Hydration process of many kinds of cement paste is investigated by Powder X-ray diffraction (XRD)/Rietveld analysis. The parameters of the present study are type of cement (ordinary Portland cement, low heat Portland cement, and Eco-cement), water to cement ratio (0.50, 0.35), and curing temperature (283, 293, 313K). In this contribution, reaction of alite and belite is focused and evaluated. Experimental results show that the reaction of alite is affected by the temperature, but the effect of W/C is rather small. Regarding belite, its reaction is strongly affected by the reaction of alite and temperature. The hypothesis, in which rate of reaction of belite is explained by the ion concentration of CaO and SiO2 in the capillary water and solution equilibrium curve of alite, belite, C-S-H and Ca(OH)2, is proposed. Based on these experimental facts, simple hydration model is proposed.

Keywords: Portland cement, alite, belite, degree of hydration, hydration model

ボルトランドセメント、エーライト、ビーライト、水和反応率、水和反応モデル

１．はじめに

近年、コンクリートを用いた構造物の性能およびその時間依存性を予測・評価するにあたり、セメントの水和反応からコンクリート、あるいはコンクリート部材や構造物の性能を予測する試みが行われている①。この時間依存性の問題において、外部環境とコンクリート中で生じている水分の相互依存性の生成が存在すると、いわゆる水和反応モデルである。

水和反応モデルは、従来より主として速度論的取り扱いがなされてきた②③。その中で、コンクリートの耐久性を念頭において相組成の評価や④、断熱温度上昇曲線のように、速度論を問題とする場合であっても鉱物組成の違いによる性状の変化を対象とする場合には、セメント全体の速度論ではなく、セメントの各鉱物の速度論に着目した研究が行われている⑤。

著者らも、こうした目的から、友澤の提案した未反応セメント CCBM を開発し、各鉱物の反応速度を取り扱う研究を行ってきた⑥⑦。

本研究では、近年、粉末 X 線回折を用いたリートベルト解析⑧によって、セメントの各鉱物の反応に関する研究が盛んで行われているようになり、⑨⑩⑪⑫⑬。各鉱物の水和反応速度に対して多くの知見が得られていることから、異なるセメント種類、水セメント比、養生温度を因子としたセメントベーストについてリートベルト解析を用いて分析し、その結果について、特に反応速度の観点から考察を行った。また、これらの特徴を評価し、実用的に利用しやすい水和反応速度モデルの提案についても併せて行うこととした。本報ではセメント中の鉱物の種類、特にエーライト(C3S)とビーライト(C2S)の水和反応速度を中心に取り扱う。こうした検討は、建築材料の観点において、マスコンクリートの発熱特性の評価、脱型によって影響を受けないコンクリート部材の品質評価や建築物の長期性能評価・予測に貢献する。

２．実験概要

２．１使用材料及び調査

本実験の対象となる試験体は、既報で報じたものである⑬。検討における大きな違いは、粉末 X 線回折リートベルト法（以下、リートベルト解析）と熱重量・差熱重量分析（以下、TG-DTA）によって測定したボルトランドセメント (Ca(OH)2) の変形を小さくするように、ボルトランドセメントに関する計算条件を最適化・再設定したことが、リートベルト解析より得られたデータの整理手法を改良し。
表1 セメントの化学組成

<table>
<thead>
<tr>
<th>セメント種類</th>
<th>強熱減量（％）</th>
<th>化学組成（mass％）</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>2.40</td>
<td>SiO₂ 53.98</td>
<td>64.64</td>
</tr>
<tr>
<td>L</td>
<td>0.87</td>
<td>Al₂O₃ 2.03</td>
<td>0.77</td>
</tr>
<tr>
<td>E</td>
<td>1.37</td>
<td>Fe₂O₃ 7.69</td>
<td>0.72</td>
</tr>
</tbody>
</table>

表2 リートルベート解析によるセメントの鉱物組成とセメントの物性

<table>
<thead>
<tr>
<th>セメント種類</th>
<th>鉱物組成（mass％）</th>
<th>物性（g/g）</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>SiO₂ 39.4%</td>
<td>1550</td>
</tr>
<tr>
<td>L</td>
<td>Ca/Si 0.9</td>
<td>191</td>
</tr>
<tr>
<td>E</td>
<td>MgO 35%</td>
<td>615</td>
</tr>
</tbody>
</table>

表3 各乾燥状態における水和生成物の組成

<table>
<thead>
<tr>
<th>水和物</th>
<th>乾燥状態</th>
<th>分子量</th>
<th>密度</th>
<th>参考文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-S-H</td>
<td>100°C</td>
<td>1550</td>
<td>-</td>
<td>01</td>
</tr>
<tr>
<td>C-S-H</td>
<td>115%RH, 20°C</td>
<td>191</td>
<td>2.40</td>
<td>01, 02</td>
</tr>
<tr>
<td></td>
<td>Saturated</td>
<td>191</td>
<td>2.40</td>
<td>01, 02</td>
</tr>
<tr>
<td></td>
<td>Afm</td>
<td>615</td>
<td>1.99</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>115%RH, 20°C</td>
<td>615</td>
<td>1.99</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>Saturated</td>
<td>623</td>
<td>1.99</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>CaH₂</td>
<td>561</td>
<td>2.04</td>
<td>04(20)</td>
</tr>
<tr>
<td></td>
<td>115%RH, 20°C</td>
<td>561</td>
<td>2.04</td>
<td>04(20)</td>
</tr>
<tr>
<td></td>
<td>Saturated</td>
<td>561</td>
<td>2.04</td>
<td>04(20)</td>
</tr>
<tr>
<td></td>
<td>CFH</td>
<td>618</td>
<td>2.23</td>
<td>04(20)</td>
</tr>
<tr>
<td></td>
<td>115%RH, 20°C</td>
<td>618</td>
<td>2.23</td>
<td>04(20)</td>
</tr>
<tr>
<td></td>
<td>Saturated</td>
<td>618</td>
<td>2.23</td>
<td>04(20)</td>
</tr>
<tr>
<td></td>
<td>Afm(C)</td>
<td>568</td>
<td>2.21</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>115%RH, 20°C</td>
<td>568</td>
<td>2.21</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>Saturated</td>
<td>568</td>
<td>2.21</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>Afm(0.5C)</td>
<td>564</td>
<td>1.98</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>115%RH, 20°C</td>
<td>564</td>
<td>1.98</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>Saturated</td>
<td>564</td>
<td>1.98</td>
<td>06</td>
</tr>
</tbody>
</table>

※1：C-S-Hについては、x=4.7のときの値を記載した。※2：一般的にこの相対湿度以上の結合水は、容易に蒸発し水和を抑制する。水和が進行しない水和状態を115%RHと同様のものと扱うこととした。※3：相対湿度80%以上ではC₃AH₁₉になるという報告もあるが、容易に蒸発する水分を除き、C₃AH₁₉として扱っている。※4：一般的にはC₃AH₁₉中Aの不活性化を示す。また、この組成を除き、C₃AH₁₉が不活性化する。※5：アルカリ土金属化合物が1000°Cの条件で、この組成を保持するとは必ずしも等価であることを示す。
C₃S, C₃S, cubic-C₃A, orthorhombic-C₃A, C₃AF の結晶構造に関す
るパラメータは Nist Technical Report 23) と同様とし、MgO, CaO, CaCO₃, C₃S, C₃SH, CH, AFt, AFm, AFm(N) に関しては ICSD Database 24) と同様とし、AFm(0.5C) に関し、は、確立された構造モデルが存在しないため、合成試料から設定した単に癒のパラメータ 25) を使用した。非晶質物質量は内部標準物質である α-Al₂O₃ の定量値から式 (1) に従い算出した 26)。

\[
A = \left\{ \frac{100 \times (S_a - S)}{S_a} \right\} \left\{ \frac{S_a \times (100 - S)}{100} \right\}
\]

(1)

ここで、A：非晶質率（%）、S：α-Al₂O₃ の混合率（%）、S_a：α-Al₂O₃ の定量値（%）である。

なお、エーライトとビーライトには数多方が存在し、主形を考慮し
た定量計算を行うことにより精度が高まる可能性はある。しかし、
本検討では数多形を考慮した定量計算結果が妥当であるという保証
が得られるまでに至っておらず、かつ本検討における測定再現性は
十分に得られていると考え、文献 24) の手法を踏襲した。

セメントの各酸の反応相や相組成を計算するにあたり、表3 に
示される組成や相組成も用いて、すべて無水物とし計算した上で
水和率を評価した。既報 14) ではこれらの無水物への換算に強熱減
量の測定結果を用いたが、本検討では、リーテル解析による分
析値のみを以下のような換算計算によって相組成および反
応率を算出することとした。

1) セメントの各相を水和前の無水物と書換する。このとき、
C₃S-H は暫定的な CaSi 比の値を用いる。

2) 測定結果から各無水物相別の水和反応率を算出し、結晶相か
ら確認できる Al₂O₃(A) および Fe₂O₃(F) の量とセメント細胞
の反応相から反応に利用されたはずの Al₂O₃(A) および
Fe₂O₃(F) の量を算出し、非晶質に存在する各量を算出する。
このときの A および F はそれぞれ Ca₃Al₅O₁₀, Ca₂Fe₃O₈ の組成
の無水物を形成していると仮定する 26)。

3) 次に非晶質中の C₃AH₆ および C₃H₆ で利用された CaO (C) 量
が計算されるので、セメント細胞の反応相から算出された反
応に利用されたはずの C を算出し、C₃S-H 中の利用され
ている C を物質収支から計算し、Ca/Si モル比を算定する。

4) 1) ～ 3) を繰り返し計算を行い、収束したら計算を終える。

なお、本検討の範囲では Ca/Si 比の違いによる分子量の違い
は考慮したが、それによる H/S 比の変化は無いものとし、
また、密度も変化しないものとした。

2.3 強熱減量

水和反応分析試料を 975 ± 25℃の電気炉で 1 時間焼熱した際の減量
分を測定し、強熱減量 (g, loss) を測定した。ここで減量されたもの
は、主として結合水と N において混合相として用いられていた方
解石中の CO₂ である。試料の捕集後、水セメント比の違い、ある
いはセメントの比較的目的として、本研究では 1000℃で熟した
後のサブプル重量に対する減量分として評価することとし、これ
は、一般的なセメントの評価においては結合水の定義と同様であ
る。

2.4 TG-DTA

リーテル解析に使用した試料を使用し、TG-DTA 測定を実施

図1 TG-DTA によるポルトランドサイト (CH) の定量値とリ
ーテル解析によるポルトランドサイトの定量値の比較

図2 強熱減量試験による強熱減量とリーテル解析によ
る分析結果と表3 の値から予測した強熱減量の比較

3. 実験結果

3.1 リーテル解析の精度評価

リーテル解析における各酸の定量精度と再現性について
は文献 24) に記載されているが、実験で着目するデータの信頼性を
評価する目的で、TG-DTA の測定によるポルトランドサイトの定量
値および強熱減量の測定結果に対してリーテル解析による定
量値あるいは推定値との相互比較を行った。これは、特にリーテ
ル解析において結晶構造パラメータを固定して評価する場合に
は、解析のフィットの精度だけでなく、データの整合性についての
評価が必要であると考えたからであり、誤差の評価として変動係数
を示すべきと考えたからである。

図1 に示されるように本研究で用いたリーテル解析による

− 683 −
図3 普通ボルトランドセメント（N）における各鉱物の反応率

図4 エコセメント（E）における各鉱物の反応率

図5 低熱ボルトランドセメント（L）における各鉱物の反応率

図6 C₃SおよびC₂Sの水和率の推移
CHの定量値は、平均値として見た場合は、TG-DTAの測定結果にほぼ等しく、その変動係数は14%であった。また、全体的な傾向として、Lのシリーズにおいて材齢が比較的大きい場合に小さく見積もる傾向があった。

また、図2に示されるように、強熱減量の測定結果から見た場合にも、リートベルト解析の結果と表3の値を用いて得られた強熱減量は平均的には実験値と等しく、変動係数は10%であった。

以上のように本検討におけるリートベルト解析は、各時と推定精度は誤差として10±14%程度であるが、平均的には他の手法による実験値と等しいことを踏まえるとボルトランドセメント中の水和反応を考察するに足る精度を有していると考えられる。

3.2 エーライト（C₃S）の反応

リートベルト解析によって得られた各鉱物の反応の経時変化について、普通ボルトランドセメントの場合は図3に、エコセメントの場合は図4に、低熱ボルトランドセメントの場合は図5に示す。なお、ここでは後述するモデルによるエーライト、ピライトの反応速度予測結果についても、図中に併記している。

これらの全体的な変動を評価するためには、それぞれの反応に着目した考察が必要となる。そこで、まずはC₃Sの反応に着目する。

図6は、各セメントのC₃SおよびC₃Sの水和反応率の推移である。これに示されるように、各セメントにおいてセメント鉱では約5%の相違はあるものの、C₃Sの水和反応率の経時変化は、セメント種類によらずほぼ同様の傾向を示すことがわかる。また、温度依存性はそれぞれのセメント鉱でもほぼ共通であり、高い温度であるほど水和が早期にすすむ傾向が確認される。

図7 リートベルト解析と表3より算出したセメントベースト中の自由水素の経時変化

材齢365日までに到達する水和率について着目すると、NおよびEの場合は、W/C=0.35の場合とW/C=0.50の場合を比較するとどちらのケースもW/C=0.35の場合の方が到達する水和反応率が6%程度小さい傾向を示した。一方、Lの場合には水セメント比の影響が無く、ほぼ同様であり、C₃Sの反応率は水セメント比の影響を本検討の範囲では受けなかった。これらの現象は、いわゆる自己加熱に起因するもので、自由水の残存量によって析出可能な領域が変化するために生じたものであると考えられる。このことから確認するため、リートベルト解析の結果から計算し、20℃一定条件のそれぞれのセメント硬体体1cm3中に残存する自由水素の経時変化を図7に示す。なお、ここで自由水とは、表3における11%RH条件での結合水を基準として、水和物に結合していない余剰水と定義している。ここに見られるようにL35の条件は材齢28日程度までES50の条件とはほぼ同様の自由水を保有しており、L35については水和の継続に十分な自由水素を長期間保持することで水和が継続するものと考えられる。

また、NおよびEでは、C₃S含有量が同程度でありながら、最終的に到達する水和率や初期の水和反応速度に若干の違いが見られる。これは、図2に見られるように比表面積の違いが水和反応に影響を及ぼしたものと考えられる。すなわち、初期の水和プロセス、とりわけカルシウムイオンが過飽和状態からボルトランドサイトの析出に至るプロセスにおいて、カルシウムイオン濃度に対して、アルミナ相、フェライト相、および石膏は影響を持つものと考えられるが、その後の継続的な水和プロセスについての溶解反応は、溶液中のイオン濃度の不足に伴う溶解であると考えられる。比表面積差の影響が見られる。
面積が大きく、細粒材が多い場合には析出サイトの増大やイオンの拡散移動が生ずる水和生成物層のセメント粒子表面における厚さが薄くなることによって反応速度が大きくなるものと推定される。

以上の事柄より、本実験で得られた C3S の水和反応速度の経時変化については、温度の活性、比表面積の違いによる水和反応速度等への影響、セメント硬化体中の自由水重量変化による水和反応速度の変化についてモデル化することで水和反応速度を予測することが可能であると考えられる。

3.3 ピーライト（C2S）の反応

次にピーライトに着目する。図 6 に基づくと、C2S の反応がセメント毎、水セメント比毎の挙動が異なったものの反面、C2S の反応は水セメント比やセメント種類によって大きな違いを示すことがわたった。全体的な傾向として確認できるのは、以下の通りである。

1) 温度が高いほど水和反応の進行が早い。
2) 水セメント比が小さい方が水和の進行が速やかである。
3) E50 のシリーズの C2S の反応が他のシリーズと比べて緩やかに進む。
4) N および E のシリーズでは材齢 1 日において 10～20% の水和率を有するが、L シリーズはそれよりも小さい。

これらの傾向のうち、1), 2) については従来の水和に関する一般的論と大抵と相違はない。3) については、E の比表面積が大きいこと、また C2S の含有量が他のものよりも少ないため、反応が開始されると、相対的に水和反応率が大きく進むということが考えられる。また、このような反応は表面反応律連律滴反応のような反応形態ではなく、溶解・析出といったプロセスで水和されている可能性を示唆する。

このことは、N および E のシリーズで、かなり初期の段階から 10～20% の水和率があるという実験結果によって支持される。L において水和率として細かさは小さいのは、溶解する C3S 量に対してセメント中的 C2S 量が相対的に多いからであると考えられる。

なお、本議論において、リットルレート解析のピーライトの定量精度の問題、N, E におけるピーライト量が少ないことの問題が存在していることは認識しているが、水和進行を示す傾向にとらえられていることから、定性的議論については問題が無いものと考えている。

このように C2S の反応は、様々な状況に応じたものであると考えられるが、C3S の反応の観点から C2S の反応を見てみると、一つの統一的な挙動が確認される。

図 8 は図 3 ～図 5 において示した C2S と C3S の反応について、同一材齢のデータを示し、C3S の反応を C2S の反応で整理したものである。ここに示されたように C2S の反応速度は C3S の反応速度の数倍と推定される。これにより、養生温度や水セメント比の影響をほとんど与えることなく、統一的な観点として表すことができる。特にセメントにかかわらず C2S の反応が 90% 前後に到達すると C3S の反応は活性化することができる。なお、このような水和反応過程において C3S が C2S について先攻する傾向については、著者の既報においても報告しているものである。

この現象は以下のような理由によって説明が可能である。すなわち、C2S の反応は表面反応律連律や水和生成物中のイオンの移動による拡散律連律ではなく、細孔溶液中の中性化を抑制した溶解プロセスにやって水和されるというのである。

図 9 は、この反応速度と細孔溶液との組成を整理するためのため、細孔溶液中の CaO および SiO2 の濃度に対する C-S-H の溶解度曲線 29) と共に C3S と C2S の溶解度曲線 29) である。

セメントの水和が進行すると、セメントの各物質は水に溶解し、液相はすぐに過飽和状態になる。図 9 のプロセスにおいて、液相は C3S の溶解によって、C3S ～3 の値を保持しつつ過飽和状態に至る。

その後、C-S-H の過飽和溶液上において、C-S-H を析出しながら、SiO2 濃度が下がっていく（図 9 ②）。さらにボルトランドタイトが析出し、C-S-H の溶解度曲線と CH の溶解度曲線の交点（図 9③）、C3S の反応が進行する。このとき、C3S の溶解度曲線を比較すると細孔溶液中では C3S および SiO2 の濃度が高いためには C2S はほとんどの溶解・反応できなくなる。その後、C3S の反応が終了した領域から、CaO および SiO2 濃度が水和生成物の析出とともに低下し、C3S の溶解度曲線と交わった状態（図 9④）に移行し、この時だから C3S の反応が進行する。この図 9 ⑤から ⑥への推移は、C-S-H の水和反応が 90% 程度進んだ状態であると推定される。このことが図 9 によって示されているものと考えられる。

このような溶解の考え方は、E の反応速度が速いことや初期に 10～20% の水和率が N および E で確認されることも符号する。

以上を総合すると、C3S の反応をモデル化するには、従来研究にどのような比表面積、温度による反応依存性だけでなく、析出範囲の低減のモデル化、また、C3S と他の反応相互依存性を評価する必要があるものと考えられる。なお、図 6 や図 8 に見られるようにセメント毎にはピーライトの反応に大きな違いがあるのは、焼成温度条件や冷却プロセスに依存した多形物が影響している可能性が推察されるが、この点については今後の検討課題である。

3.4 エーライトおよびビーライトの簡単水和反応モデル

以上の議論を踏まえ、C3S および C2S の水和反応速度の経時変化をモデル化することを試みる。Parrot は、セメントの水和反応に対してもいくつかの反応速度式をメカニズムに立脚する形で提案しているが、水和生成物形成をモデル化するにあたり、未反応のセメント量と現象を律速する反応速度定数の関数として、水和反応速度を表

![Image](image_url)
これに、(a(t)：反応寿命、t：反応開始後、k：反応速度定数、n：反応に関する係数である。本式は、従来は数値解析技術での反応を表すための定量化の方法であるが、反応を進行する反応速度を用いたものである。この前記のCS2の溶解反応速度にも適用が可能であると考えられる。

これをCS2およびCS3それぞれに適用し、前記までの各影響因子を含む可能なものを求めるため、以下の式を考える。

\[
\frac{da_{CS2}(t)}{dt} = k_{CS2}(1-a_{CS2}(t))e^{-E_{CS2}/RT}
\]

\[
k_{CS2} = r_{CS2} e^{-E_{CS2}/RT}
\]

\[
r_{CS2}(w) = 1 + 2\exp(-10\cdot w)
\]

\[
CS3:
\]

\[
\frac{da_{CS3}(t)}{dt} = r(a_{CS3}) \cdot k_{CS3}(1-a_{CS3}(t))e^{-E_{CS3}/RT}
\]

\[
k_{CS3} = r_{CS3} e^{-E_{CS3}/RT}
\]

\[
r_{CS3}(w) = 1 + 4\exp(-10\cdot w)
\]

\[
r_{CS3}(a_{CS3}) = \begin{cases}
0.9 & (a_{CS3} > 0.9) \\
1.0 & (a_{CS3} < 0.9) \\
0.3 & (a_{CS3} < 0.3)
\end{cases}
\]

\[
r_{eff} = S/S_0
\]

ここに、(aCS2：CS2の水和反応率、aCS3：CS3の水和反応率、kCS2、kCS3、rCS2、rCS3：各水和の水和反応速度に関する係数、ECS2、ECS3：任意温度条件における各水和の水和反応に関する係数であり、基準温度を20℃としてkCS2、kCS3としてその反応係数を表し、温度の影響に関して見かけの活性化エネルギーにECS2、ECS3 (J/mol)を用い、アレニウス式に従うと仮定して評価される係数、R：ガス定数(J/molK)、T：温度(K)、cCS2、cCS3：体積含水率 w (g/cm³)の関数として表現した析出可能領域の低濃度による水和反応速度に関する係数。rCS2(aCS3)：CS2のCS3の反応依存性を表す係数、rCS3：比表面積の影響を表す係数でセメントの比表面積(S)と基準とする比表面積S0 (3300m²/g)との比、である。

これらの変数については、実験値に整合するように表4のように定めた。その結果は、図3～図5において、実験値と解析値として示すと定めたとおりである。体積含水率については、図7の結果が材種の影響の検討の対象で内挿を補正した値を各計算材種において用いている。

これらのパラメータの精度について確認したものが図10および図11である。この結果は、あくまでフィッティングの精度であって予測式の精度を示すものではないが、平均的な傾向は良い一致をもたらし、ばかりつきは、CS3は±10％程度、CS2については±20％程度の範囲に収まる結果となっている。

これに乾燥は各係数の物理的意味合いが明確であるとともに、CCBMよりは係数の数が少なく、読み取りの容易なモデルとして利用できる。

表4 水和反応モデルの定数一覧

<table>
<thead>
<tr>
<th></th>
<th>kCS2</th>
<th>rCS2</th>
<th>ECS2</th>
<th>rCS3</th>
<th>rCS3(aCS3)</th>
<th>rCS3(w)</th>
<th>rCS3(aCS3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS2</td>
<td>1.7</td>
<td>2.5</td>
<td>58</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CS3</td>
<td>0.1</td>
<td>2.0</td>
<td>58</td>
<td>1.0</td>
<td>0.9, 0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

X: CS2あるいはCS3を表す。

図10 CS2の水和反応率の予測値と実測値の比較

図11 CS3の水和反応率の予測値と実測値の比較

4. まとめ

本提案は、普通ポルトランドセメント、エコセメント、低熱ポルトランドセメントを用い、セメント点を0.50および0.35、養生温度を20, 40, 60℃としたセメント硬化体を対象に、リートベルト解析を行い、各セメントの水和について、特にエールト(CS)
およびビライト(C₂S)の反応速度に着目した。

その結果、ビライトの水和反応は水セメント比0.35 と 0.50 で
は大きな差異は生じず、いずれのセメントにおいても類似した水和
反応プロセスであることが示された。

一方、ビライトの反応はエラライトとは異なり、それぞれの水
セメント比あるいはセメント種類によって異なる挙動となった。し
かし、エラライトの水和率によってビライトの水和率を評価する
と、養生温度、水セメント比の影響はほとんどみられず、エラライト
の反応が90%を超えた時点から反応が活性化するという傾向が
確認された。この傾向は、エラライトの反応が液相の組成の関係
から、ビライトの反応が生じにくい状況が作られているためであ
ると推察された。

これらのセメント硬化体中のエラライトおよびビライトの反
応の特徴を生かし、簡明な水和反応式を提案した。本モデルは、全
体的な傾向としては良い一致を示したが、ビライトについては、
若干ばらつきが大きい。

謝辞
実験を遂行するにあたり様々なご助言とご配慮を頂きました星野
清一氏（太平洋セメント株式会社・中央研究所）、平尾浩博士（同）
及び関係各位に記して謝意を表します。

参考文献
1) R. Sato, T. Shimmura, I. Maruyama, K. Nakarai: Durability
mechanics of concrete and concrete structures - Re-definition and a
new approach - (ICI committee report), Creep, Shrinkage and
Durability Mechanics of Concrete and Concrete Structures, ed. T.
Tanabe et al., CRC Press, Leiden, 2008.9, Vol. 2, pp. 1073-1098
2) 近藤進一, 木村正雄: 水和反応速度に関する考察 - セメント技
術年報 XXI, pp.77-82, 1967
3) 友保史紀: セメントの水和反応モデル, セメント技術年報,
XXVIII, pp. 53-57, 1974
4) 坂井信郎, 加藤将宏, 浅賀喜志, 大門正雄: セメント水和の
相転成モデル, コンクリート工学年次論文報告集, Vol. 20, No. 1,
1998
5) 岸治実, 坂本宏一: ボルトランドセメントの液和水和熱モデ
ル, タカ 특히会論文集, No.526, V-29, pp. 97-109, 1995
6) I. Maruyama, T. Matsushita, T. Noguchi: Numerical modeling of
Portland cement hydration, Cement and Concrete modeling - CONMOD'08, Proc.
of Int. RILEM Symp., edited by E. Schlangen, and G. D. Shutter, 58,
Portland cement hydration, Concrete modeling - CONMOD'08, Proc.
Cement and Concrete Research, Vol. 8, pp.571-582, 1992
7) C. Vernet, and Noworyta: Mechanisms of Limestone Fillers
Reactions in the System (CaO−CaS−H₂O, Journal of the American Ceramic Society, Vol. 69, No.5, pp.464-467, 1986
8) J. F. Young, W. Hansen: Volume relationships for C-S-H formation
based on hydration stoichiometries, Microstructural Development
9) B. Lothenbach, T. Matschei, G. Möschner, F. P. Glasser:
Thermodynamic modeling of the effect of temperature on the
hydration and porosity of Portland cement, Cement and Concrete
10) P.D.Tennis and H.M.Jennings: A model for two types of calcium
silicate hydrate in the microstructure of Portland cement pastes,
Cement and Concrete Research, 30, pp.855-863, 2000
11) P. Fischer, H.-J. Kuzel: Reinvestigation of the system Ca₃Na₂H₄O →
Ca₃(CO₃OH), Cement and Concrete Research, Vol. 12, pp.517-526, 1982
12) C. Vernet, and Noworyta: Mechanisms of Limestone Fillers
Reactions in the System (CaO−CaS−H₂O, Journal of the American Ceramic Society, Vol. 69, No.6, pp.1541-1547, 2004
13) R. F. Feldman and V. S. Ramachandran: Differentiation of Interlayer
Adsorbed Water in Hydrated Portland Cement by Thermal
14) H.F. Taylor,: Proposed Structure for Calcium Silicate Hydrate Gel,
Journal of the American Ceramic Society, Vol. 69, No.6, pp.464-467, 1987
15) R. G. Walenta, T. Fullmann, E. Gallucci, G. Walenta and E. Bermejo:
Quantitative study of Portland cement hydration by X-ray
diffraction/Rietveld analysis and independent methods, Cement and
Concrete Research, 34, pp.1541-1547, 2004
16) H.M. Rietveld: A profile refine ment method for nuclear and
17) H. F. Taylor: The solid state of calcium silicate hydrate, Cement and
Concrete Research, Vol. 12, pp. 517-526, 1982
18) F. P. Glasser: A profile refinement method for nuclear and magnetic
19) H. M. Rietveld: A profile refinement method for nuclear and magnetic
20) R. G. Walenta, T. Fullmann, E. Gallucci, G. Walenta and E. Bermejo:
Quantitative study of Portland cement hydration by X-ray
diffraction/Rietveld analysis and independent methods, Cement and
Concrete Research, 34, pp.1541-1547, 2004
21) H. M. Rietveld: A profile refinement method for nuclear and magnetic
22) H. M. Rietveld: A profile refinement method for nuclear and magnetic