td>5.4 (5+)</td>
</tr>
<tr>
<td>02</td>
<td>1.5</td>
<td>300</td>
<td>6-</td>
<td>5.7 (6-)</td>
</tr>
<tr>
<td>03</td>
<td>3.0</td>
<td>500</td>
<td>6-</td>
<td>5.8 (6-)</td>
</tr>
<tr>
<td>04</td>
<td>4.5</td>
<td>600</td>
<td>6-</td>
<td>6.3 (6+)</td>
</tr>
<tr>
<td>05</td>
<td>2.0</td>
<td>700</td>
<td>6-</td>
<td>6.3 (6+)</td>
</tr>
<tr>
<td>06</td>
<td>JMA 神戸NS 波 (R)</td>
<td>1028</td>
<td>6-</td>
<td>6.2 (6+)</td>
</tr>
<tr>
<td>07</td>
<td>JMA 神戸NS 波</td>
<td>887</td>
<td>6-</td>
<td>5.9 (6-)</td>
</tr>
<tr>
<td>08</td>
<td>1.5</td>
<td>900</td>
<td>7-</td>
<td>6.6 (7)</td>
</tr>
</tbody>
</table>

図 4 目標加速度と実際の入力加速度の比較
(加振 08 での一例)

目標波形と実際の入力波形(振動台で得られた応答加速度)を比較した例が図 4 である。加振により多少ばらつきは見られたものの、正弦加振入力では実際の入力波で目標波よりもピーク値で 1.5～1.6 倍程度の過大な加速度関数となっていることを確認した。これは制御に使用する波形を作成する際に、目標波形を精度よく再現する波形が作れていたかったことが原因であると考えられる。一方で、入力加振波について気象台の計測震度を求めた結果、加振 07 でやや下回ったのは、ほぼ目標とした震度階級であった。また、周波数については入力波のフーリエスペクトルを求めたところ、正弦加振では卓越周波数が目標周波数と一致し、地震波については 10Hz 程度までのスペクトルはほぼ一致することを確認した。

2.5 用いた家具類とその設置条件
有効質量相当の対象とした家具類と設置条件、それぞれの重量について表 3 に示す。引出しや本棚では挙動の違いを観察するため同一の家具を用い、固定方法を変更した条件で加振した 1028(R) と。加振ごとに家具の移動や収容物の散乱した場合はできる限り初期の設
置状態に復元して次の加振波を入力した。図 5 に家具設置と設置状況を示す。以下に各家具類の設置条件等について説明する。なお、床仕上げは特に断がいない限りフローリングである。本棚 A、本棚 B、食器棚

表 2 入力加振波の一覧表

<table>
<thead>
<tr>
<th>加振 No.</th>
<th>周波数 [Hz]</th>
<th>最大加速度 [g]</th>
<th>計測震度</th>
<th>加速度時間 [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0.5</td>
<td>150</td>
<td>5-</td>
<td>5.4 (5+)</td>
</tr>
<tr>
<td>02</td>
<td>1.5</td>
<td>300</td>
<td>6-</td>
<td>5.7 (6-)</td>
</tr>
<tr>
<td>03</td>
<td>3.0</td>
<td>500</td>
<td>6-</td>
<td>5.8 (6-)</td>
</tr>
<tr>
<td>04</td>
<td>4.5</td>
<td>600</td>
<td>6-</td>
<td>6.3 (6+)</td>
</tr>
<tr>
<td>05</td>
<td>2.0</td>
<td>700</td>
<td>6-</td>
<td>6.3 (6+)</td>
</tr>
<tr>
<td>06</td>
<td>JMA 神戸NS 波 (R)</td>
<td>1028</td>
<td>6-</td>
<td>6.2 (6+)</td>
</tr>
<tr>
<td>07</td>
<td>JMA 神戸NS 波</td>
<td>887</td>
<td>6-</td>
<td>5.9 (6-)</td>
</tr>
<tr>
<td>08</td>
<td>1.5</td>
<td>900</td>
<td>7-</td>
<td>6.6 (7)</td>
</tr>
</tbody>
</table>
表3 家具類の寸法と重量 [単位: N]

<table>
<thead>
<tr>
<th>家具の種類と寸法 (mm)</th>
<th>本体</th>
<th>収容物</th>
<th>その他</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>ピア SCR A, B</td>
<td>2,059</td>
<td>-</td>
<td>A: 50</td>
<td>2,109</td>
</tr>
<tr>
<td>木製 SCR A</td>
<td>634</td>
<td>1,410</td>
<td>-</td>
<td>2,045</td>
</tr>
<tr>
<td>木製 SCR B, C</td>
<td>675</td>
<td>1,807</td>
<td>B: 8</td>
<td>2,482</td>
</tr>
<tr>
<td>木製 SCR 引出し (6段)</td>
<td>1,202</td>
<td>589</td>
<td>-</td>
<td>1,793</td>
</tr>
<tr>
<td>引出し (4段)</td>
<td>321</td>
<td>589</td>
<td>-</td>
<td>911</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>家具の種類と寸法 (mm)</th>
<th>本体</th>
<th>収容物</th>
<th>その他</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>食器棚</td>
<td>321</td>
<td>589</td>
<td>-</td>
<td>911</td>
</tr>
</tbody>
</table>

注) "その他"の項目で示す値は、キャビネットや家具が試験体から落下するのを防止するために取り付けた木枠等の重量である。

3. 有効質量算定手順
3.1 空加振を用いた計測結果の精度確認
図6の模式図で示すように、試験体の下部に取り付けたロードセルで計測された加振方向の水平せん断力実測値の総和（荷重, ∑L.C, と示す）と、試験体各部で計測した加速度計の値に試験体各部の質量を乗じた値の総和（荷重, ∑(m_i a_i) と示す）を、各時刻ステップに相当する場合、理論的には式(1)のように一致するはずであるが、これを確認するために家具類を設置しない空加振を実施し、計測結果の整合性を検証した。

\[\Sigma L.C. = \Sigma (m_i \cdot a_i) \] (1)

本実験では、有効質量算定の対象とする家具を載せた場合の加振（以後、家具加振と示す）の合間に、実験期間を通して合計 4 回の空加振を実施した。空加振 I, II は期間の前に実施し、“ちり返し” 小屋組の追加の加速度計は設置されていない。一方、空加振 III, IV の際には加速度計が追加されている。ここでは加速度計計測後の空加振 III, IV を対象に検証方法を説明する。なお、試験体各部で計測した加速度計を用い、各部の質量は、図6のように m_1 ~ m_5 に分割され、さらに上部の m_1 は、図7で示すように負担面積 m_1 = 1/4 m_1 と分割されるものと仮定し、式(1)が成立するか否かを検証した。空加振の分析では x-y グラフ平面上での分布図としてデータを扱うため、式(1)の両辺の各部を式(2)のように置く。

\[(x_j, y_j) = \Sigma L.C., \Sigma (m_i \cdot a_i) \] (2)

(3)式で最小二乗法により原点を通る直線に回帰させ、その傾き k を求めることで 2 つのデータの対応関係を得た。

\[k = \frac{\Sigma (x_j \cdot y_j)}{\Sigma (x_j)^2} \] (3)

なお、式(2)、(3)の x_j, y_j は、時刻ステップ j におけるデータを意味し、各データを X-Y 平面上にプロットしたもののが図8である。

図8では空加振 III, 加振 0 の例に、回帰直線を用いた空加振の精度検証方法を示す。ここで試験体の重量を踏階の平均で 1,400mm で上下方向に分割した結果、∑L.C. と ∑(m_i a_i) の値を比較すると 1%程度の誤差が見られた。家具加振により有効質量を算定する際、式(1)の成立が前提条件であり、この誤差を補正するため試験体重量の上下を分割する軸を変動させた。結果として踏階の平均の高さから 700mm 下げた位置でほぼ一致、つまり式(3)の k の値が 1.00 となった。図4に空加振 III, IV の全検証結果を示す。全ての加振において(1)式が成立していることが分かる。
表4 加速度計追加後の空加振(III, IV)による精度検証結果

<table>
<thead>
<tr>
<th>式5: k</th>
<th>入力波 (加振No.)</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>空加振</td>
<td>III</td>
<td>I.00</td>
</tr>
<tr>
<td>加振</td>
<td>IV</td>
<td>1.00</td>
</tr>
<tr>
<td>平均</td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>

表5 はり中央加速度計の増幅倍率

<table>
<thead>
<tr>
<th>加速度</th>
<th>入力波 (加振No.)</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>空加振</td>
<td>III</td>
<td>1.11</td>
</tr>
<tr>
<td>加振</td>
<td>IV</td>
<td>1.12</td>
</tr>
<tr>
<td>平均</td>
<td></td>
<td>1.11</td>
</tr>
</tbody>
</table>

表6 加速度計追加前の空加振(II, I)による精度検証

<table>
<thead>
<tr>
<th>式5: k</th>
<th>入力波 (加振No.)</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>空加振</td>
<td>I</td>
<td>1.00</td>
</tr>
<tr>
<td>加振</td>
<td>II</td>
<td>1.00</td>
</tr>
<tr>
<td>平均</td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>

3.2 小屋組加速度計相互の比較

空加振 III, IV では“のり通り”小屋はり中央の加速度計を設置していない。そこで空加振 III, IV で得られた実験データを対象に、図 3 で示した上部 3 台の加速度計のみに着目し相互のデータを比較して設置位置による違いを分析した。この結果、両端のけた上に設置した加速度計 a1, a3 ではほぼ同じ加速度が記録されていたが、はり中央に設置した a2 ではけたの上下 2 台と比較し 12%程度増幅する傾向が見られた。その結果を表 5 に示す。表 5 は加速度計 a1, a3 の平均値を 1 としてときの、はり中央での加速度値の倍率を示したものです。加振による大きな違いは見られず、いずれの加振波に対しても 1.12 程度であった。そこで加速度計を追加する前の加振についてのは加速度計 a2 の加速度計に対して、補正係数として 1.12 を乗じ、負担面積に乗じて求めた。この加速度の補正係数を用いて空加振 I, II について 3.1 節と同様の精度検証を実施したところ、k がほぼ 1.00 となることを確認した。結果を表 6 に示す。なお空加振 I の加振 06 が空振になっているのでは、この段階でも加振波を準備していなかったためである、空加振 10 台の全加振から実施した。

3.3 家具の有効質量算定方法

家具加振については、床に置いた家具が試験体に対して静止し、床の動きと同じ運動をする場合を考えると、家具の質量を M として、式(4)にこの項を加え、左辺を家具質量、右辺をその他の項とすることにより移項すると式(4)のよう等式として表せる。

\[M \cdot a_t = \Sigma L.C. - \Sigma a.t \] \[(4) \]

家具がもとより、ロッキング、転倒などの挙動を示す場合には、固定された場合と比べ M は小さくなり、実験結果として式(4)右辺の \(\Sigma L.C. \) 値が小さくなると考えられる。そのままのデータでは衝撃時における \(\Sigma L.C. \) が小さい値を示す。
図10 時刻波形と実験観察結果の対応（本報C・加振02）

時に観測されたノイズやロードセルの特性と思われる定常的に見られるノイズにより、両データの時刻波形を適切に比較するのが難しいため、これらのノイズを除去するために両データに対してフィルタ処理を施した。フィルタ周波数の設定関数として、低周波数成分については、加振周波数の1/8を目的とした。なお、加振周波数の1/2の周波数に変更を行うことを目的とした研究10.11があるが、本実験では観察されなかった。また、高周波数成分の除去では、明確な設定関数は無く今後の要検討課題であるが、本論のように建物へ入力される水平加速度の観点を置く場合、高周波数成分はパルスとして作用するため建物へのダメージは小さいと考えられる。このため、加振周波数の2倍（地震波の場合は5〜10Hzとした）を目安としてフィルタ処理を施した。表7に設定したフィルタ周波数を示す。また、図9に(a)固定荷重2,151・加振02、(b)ピアノA・加振02、(c)ピアノA・加振03を例にし、フィルタ処理前の後の左右と右側の時刻波形を示す。図(a)では鋼板おき床に完全に固定された条件で、図(b)の両側のデータは完全に一致するはずであるが、特に右側のデータには若干のノイズが見られる。フィルタ処理後の時刻波形は完全に一致した。図(b)では両側のデータでも明らかに位相差が確認でき、処理後もこの傾向を示すことが確認できた。図(c)ではノイズと位相差を著しく、処理前の右側のデータでは傾向を捉えるのは難しいが、フィルタ処理により判断が可能な時刻波形が得られた。

このようなフィルタ処理によりデータの傾向を理解することができ、2つの時刻波形により明確なビーグ値と位相差を得た。フィルタ処理後の時刻波形について、正弦波振動の場合は式(4)の両側のデータを用いて実験的常数に関する変動量の質量比αとして算定する。

\[a = \frac{(\sum L.C - \sum (m_t \cdot a_r))}{(M - a_t)} \]

（5-1）

図10は本報C・加振02を例としてフィルタ処理後の時刻波形に各試験の加振を示すものである。各計測量の算出にあたり、時刻波形上での値を用いた変数については、評価の対象としに対するデータの観察をもとに変化するが、その一つとして常態状態のピーク値を比較する方法が考えられる。ここで常態状態とは、入力波の後数秒間に設けた加速度の動的挙動を示し、目標加速度に達して安定した振動状態にある場合を指し、図10の場合では5秒以内である。この加振では、2周期毎に式(4)右側の値が増加し、式(5-1)での有効質量比αの値が1.00よりも大きくなった。振動の観察結果と比較した場合も、2周期毎に床振動と同位相で大きくロッシングしていることを確認した。ここで、床の加速度を基準にした場合、加振による応力の発生の増加に伴い、結果的にとして見かけ上の有効質量が増加するものと考えられる。同様加振でのロッシング挙動が観察された加振では、有効質量比が1.00を超える場合が多く数回に観察されたと観察される。また、波形の正負非対称性より、正負それぞれで常態状態における滑りやロッシング等の一般的な挙動時のピーク値を式(5-2)により算出した。図10のように各実験加速度の増加が見られた場合については、最大値の比較を併せて実施した。

\[a_{max} = \frac{\sum (L.C - (m_t \cdot a_r))}{\sum (M - a_t)} \]

(5-2)

なお、図10では床の転倒の前後で値が変化しているのが確認できる。本報では基本的に床の転倒や重荷物の散乱により挙動が変化する以前のデータを用いて有効質量を算定した。

一方、地震波加振である加振06.07については、正負それぞれで最大の層せん断力作用する時間付近における波形のピーク値の比（以下、最大層せん断力時ピーク比）を算定し有効質量を算定した。さらに、地震波入力の場合、建物に作用する層せん断力の最大になり何時と同時刻の各層の有効質量がどの程度であるかを把握することが重要となる。先述のピーク値を比較した場合、波形の位相差を確認したため、同時刻で比較すると結果的に有効質量は低減される。これにより、地震波波形と位相差を考慮した場合の有効質量が最大となる。ここで、波形の正負を基準の対象は、図1において試験体が北から南への加速度を受けた場合を正としている。

4. 実験結果

4.1 家具の挙動観察結果

加振08後の全ての家具についての挙動の様子を写真2に示す。また、次報の表8に全ての家具加振で観察された挙動を整理して示す。ピアノはA.Bとともに滑りに大きなロッシングが観察されたが、転倒には至らなかった。引出しA.Bでは外観上ほとんど挙動は見られなかった。引出しCでは滑りに対してスムーズに可動部が滑る挙動が見られた。本報と家具に関するロッシングにより応答加速度が増加されたと思われる加振も観察された。

4.2 有効質量比算定結果と考察

3章で示した算定基準に基づき、まず3種類の固定荷重の有効質量を求めた。結果を表9に示す。"固定荷重4,312"で1%程度の誤差が確認された他は全般的に有効質量比が1.00として作用しており、重量を積載した条件で積載物が床にラグスクリューで
表8 実験で観察された全加振についての家具類の挙動

<table>
<thead>
<tr>
<th>加振名</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
</tr>
</thead>
<tbody>
<tr>
<td>ピアノ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>溶解感を约10cm移動</td>
<td>溶解感を数回</td>
<td>小さなロッキング</td>
<td>約60cm移動</td>
<td>約11秒後まで溶解感</td>
<td>決して介在</td>
<td>約70cm移動</td>
<td>溶解感を約40cm移動</td>
</tr>
<tr>
<td>B</td>
<td>半溶解なし</td>
<td>麻感とロッキング</td>
<td>約50cm移動</td>
<td>小さなロッキング</td>
<td>約30cm</td>
<td>大きなロッキング</td>
<td>約200cm</td>
<td>溶解感とロッキング</td>
</tr>
<tr>
<td>本棚</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>半溶解なし</td>
<td>半溶解なし</td>
<td>床の振動と同現象で小さく振動</td>
<td>小さなロッキング</td>
<td>約13.6秒の日が下落</td>
<td>大きなジャッキが緑の日が下落</td>
<td>大きなジャッキが緑の日が下落</td>
<td>3度の日が下落</td>
</tr>
<tr>
<td>B</td>
<td>半溶解なし</td>
<td>半溶解なし</td>
<td>徐々に本が手前へ移動し、配置が下落</td>
<td>約5秒後までは本が</td>
<td>前後に移動し、それ以降は振動的</td>
<td>に本が下落</td>
<td>徐々に本が手前へ移動し、配置が下落</td>
<td>約24日で本が下落</td>
</tr>
<tr>
<td>食器棚</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>外観上の挙動なし</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>外観上の挙動なし</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>引出し・板のメタルインク周辺に接続</td>
<td>引出し・全面に接続</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ケース</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>小さな振動</td>
<td>小さな振動</td>
<td>小さな振動</td>
<td>小さな振動</td>
<td>小さな振動</td>
<td>小さな振動</td>
<td>小さな振動</td>
<td>小さな振動</td>
</tr>
<tr>
<td>B</td>
<td>外観上の挙動なし</td>
<td>外観上の挙動なし</td>
<td>外観上の挙動なし</td>
<td>外観上の挙動なし</td>
<td>外観上の挙動なし</td>
<td>外観上の挙動なし</td>
<td>外観上の挙動なし</td>
<td>外観上の挙動なし</td>
</tr>
<tr>
<td>C</td>
<td>引出し・マグナム半球内に接続</td>
<td>引出し・マグナム半球内に接続</td>
<td>引出し・マグナム半球内に接続</td>
<td>引出し・マグナム半球内に接続</td>
<td>引出し・マグナム半球内に接続</td>
<td>引出し・マグナム半球内に接続</td>
<td>引出し・マグナム半球内に接続</td>
<td>引出し・マグナム半球内に接続</td>
</tr>
</tbody>
</table>

写真2 主な家具類の挙動状況（加振08終了後）
固定した場合は式(4)が1%の精度で成立することを確認した。
次に、家具の有効質量比算定結果を図11-1,2に示す。各家具加振について、有効質量比を時刻歴波形の正負それぞれの定常状態において算定した結果である。また加速度増幅率によって最大値がみられた場合には同図に併せて示した。地震波の場合は3.3節で示したように最大層せん断力時の両データのピーク値を比較したもので、位相差を考慮した結果を示した。図中の数値は後者の結果である。全体的傾向として、入力レベルの低い加振1では、家具質量のほぼ100%が有効質量として作用した。正弦波では入力レベルが高くなるにつれて経験的に有効質量比が小さくなる傾向にあった。家具の種類や設置条件に応じて20%程度を限度に有効質量が低減された。加振6、7の地震波による加振では、同じ入力レベルの正弦波に比べて有効質量比が大きくなる傾向がみられた。波形の非対称性による家具の挙動の違いによりと思われる正負での差がみられた。
また、表10には正弦波加振について時刻歴波形の比較にみられた波形の位相差を示す。波形の非対称性による家具の挙動の違い、または表2で示した入力レベルの違いが原因として考えられる。ピアノや本棚のようにロックキングを伴う場合に表10で示す位相差が顕著に現れる傾向がある。
以下では、それぞれの家具加振について有効質量比の算定結果と家具の挙動について考察を行う。

ピアノA、B:床の材質の違いによる顕著な影響は見られなかった。大きさロッキング挙動を示した場合は、有効質量は約20%程度に低減され、本実験を通じて最も低減効果の高い家具であった。なお、ピアノは他の家具と違い本体を収容に入分離されておらず、家具本体が一つの質量として作用していると考えられる。地震波の加振では、ピーク値の比較では正側で比較的有効質量は大きな値となったが、位相差を考慮した場合、同レベルの正弦波の場合と同様の結果が得られた。

本棚：データの分析結果より、加振2、4、6、7、8でロックキング現象の合間に断続的に床振動と同位相で振動し、応答加速度が増幅されたと考えられる。特に加振2では、挙動の観察結果でも同位相でロックングする様子が加振中を通じて見られた。この現象が正側のデータにも現れおり、2倍以上の有効質量となった。加振6では南側への増幅が顕著に観察されたが、位相差を考慮した場合有効質量は100%を下回った。

<p>| 表9 固定荷重の有効質量比（式(4)の精度検証） |</p>
<table>
<thead>
<tr>
<th>有効質量</th>
<th>入力波（加振No.）</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>固定荷重</td>
<td>1,073</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>重力荷重</td>
<td>2,151</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>平均</td>
<td>3,321</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

<p>| 表10 正弦波の時刻歴波形にみられる位相差 [rad] |</p>
<table>
<thead>
<tr>
<th>家具名</th>
<th>入力波（加振No.）</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>05</th>
<th>08</th>
</tr>
</thead>
<tbody>
<tr>
<td>ピアノA</td>
<td></td>
<td>0</td>
<td>0.36</td>
<td>0.48</td>
<td>0.21</td>
<td>0.28</td>
</tr>
<tr>
<td>ピアノB</td>
<td></td>
<td>0.01</td>
<td>0.99</td>
<td>0.48</td>
<td>0.24</td>
<td>0.52</td>
</tr>
<tr>
<td>本棚</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.54</td>
<td>0.40</td>
<td>0.24</td>
</tr>
<tr>
<td>引出</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>食器棚</td>
<td></td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
図 11-2 各家具の有効質量比算定結果

本棚 B：本体を壁に固定された本棚 B では 60〜80%程度の低減となっ
た。加振 06 と 07 では収容物の挙動に大きな違いが見られ、収容物が落下しなかった加振 07 では有効質量はほぼ 100% とし
て作用した。壁に固定された条件であり、8 波の加振を通じて有効
質量の低減効果は小さく 50%以上が有効質量として作用して
きた。また固定されていたため加速度の増幅も観察されなかった。

本棚 C：本棚 B と比較して、転倒防止対策がなされていない条件
として加振 01 を除き正弦波では有効質量は大幅に低減され、質
度 6 強程度の揺れでは 30〜40%程度となった。ただし加振 02、
03、07 では増幅された場合もあった。特に図 10 で示した加振
02 では 2 周期毎に増幅しており、この状態を定常として捉えた
場合は、正側の有効質量比は 1.19程度となった。

引出し A,B,C：表 9 で挙動が見られなかった引出し A,B で 90%以上の
程度の有効質量となったが、この要因として内部での収容物の
移動を考えられる。引出し C では引出しが開閉した場合、加振
01 を除き加振波に係らず有効質量が常に 40%程度に低減され
たが、引出しがスムーズな挙動を示したためと考えられる。

食器棚：急な揺れ棒での転倒防止対策を施した L 型アングルで
転倒防止対策した場合と比べてぐっすり大きく、加振により本
体は振動するものの転倒には至らなかった。有効質量は概して
60%以上となった。固定された条件にもかかわらず、データ分析の
結果より加振 02, 04, 06, 07 では加速度の増幅が見られた。収
容物の挙動が著しい一方で、有効質量の低減効果は小さかった。
ただしこ表 3 に示したように、食器棚のみ他の家具よりも軽い條
件となっているためデータ分析の手法上、他の家具よりも分析精度は劣っている可能性があることに留意が必要である。

以上、各家具について有効質量と挙動の関係について述べたが、これからの個別の検討結果より、家具の形状や固定方法によって傾向は大きく異なるものの、正弦波では家具が床振動と同様で挙動し加速度が増加する場合を除いて、全般に一定有効質量が低減される傾向にあった。特に有効質量の全体が挙動するピアノでは有効質量が約20%となり、算定対象とした家具の中で最も低減効果が大きかった。また、家具に転倒防止対策を施した場合、低減効果は小さくなるものの、収容物等の挙動による効果が確認された。一方、地震波に対する加振では、ピーク値の比較では1.00を超える場合も見られたが、位相差を考慮した場合、正弦波において同レベルの入力の場合の有効質量は概して同程度の値となった。

5. まとめ

本論では、地震時における家具類の挙動と有効質量の関係についてまとめ、積載荷重が水平せん断力として作用する効果を把握した。得られた主な知見を以下に示す。

1) 家具の挙動の全体的な傾向として、加振波の入力震度階レベルが大きくなるにつれて家具変形や収容物の挙動が激しくなる傾向が見られた。気象庁の震度階5階レベルの加振では、家具はほとんど挙動せず、有効質量も概ね100%として作用した。また、大きくロッキング挙動を起こした家具加振では、加速度値とロードセル値のピーク値に位相差が見受けられた。

2) ラグスクリューで床に留めつけた鋼板の鍵の加振時の有効質量は100%であった。

3) フローリングとカーペットの床仕上げによる挙動の違いをピアノの加振を通して実施した。床仕上げの違いにより両条件でほぼ等しい有効質量となった。なお、ピアノの正弦波は全ての算定結果の中で最も低減効果が大きく約20%の有効質量であった。

4) 正弦波で、家具に転倒防止器具等を設置した場合では、全体的に有効質量は60～90%程度となり、固定しなかった条件と比べると大いに大きかった。

5) 地震波加振は、層せん断力が最大の時を対象にピーク値を比較した。可動する引出しの場合には10%程度の有効質量となった。それ以外では有効質量が100%を超える場合が見られ、安定した傾向は見られないものの、概して低減された。しかし位相差を考慮してせん断力のピーク時を比較すると有効質量比は他の同レベルの正弦波加振の結果と同程度に低減することがわかった。

6) 家具の設置状況と積載内容によっては、床振動に対する家具の有効質量が割増され、1.00よりも大きくなる場合があることが明らかとなった。これに対して加速度の増幅は、ピアノでは見られなかったものの、本棚や食器棚などの比較的狭隘荷の大きな家具について増大されえた。

以上のように正弦波に対する検討では、家具を固定せず一般的なロックや滑り挙動をする場合、有効質量の確認が低く抑えられている。一方、地震波に対する検討においても、家具の挙動によっては位相差が見られ、有効質量が低減される傾向にあった。木造建物の地震被害などを検討していくうえで、この位相差による応答の増減について、解釈的手法を用いて今後検討を深める予定である。

謝辞

本研究で使用した家具類、建材の一部は大建工業株式から提供して頂いた。また、同社の入山朋之氏をはじめとする多くの関係者にご協力を頂いた。ここに記して感謝の意を表する。

参考文献

1) 竹山隆三郎：床の積載荷重に就て、日本建築学会論文集、第37号。pp.12-16、1948.8
2) 伊藤秀太郎：積載荷重に就て、建築雑誌、第628号、pp.858-863、1937.7
3) 石川孝重、平田京子：東京都建築条例要本目要が示した役割-構造関連規定の成立過程に関する研究、日本建築学会構造系論文報告集、第397号。pp.32-41、1989.3
5) 石川孝重、平田京子：市街地建築物法に至る規定の変遷とその規格-積載荷重の評価に関する研究 その1、日本建築学会構造系論文報告集、第74巻。第463号、pp.43-51、1992.6
6) 平田京子、石川孝重：臨時日本標準規格以降の建築構造規定における変遷とその根拠-積載荷重の評価に関する研究その2、日本建築学会構造系論文報告集、第443号、pp.43-52、1991.1
7) 国土技術総合政策研究所、独立行政法人建築研究所：平成19年(2007年)新潟県中越沖地震被害調査報告書、2008.2
8) 目黒公男、吉村美保、伊東舞、佐藤芳仁：床の家具転倒防止装置の効果に関する実験-数値解析の検討、日本建築学会論文報告集 第7巻、第4期(特集号)、pp.23-32、2007
9) 金子美香、中村豊、田村和夫、新原浩之：配置の違いが家具転倒挙動に及ぼす影響 (その1)振動台実験による検討、日本建築学会建築関東支部研究報告集、pp.167-170、2003
10) "計測震度の算出方法"、気象庁ホームページ、http://www.seisvol.kishou.go.jp/eq/kyoshin/kaisetsu/calcsindou.htm、(参照 2009.4.15)
11) 田中美香、林直裕、田村和夫：家屋の地震時減衰比の簡易評価、日本建築学会技術報告集 第8号、pp.73-78、1998.6
12) 松村慎子、福浦早苗：家屋の地震時減衰比の簡易評価、日本建築学会技術報告集 第8号、pp.73-78、1998.6
13) 金子美香：地震時家具の挙動、建築雑誌 112(1413)、pp.64、1997
14) 石川孝重：地震波による物体の転倒条件（懸垂的）、日本建築学会論文報告集、第317号、pp.114-118、1982.7
15) 石川孝重、山口慈由、福井雅彦：地震動による物体の転倒に関する研究（その2・転倒強度に到達する条件）、日本建築学会大会学術講演演習要覧、pp.915–916、1982.10
16) 矢崎雅彦、麻里浩志、西山能信：剛体のロッキング振動と転倒条件・物体の非対称特性及び壁の影響を考慮した転倒解析、日本建築学会北海道支部研究報告集、No.70、pp.133-136、1997.3
17) 矢崎雅彦、宮城正弘、麻里浩志、石山和二：入力波の周波特性を考慮した網の転倒条件（その1 類推条件式の提案）、日本建築学会大会学術講演演習要覧、B-2 分冊、pp.957-958、1998.9

(2009年5月10日初稿受理、2009年9月1日採用決定)