CONTINUOUS COLUMN EFFECTS OF GRAVITY COLUMNS IN U.S. STEEL MOMENT-RESISTING FRAME STRUCTURES
Continuous column effects in steel moment frames in perspective of dynamic stability Part 2

Hiroyuki TAGAWA, Gregory MACRAE and Laura LOWES

Typical steel moment-frame structures in the United States comprise a few seismic frames and many gravity frames, which include “continuous columns” that are pin-connected to beams. These continuous columns, which are often ignored in seismic design, can improve the seismic performance of the structure. This study investigates the effects of continuous columns on the structural stability and seismic response of building frames. Stability coefficients representing the separate and combined effects of geometric and material nonlinearities are used with a simplified modeling technique, which separates the shear-type and flexural-type lateral-force-resisting systems in moment frames. Relationships between continuous column stiffness ratio and the stability coefficients, inter-story drift, and the drift concentration factor are presented. It is shown that for realistic structures, the columns in the seismic frames are generally sufficient to prevent unstable response and large drift concentrations, and the inclusion of gravity continuous column stiffness tends to decrease both the drift concentration and inter-story drift.

Keywords: Dynamic Stability, U.S.-type Steel Moment Frame, Gravity Column, Continuous Column Effect, Drift Concentration

1. はじめに
建物を高さ方向に貫く弾性の柱材は、地震時において、特定層への解析の時間割みごとに算出し、材料非線形性と幾何学的非線形性が建物全体の安定性や地震時応答に及ぼす影響を評価した。
2. 3つの動的安定係数

本研究では、静的非線形解析および動的時刻歴解析の各ステップにおいて、接線剛性行列において固有価解析を行うことで、静的非線
荷重時の地震荷重の時刻歴における建物全体の安定性を評価する。
ここで、建物の安定性は、材料の塑性化や破断による材料非線形性
とP-△効果などの幾何学的非線形性に左右されるため、前報の(その
1)で、地震時において時々刻々変化する変形形を考慮した。
式(1)～(3)で表される3つの動的安定係数(材料安定係数$r_{\mu o r}$、
幾何安定係数$r_{\Delta o r}$、全体安定係数$r_{\Delta or}$)を提案した。ここで、$[A]$は
質量行列、$[K]_i$、$[K]_o$、$[K](o)$は、材料の初期剛性行列、幾何行列、
材料の接線剛性行列、$\{\Phi\}_i$、$\{\Phi\}_o$は、次のモードの初期弾性形
における変形形を形で地震時における瞬間的な変形形であり、
それらは同様に変形係数にできるように選定する必要がある。
瞬間変動
数$\omega_i(o)$の2乗である瞬時固有值$\Omega_i(o)$は、全体安定係数$r_{\Delta or}$と式(4)で関
係付けられ、$r_{\Delta or}$と$\Omega_i(o)$の正の符号は同一とする。

\[
\frac{r_{\mu or}(t)}{\text{式(1)}} = \frac{\{\Phi\}_i(t)\cdot[K](o)\cdot[\Phi\}_o(t)}{[\Phi\}_i(t)\cdot[K](o)\cdot[\Phi\}_o(t)}
\]

\[
\frac{r_{\Delta or}(t)}{\text{式(2)}} = \frac{\{\Phi\}_i(t)\cdot[K](o)\cdot[\Phi\}_o(t)}{[\Phi\}_i(t)\cdot[K](o)\cdot[\Phi\}_o(t)}
\]

\[
\frac{r_{\Delta or}(t)}{\text{式(3)}} = \frac{\{\Phi\}_i(t)\cdot[K](o)\cdot[\Phi\}_o(t)}{[\Phi\}_i(t)\cdot[K](o)\cdot[\Phi\}_o(t)}
\]

全体安定係数$r_{\Delta or}$、すなわち、$\Omega_i(o)$が負になると、瞬時変動数$\omega_i(o)$
が虚数、すなわち、実数の振動数が存在しないことになり、その時
間刻みにおいて、その変形形が1方向に指数関数的に発散する。
従って、$r_{\Delta or}(t)$が負となる時は「不安定状態の開始点」
を示しており、それ以降、$r_{\Delta or}(t)$が負の値をとり続けると、一方
向に変形が大きく片寄り、さらには完全倒壊に至る確率が著しく大
きくなる。本研究では、$r_{\Delta or}$、すなわち、$\Omega_i(o)$が正の時の建物の挙動
を「安定状態」、負の時を「不安定状態」と呼ぶ。

3. 対象とする建物

本研究で対象とする建物は、SAC 鉄骨プロジェクトの建物であり、各
面、面を図2に、耐震骨組の内面断面寸法を図1に示す。内面図では
実際の部分が耐震骨組、点線の部分が耐震骨組である。耐震
骨組内の柱梁接合部では梁端部は柱材に剛接合、柱脚支持骨組内の
柱梁接合部では梁端部はピン接合される。SAC 鉄骨プロジェクトに
いては、Los Angeles、Seattle、Bostonの各都市の実務構造設計者に
って、それらの各地域で想定される地震動強さに対し、それらの
各都市で最も典型的と考えられる3階、6階、20階建で鉄骨ラーメ
ン骨組が設計された。本論文では、ノースリッジ地震(1994年)の
Los Angelesで典型的に設計される鉄骨ラーメン骨組を対象とする。

3階、6階、20階建で建物の静的時刻歴解析は、後述の(5)に示すように0.3、0.12、0.08程度、1.0固有周期は後述の(2)に
示すように1.0、2.3、3.4秒程度と日本の鉄骨ラーメン骨組と比較し
て顕著に柔らかい。建物の詳細情報は文献[1]に示される。なお、9
階、20階建で建物では図2のように地下階が存在するが、本研究の
モデル化では地下階を考慮せず1階柱脚部を地面に固定させる。

4. 解析モデルおよび解析方法

本研究では、図2の3階、9階、20階建で建物を対象とした簡略
化モデルとして、柱材による柱横断面を明確に考慮した図4(a)の「混
合せん断+曲げ棒モデル」を数値解析に用いる。この混合せん断+曲
げ棒モデルは、大きな強度と剛性を各層有する「剛」のせん断
棒、にしやかに弾性的に変形する「柔」の曲げ棒を並列的に合せ
た「柔剛混合構造」10とも解釈できる。前報10において、多方向
軟性解析と動的時刻歴解析結果をもとに、元の耐震骨組と概ね同
一の変形量を与える曲げ棒の曲げ剛性を耐震骨組内の柱材の曲げ剛
性E_iと基準化した値κ_iを算出した。本論文では、式(5)のように、
$\kappa_i(CEL)_i$で建物柱材の曲げ剛性E_iを足し合わせた値をK_iH_i
を基準化した値を曲げ棒の曲げ剛性率$r_{\Delta or}$として定義する。ここで、
K_iはせん断棒の1層における水平剛性、H_iは1層の部分骨組の高さ
である。すなわち、$r_{\Delta or}$は曲げ棒の曲げ剛性E_iを水平剛性に換算し
た値E_iH_iのせん断棒の水平剛性K_iに対する割合を表す。
\[
\alpha_{cc} = \frac{\left(\kappa_{cc}(\Sigma EI_{exi}) + \Sigma EI_{egi}\right)}{H_i^2}
\]
式(5)

SAC 鉄骨プロジェクトの建物に対して、元の骨格モデルとそれを付図 1(b)で示す曲げ棒付きピン柱骨格に置換した場合に、後者を前者と概ね同一の変位応答を示すような各層の \(\alpha_{cc}\) とそれらの定義値を図 5 に示す。最上層の部分骨格の高さが他階の半分程度となるため、\(\alpha_{cc}\) の値は他階の 3 倍程度となることを著し、最上階の \(\alpha_{cc}\) は他階の 3 倍の値を設定した。ここで、\(\alpha_{cc}\) の値を概略的把握するため、図 4(b)、(c)に示すように、耐震骨格の 1 層分を簡略化した混合せん断+曲げ棒モデルを想定し、\(\kappa_{cc} = 1.0\) とする。梁の曲げ剛性 \(I_b\) が無限大でせん断棒が両端で回転拘束された場合、\(K_{cc} = 12\Sigma EI_{ci}/H^2\) となり、\(\alpha_{cc} = 1/12\) となる。一方、\(I_b = 0\) でせん断棒が片持ち梁形状で変形する場合、\(\alpha_{cc} = 1/3\) となる。耐震骨格ののみの場合の \(\alpha_{cc}\) は上記の 2 つの値の範囲内にある。

P-Δ効果を考慮しない場合、考慮する場合の 1 次固有周期 \(T_s\) から式(6)により算出される全体 P-Δ指標 \(\theta_{global}^{MDOP}\) を表 2 に示す。3 階建ての場合、\(\theta_{local}^{MDOP}\) は 0.034 と比較的小さいが、9 階、20 階建ての場合、0.063、0.075 と大きな値になる。すなわち、高層になるに従って、P-Δ効果はより著しくなる。これは、文献 15)、16)で別の方法で示される結果と一致する。また、塑性時における 1 次の変形モードが弾性時と同一であるとする仮定として 1 自由度モデルに簡略化した場合、塑性化を起こしても正の接線剛性を保つ（すなわち、P-Δ効果を打ち消して建物の安定状態を保持する）ために必要となる塑性時における材料の接線剛性率は、9 階、20 階建ての場合、6.3%、7.5%以上という大きな値が必要であることを示唆している。

\[
\theta_{global} = 1 - \left(\frac{T_s}{T_p}\right)^2
\]
式(6)

また、3 階、20 階建ての建物について、柱材の中央高さに反曲点を想定してピンを導入することで部分骨格に分解したピン柱骨格を付図 1(b)の骨格モデルで曲げ棒を除いた部分の主要層における塑性時での材料の接線剛性率、P-Δによる接線剛性率、それらの合計の接線剛性率を表 3 に示す。9 階建ての場合は前報 4)に示す。ここで、梁端部に形成される塑性ヒンジをモデル化した回転はねに 3%のひずみ硬化率を仮定した。3 階建ての場合、2 層において合計の接線剛性率は 0.003 と僅かに負になる。20 階建ての場合、2 層に \(\alpha_{cc}\)

おいて P-Δによる接線剛性率が 0.129 と大きく、合計の接線剛性率は 0.091 と負の大きな値となる。このことより、曲げ棒による応効果がないとして、塑性化してでも正の接線剛性を保持するには、材料の接線剛性率を 12.9%以上大きくする必要があることが分かる。

静的減衰解析および動的時刻歴解析には MATLAB で筆者らが作成した解析プログラムを用いた。静的減衰解析では、弾性増分法 (Arc-length Method) 11) を用いて、最大耐力後の負荷を含む応答を追跡した。動的時刻歴解析では、建物の 1 次固有周期と周期 0.2 秒において 2%の減衰を仮定 Rayleigh 減衰 12) を用い、Newmark-β 法の平均加速度法 13) を用いた。動的解析での時間刻みは、地震加速度記録の時間刻みに設定し、外力増分量に相当する変位増分量を算出する際には修正 Newton-Raphson 法 14) を用いて収束計算を行った。

表 2 建物の 1 次固有周期 \(T_s\) と全体 P-Δ指標 \(\theta_{global}^{MDOP}\)

<table>
<thead>
<tr>
<th>式 (6)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3 階建て</td>
<td>1.03</td>
<td>0.034</td>
</tr>
<tr>
<td>9 階建て</td>
<td>2.26</td>
<td>0.063</td>
</tr>
<tr>
<td>20 階建て</td>
<td>3.43</td>
<td>0.075</td>
</tr>
</tbody>
</table>

表 3 ピン柱骨格における部分骨格の材料、P-Δ、合計の接線剛性率

<table>
<thead>
<tr>
<th>(a) 3 階建て</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>材料</td>
<td>P-Δ</td>
<td>合計</td>
</tr>
<tr>
<td>2 層</td>
<td>0.038</td>
<td>0.129</td>
</tr>
<tr>
<td>5 層</td>
<td>0.057</td>
<td>0.089</td>
</tr>
<tr>
<td>1 層</td>
<td>0.030</td>
<td>0.018</td>
</tr>
<tr>
<td>8 層</td>
<td>0.042</td>
<td>0.074</td>
</tr>
<tr>
<td>2 層</td>
<td>0.043</td>
<td>0.047</td>
</tr>
<tr>
<td>14 層</td>
<td>0.042</td>
<td>0.046</td>
</tr>
<tr>
<td>3 層</td>
<td>0.041</td>
<td>0.031</td>
</tr>
<tr>
<td>17 層</td>
<td>0.048</td>
<td>0.032</td>
</tr>
<tr>
<td>4 層</td>
<td>0.038</td>
<td>0.026</td>
</tr>
<tr>
<td>20 層</td>
<td>0.041</td>
<td>0.023</td>
</tr>
</tbody>
</table>

図 5 耐震骨格、耐震骨格+柱支持骨格の柱材の \(\alpha_{cc}\)

- 763 -
5. 仮定した塑性ヒンジ機構に対する検査効果

建物全体の安定性に表す固有値Ωは建物の塑性ヒンジ機構ならびにP-Δ効果で決定される。3階、20階建ての場合について、せん断棒モデルの全層が(1)弾性状態ならびに(2)塑性状態平面骨組では全ての梁端および最下層の柱脚で塑性ヒンジが形成された状態に相当の場合、式(5)で定義される曲げ棒の剛性率α_cを変数に、質量行列で規準化した剛性行列の1次，2次，3次モードの固有値Ω_mを算出し、図6，7に示す。ここで、P-Δ効果は考慮に入れず、9階建てについては付録6に示される。また、9階建ての建物を対象に、耐震骨組と建物支持柱組を合わせた場合の曲げ剛性(α_c=0.4)について、1層部分骨組から下から順に塑性ヒンジが形成するとした場合、最小固有値Ω_mを算出し、塑性ヒンジの数に対して図8に示す。

【低層の場合：3階建て】

せん断棒の各層が弾性状態の場合、図6(a)に示すように、曲げ棒の剛性率α_cが増加するとしたがい、1次モードの固有値は絶対増加しない。しかし、2次と3次モードの固有値はα_cが0.1よりもは0.01を超えた辺りから著しく増加した。せん断棒の各層が塑性状態の場合では、α_cが0であれば1次モードの固有値が極端に小さくなるが、図6(b)に示すように、α_cが0.01以上になると正となる。2次と3次モードの固有値は常に正となる。せん断棒が塑性状態としても塑性状態の場合ともに、耐震骨組と建物支持柱組を合わせた場合(α_c=0.3)は耐震骨組のみの場合(α_c=0.15)と比較し、1次モードの固有値は殆ど増加しない。しかし、2次と3次モードの固有値は著しく増加している。

【高層の場合：20階建て】

せん断棒の各層が弾性状態の場合、図7(a)に示すように、1次モードの固有値は概ね一定となる。せん断棒の各層が塑性状態の場合、α_cが0の時、1次、2次、3次モードの固有値はすべて正となる。これよりP-Δ効果を考慮すると、ピン柱骨組(9)において1層から14層までの部分骨組の塑性状態における接続剛性が負となるからである。

しかし、α_cが0から約0.25(耐震骨組のみ)の範囲で増加すると、1次モードの固有値は著しく増加する。しかし、0.25以上になるとあまり変化せず、α_c=0.25(耐震骨組のみ)とα_c=0.5(耐震骨組+建物支持柱組)の1次モードの固有値は概ね等しくなる。2次と3次モードの固有値は、全ての範囲で、α_cが増加するに従って増大し続ける。

以上の結果は、前面(3)で指摘したように、せん断棒の全層が弾性状態の場合は低層の場合は全層が塑性状態の場合を含む。1次の変形モードは建物の外見方向に概ね線形となり、これに対地上にピン接合された曲げ棒を加えても殆ど1次変形モードの剛性を増加させないことに起因する。しかし、高次変形モードは曲率を有するので、曲げ棒の剛性を増加させるに従い、それらモードの剛性は増加する。

すなわち、1次の変形モードに対して(1)建物が塑性化した場合に、(2)P-Δ効果を考慮する場合に、(3)中層の場合は、α_cが0から概ね耐震骨組のみの柱材の曲げ剛性の範囲にある場合に、および高次の変形モードに対して、柱材による曲げ棒効果は顕著となる。

【塑性ヒンジを下層部から進展させる場合】

9階建ての建物では、図8(a)に示すように、P-Δ効果を含めないと、全層の梁端部と最下層の柱端部に塑性ヒンジが形成されても(N=10)、最小固有値Ω_mは正の値を保つ。これは、塑性ヒンジをモデル化した回転ばネジのひずみ硬化率を設定しているためである。ところが、P-Δ効果を含めると、最下層や6層部分骨組まで塑性ヒンジが形成された(N=6)時点で、最小固有値Ω_mは負となる。すなわち、建物全体として不安定状態となることを示す。図8(b)に示すN=6に相当する塑性ヒンジ機構は、梁端部と最下層の柱端部に塑性ヒンジが形成された全体線形状態であり、構造設計上、望ましいとされる。しかし、動的安定性の観点からは、この塑性ヒンジ機構が形成される時点で建物は不安定状態となり、もしこの不安定状態が長時間継続されると、建物は1方向に片寄り倒壊する危険性がある。

![図6 3階建て建物の固有値(P-Δ効果あり)](image)

![図7 20階建て建物の固有値(P-Δ効果あり)](image)

![図8 塑性ヒンジ形成による最小固有値の変化](image)
6. 静的線増載荷時の心棒効果

静的載荷時における曲げ棒による心棒効果を評価するために、式(5)で定義される曲げ棒の剛性比を0.0から100まで増加させて、静的線増載試験を行った。この際、建物の高さ方向の線増載荷重はIBC(2003)12)に従った。全体変形角(最上階における水平変位を建物の高さで除した値)とベースシェアー係数(最下階のせん断力を建物全体の重量で除した値)の関係を3階と20階建ての場合について図9、10に示す。9階建ての場合は付録6に示される。ここで、P-A効果は考慮しない場合と考慮する場合の2通りについて行った。また、9階建ての建物について、耐震骨組と建物支持骨組を合わせた場合(αc=0.4)に全体変形角とベースシェアー係数の関係を図11(a)に、塑性ヒンジの進展による最小固有値Ωminの変化を図11(b)に示す。

【低層の場合：3階建て】

P-A効果を考慮しない場合、図9(a)に示すように、αcが増加しても弾性時における剛性は概ね一定である。これは、前報14で9階建ての建物について振動したように、静的線増載荷下において各層が建物の高さ方向に概ね線形に変形し、地面とせん断力で相対されている曲げ棒が概ね剛体回転し建物全体の剛性の増加に寄与しないからである。αcを0から0.3以上に増加させると、降伏時のベースシェアー係数は約20%から約30%に増加する。塑性時における接線剛性はαcが0の場合でもひずみ硬化により正の値となる。

P-A効果を考慮する場合、図9(b)に示すように、αcの増加に伴い、弾性時における剛性は概ね一定となるが、降伏強度は増加する。αcが0の時は、塑性時における接線剛性は若干低い値となるが、αcを0.01まで増加させると正の値となる。これは低層建物に適用するP-A効果は比較的小さいことを示す。αcが0.1(耐震骨組)から0.3(耐震骨組+建物支持骨組)に増加させると、降伏強度は若干増加するが、塑性時における接線剛性は殆ど増加しない。

【高層の場合：20階建て】

P-A効果を考慮しない場合、図10(a)に示すように、αcが0の時でも塑性時においてひずみ硬化により正の接線剛性を持ち、100まで増加しても、塑性時における接線剛性の増加は著しくない。

P-A効果を考慮する場合は、図10(b)に示すように、αcが0の時、降伏強度に達すると同時に著しい耐力低下が始まった。αcが増加するに従い、降伏強度と降伏後の接線剛性は増加する。しかし、αcを100まで増加させても、降伏後の接線剛性は僅かに負の値となり正にならない。これは、曲げ棒の剛性を増加させるに従い、変形モードは線形に近くずれ、その場合、曲げ棒が剛性増加に寄与しなくなることに起因する。αc=0.5の場合の最大耐力時の水平変位はαc=100の場合よりも大きい。これは、αcが大きい場合は各層が概ね同時に降伏するのに対し、αc=0.5の場合、各層の降伏開始時にはばらつきが生じ(多段階降伏)、接線剛性が段階的に減少することに起因する。

【最小固有値の変化】

9階建ての建物に対し、耐震骨組と建物支持骨組を合わせた場合(αc=0.4)、図11に示すように、全体変形角が2%程度に達した時点で、1層から8層までの端部と最下層の柱脚部に塑性ヒンジが形成されて負の接線剛性を呈するようになった。また、その時点で建物全体の最小固有値Ωminが負となった。すなわち、最小固有値Ωminが負となる不安定状態の開始点と最大耐力を達して負の剛性を持ち始める時点が一致する。安定論のより一般的な表現では、接線剛性行列の「特異点」と荷重変形関係の接線剛性が正から負となる「極限点」が一致することを確認した。このような、静的線増載荷下では、全体変形角とベースシェアーなどの荷重変形関係により不安定状態の開始点を予測できる。しかし、地質条件など不規則な動的載荷時には明確な荷重変形関係が得られないため、安定状態の開始点を予測するには、時間刻みごとに固有値解析を行う必要がある。
7. 地震外乱時における心棒効果

地震外乱時における心棒効果を総括的に評価するために、3 階、9 階、20 階建ての建物モデルを対象に、曲げ棒の剛性を \(\alpha \) を変数にし、生起確率 50%50 年、10%50 年、2%50 年に相当する最大加速度応答スペクトル値 \(S_a \) となるように、NFOS 地震動
\[\text{PGA = 0.063} \] に倍率を掛けた地震動を入力し、動的時刻歴解析を行った。生起確率 50%50 年、10%50 年、2%50 年に相当する \(S_a \) は、SAC 土木構造プロジェクトで用いられた Los Angeles における生起確率 50%50 年、10%50 年、2%50 年の 20 個ずつの地震動群に対する 3 階、9 階、20 階建ての建物の 1 次固有周期における \(S_a \) の相乗平均値として求めた。それらの値を表 4 に示す。本研究では、便宜上、生起確率 50%50 年、10%50 年、2%50 年の地震動をそれぞれ、「中」、「大」、「巨大」地震動と呼ぶ。

<table>
<thead>
<tr>
<th>表 4</th>
<th>50%50年</th>
<th>10%50年</th>
<th>2%50年</th>
</tr>
</thead>
<tbody>
<tr>
<td>3階建て</td>
<td>0.46g</td>
<td>0.80g</td>
<td>1.42g</td>
</tr>
<tr>
<td>9階建て</td>
<td>0.14g</td>
<td>0.33g</td>
<td>0.66g</td>
</tr>
<tr>
<td>20階建て</td>
<td>0.07g</td>
<td>0.19g</td>
<td>0.34g</td>
</tr>
</tbody>
</table>

動的時刻歴解析では、時間刻みごとに固有値解析を行い、式 (1) ～(3) で表される 3 つの動的安定係数 (材料安定係数 \(f_{\text{m}} \), 静定安定係数 \(f_{\text{c}} \), 全体安定係数 \(f_{\text{nc}} \)) を算出した。様々な曲げ棒の剛性 \(\alpha \) に対して、P-A 効果による剛性低下率を示す \(\alpha_{\text{m}} \) の最大値、材料非線形性と P-A 効果の複合効果による低減した接線剛性率を示す \(\alpha_{\text{nc}} \) の最小値、構造变形角 SDA の最大値、変形集中 DCF (SDA) の最大値を全体変形の最大値で除した値。ここで、全体変形: 最上階上における変形状況を建物の高さで除した値を図 12 に示す。これらの解析では、P-A 効果を含めずに解析して得られた SDA の最大値を比較のために図示している。

【低層の場合：3 階建て】
1. \(\theta_{\text{m}} \) の最大値は、図 12(a-1) にて示すように、地震動の大きさに依らず、\(\alpha \) が 0.2 以上の場合では、\(\theta_{\text{m}} \) の最大値は、式 (6) で算定される全体 P-A 効果 \(\theta_{\text{m}} = 0.034 \) に概ね等しかった。
2. \(\theta_{\text{nc}} \) の最小値は、図 12(a-2) にて示すように、巨大地震動に対しても、\(\alpha \) が 0.2 以下では、正の値を保った。すなわち、3 階建て建物は、地震動の間、安定状態を保った。これは、P-A 効果の小さい \(\theta_{\text{nc}} \) によることが起因する。
3. SDA の最大値は、図 12(a-3) にて示すように、中大震動に対して、1%～2%間で殆ど変化しないが、巨大地震動に対しては、\(\alpha \) が 0.1 以下の範囲で SDA は増大している。ここでは、P-A 効果を含めた場合に著しくなる。\(\alpha \) が 0.2 以上の範囲で SDA は概ね一定となった。
4. DCF は、図 12(a-4) にて示すように、地震動の大きさに依らず、\(\alpha \) が 1.0 以下になると大きくなり、巨大地震動に対しては、1.4 以上で増大した。\(\alpha \) が増大すると、建物の変形状況の水平変位変分が増大に適し、DCF は 1.0 に漸近する。
5. 耐震骨組と建物支持骨組を合わせた場合の SDA のみの場合 (\(\alpha = 0.3 \)) と耐震骨組のみの場合 (\(\alpha = 0.15 \)) を比較して、SDA は DCF に概ね変化しなかった。すなわち、柱材が弾性を保つ低層建物に対しては、建物支持骨組の柱材による心棒効果は小さい。

【中層の場合：9 階建て】
1. \(\theta_{\text{m}} \) の最大値は、図 12(b-1) にて示すように、大、巨大地震動に対して、\(\alpha \) が 0.2 以下の場合において、大きな変形状況に起因して、著しく大きな値となった。\(\alpha \) が 0.2 以上の範囲では、\(\alpha \) の増加に伴い、\(\theta_{\text{m}} \) の最大値は減少し、全体 P-A 効果 \(\theta_{\text{nc}} = 0.063 \) に漸近する。これは、\(\alpha \) が大きいと、建物の変形状況の水平変位変分が単位 1 に対応する値に近づくからである。
2. \(\theta_{\text{nc}} \) の最小値は、図 12(b-2) にて示すように、\(\alpha \) が 0.2 以下の範囲では、大、巨大地震動に対して負の大きな值となり不安定状態を示した。\(\alpha \) が大きな値に増加させると \(\theta_{\text{nc}} \) の最小値は僅かに負の値となり不安定状態を阻止できなくなった。これは、5, 6 章と同様、\(\alpha \) を増加させると建物の変形状況は線形に近づくが、その場合、曲げ棒が 1 次モードの剛性に寄与しなくなるからである。しかし、前報にて述べたように、\(\alpha \) が大きいため、一時的な不安定状態後の、弾性柱材の心棒効果により建物は安定状態に戻る。
3. SDA の最大値は、図 12(b-3) にて示すように、巨大地震動に対して、\(\alpha \) が 0.4 以下になると 5%以上となり、\(\alpha \) の減少に伴い、著しく増加した。\(\alpha \) が増加するに従って、SDA の最大値は、減少する傾向にあるが、特に巨大地震動に対して、\(\alpha \) が 2～10 の範囲では、建物の水平変位変分のモード変化に起因して、SDA の最大値が起始値が示される。すなわち、建物は概ね、\(\alpha \) の値より SDA の (a-1) ～(d) に示す変形状態のモードを示すが、\(\alpha \) が 2 以下の場合は、図 12(b-3) にて示すように、下階部にある変形状況 (所称、弓形の変形状況) とし、\(\alpha \) が 2～10 の範囲では、建物の上層部が下層部よりも大きな変状を示した。
4. DCF は、図 12(b-4) にて示すように、\(\alpha \) の減少に伴い著しく増加した。大、巨大地震動に対して、\(\alpha \) が 0.2 以下になると 2.0 以上まで増加し、\(\alpha \) が 10 以上となると DCF は概ね 1.0 となる。
5. 耐震骨組と建物支持骨組を合わせた場合 (\(\alpha = 0.4 \)) と比較して、巨大地震動に対して、SDA の最大値は 6%から 5%程度で、DCF は 2.0 から 1.6 程度で減少し建物支持柱材による心棒効果が顕著となった。しかし、中大震動に対しては、殆ど SDA は変化を示していない。
6. 大、巨大地震動に対して、耐震骨組と建物支持骨組の柱材に入力される曲げモーメントの大きさ方向の分布を図 13 に示す。参考のために梁と柱の全塑性モーメントを示す。ここで、梁と柱の降伏値は 341, 400(N/mm²) に設定した。耐震骨組では柱梁耐力比が大きいため柱材は弾性保持が長く、建物支持骨組では入力モーメントが柱材の全塑性モーメント降伏まで達した。

【高層の場合：20 階建て】
1. \(\theta_{\text{m}} \) の最大値は、図 12(c-1) にて示すように、\(\alpha \) の減少に伴い、著しく増加した。\(\alpha \) が 0.25 の時、大、巨大地震動に対して 0.4 程度となった。\(\alpha \) が増加すると従い、\(\theta_{\text{m}} \) の最大値は減少し、全体 P-A 効果 \(\theta_{\text{nc}} = 0.075 \) に漸近する。
2. \(\theta_{\text{nc}} \) の最小値は、図 12(c-2) にて示すように、中大震動に対して、\(\alpha \) が 0.25 以上のばら、正の値を示され、建物の振動を安定状態を示した。しかし、巨大地震動に対して、\(\alpha \) が大きいか、\(\theta_{\text{nc}} \) の最小値は負の値となった。
3. SDA の最大値は、図 12(c-3) にて示すように、\(\alpha \) が 0.25 以下の
4. DCF は、図 12(c-4)に示すように、\(\alpha_c\)が減少するに従い、著しく増加した。\(\alpha_c\)が 0.25 ∼ 0.5 の範囲では、地震動の大きさに係わらず、DCF は 2.0 ∼ 3.0 程度と、低、中層建物よりも大きな値となった。すなわち、高層建物では变形集中が著しくなる。

5. 耐震骨組と建物支持骨組を合わせた場合(\(\alpha_c=0.5\))は、耐震骨組のみの場合(\(\alpha_c=0.25\))と比較して、巨大地震動に対して、SDA の最大値は 5%から 4%程度、DCF は 3.0 から 2.5 程度に減少した。すなわち、高層建物において、各地震動に対して、建物支持骨組の柱材による心棒効果は顕著となる。

図 13 9 階建で建物の巨大地震時における層モーメント分布
8. 結論

本研究において、米国で一般に使用される耐震骨組と建物支持骨組
から構成される、日本の鉄骨構造を観て顕著に示す様に、3階(低
層)、9階(中層)、20階(高層)の鉄骨ラーメン構造を対象に、建物
を高さ方向に分けて柱材が建物全体の安定性や地震時応答に及ぼす心
棒効果を定量的に評価した。主な解析結果と知見を以下に掲げる。

1) 本研究で対象とした米国式鉄骨ラーメン構造では、耐震骨組と
建物支持骨組を合わせた場合の柱材の曲げ剛性率 \(\alpha \) は、耐震骨
組のみの場合の2倍程度となった。また、弾性1次モードに基づ
き式(1)で算定される、低層、中層、高層の建物の全体P-\(\Delta \)指標
は0.003、0.063、0.075となり、高層になるに従ってP-\(\Delta \)効果は
一般に大きくなる \(^{10,11} \)ことを確認した。

2) 低層建物において、梁端部の塑性化を仮定して \(\alpha \)を増加させる
と、高次モードの固有値は増加したが、1次モードの固有値は
殆ど増加しなかった。高層建物では、\(\alpha \)を0から0.25(耐震骨組
のみ)程度まで増加させると、1次モードの固有値は著しく増加
するが、\(\alpha \)をそれ以上増加させても、負の値のままは殆ど増加
しない。よって、高次モードに対しては、いずれの場合でも柱
材による心棒効果は顕著となるが、1次モードに対しては、梁
端部が塑性状態の上層建物において、現状の耐震骨組のみの
\(\alpha \)よりも小さい範囲では柱材による心棒効果が顕著となる。

3) 静的減加速度下の高層建物において、\(\alpha \)を増加させると0.5(耐
震骨組+建物支持骨組)程度までは、塑性状態の接線剛性が著しく
増加した。著者、高層建物では柱材による心棒効果は著しい
と考えられる。また、中層建物について、最も下の柱脚部から
降伏した時点での荷重-変形関係の接線剛性が負となった。この時
点(極限点)が接線剛性行列の最小固有値が負となる時点(特異
点)に一致することを確認した。

4) 地震外乱時において、曲げきの剛性率 \(\alpha \)が小さい変形集中を
引き起こし、\(\theta_{\text{モード}} \)(すなわちP-\(\Delta \)効果)が大きくなり、さらに層
間変形角が変形集中が増加して崩壊に至る可能性がある。中
高層建物では、耐震骨組と建物支持骨組を合わせた場合に相当
する値を有しても、大、巨大地震の間、全体降伏型の塑性ヒ
ンジ機構を形成している間、不安定状態になった。しかしながら、弾
性柱材の心棒効果により安定状態に戻り、地震時定の間、概ね安
定した挙動を示した。

5) 中、高層建物において、耐震骨組内の柱材に建物支持柱材の曲
げ剛性を足し合わせても、大、巨大地震時に、一時的な不
安定状態を阻止できなかった。しかし、建物支持柱材を組み
合わせると層間変形角と変形集中は低減し、建物支持柱材によ
る心棒効果が明確に観察された。

謝辞

本論文を執筆するにあたり、日本建築総合試験所 試験研究センタ
ー長の井上一朗先生および京都大学建築学科准教授の荒木慶一先生
から貴重のご意見を頂きました。また、京都大学防災研究所准教授
の(故)日高桃子先生には本論文の内容について議論して頂きました。
ここに記して感謝の意を表します。

参考文献

1) FEMA: State of the Art Report on Systems Performance of Steel Moment
2) 和田 章: 硬性骨組は損傷変形、鋼構造制振技術の現状と設計指針
への期待、2006 年度日本建築学会大会(関東)、構造部門(鶴構造)、
パネルディスカッション資料, 2006.9.
4) 田川 浩之, グレゴリー・マクレジイ, ローラ・ローズ: 動的安定系
数を用いた多層建物における地震時応答の評価 動的安定性の観
点からみた鋼構造骨組における心棒効果 その1, 日本建築学会構
造系論文集, No.618, pp.57-64, 2007.8.
5) Uetani, K. and Tagawa, H.: Criteria for Suppression of Deformation
Concentration of Building Frames under Severe Earthquakes,
6) 日本建築学会: 鋼構造建物設計指針, 11 章 座席解析法, 1996.
7) Araki, Y. and Hjelmstad K.: Criteria for Assessing Dynamic Collapse of
Elastoplastic Structural Systems, Earthquake Engineering and Structural
8) 田川 浩之, 山田 哲, 和田 章: 構面外挾持による外周構架の進行
性崩壊現象の解析的再現, 日本建築学会構造系論文集, No.624,
9) 吹田 啓一郎, 中島 正: 鋼構造建物における耐震設計基準の日米
10) 田川 浩之, グレゴリー・マクレジイ, ローラ・ローズ: 構造中心
型 2D 骨組の1D 混合せん断+曲げ極モデルによる縮小法の提案, 日
本建築学会構造系論文集, No.609, pp.41-48, 2006.11.
11) Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and
12) Chopra, A.: Dynamics of Structures – Theory and Application to
13) ICCI: International Building Code, International Conference of Building
14) Somerville, P. 等: Development of ground motion time histories for
phase 2 of the FEMA/SAC steel project, Rep. No. SAC/BD97/04, SAC
Joint Venture, Sacramento, California, 1997.
15) 井上 一朗, 吹田 啓一郎: 鋼構造構造 - その理論と設計 - 第2部
耐震解析と耐震設計, 建築出版会, 2007
16) 日本建築学会, 長崎周美地震と建物の耐震性, 建築構造物,
2.3 P-\(\Delta \)効果の影響, 2007.12
付録1 主な記号の定義

\(\alpha: \) 混合せん断+曲げ棒モデルにおける曲げ棒の剛性率であり、
\(E_{ls}/(K_aH_i^2) \) で定義される。ここで、\(K_a: \) せん断棒の水平剛性、
\(E_{ls}: \) 曲げ棒の曲げ剛性、\(H_i: \) 分部分骨組の高さ。

\(r_{\text{sd}}: \) 材料安定係数。材料非線形性に起因して低減した接線剛性の
初期弾性剛性に対する割合を示す。なお、1.0 は弾性状態。

\(\theta_{\text{sd}}: \) 構造安定係数。P-Δ効果に起因して低減された接線剛性の
初期弾性剛性に対する割合を示す。

\(r_{\text{loc}}: \) 全体安定係数。材料非線形性と P-Δ効果の複合効果に起因して
低減した接線剛性の初期弾性剛性に対する割合を示す。正の場合
は「安定状態」、負の場合は「不安定状態」である。

\(\Omega (\psi): \) 時間固有値であり、\(r_{\text{loc}} \) と正の符号が同一となる。

\(r_{\text{global}}: \) 全体 P-Δ損失であり、1/(T/T_s)²で算定される。ここで、\(T_s \)。

\(T \) はそれぞれ、P-Δ効果を含まない、P-Δ効果を含む場合の 1 次
固有周期、弾性 1 次モードに基づく、P-Δ効果を示す指標である。

付録2 Gravity Frame の説明

米国式ラーメン構造（Moment-resisting Frame）は、付図2(a)に示す
ように、地震荷重を支える「Seismic Frame」に主に建物の鉄直荷重
を支える「Gravity Frame」より構成される。本論文の「建物支持骨
組」は「Gravity Frame」の訳語である。力学的より明確な訳語と
して「鉄直荷重支持骨組」も考えられる。

付録3 4.1米国式ラーメン構造の簡略化

耐震骨組は混合せん断+曲げ棒モデルを用いた細部構の概略を附図
1. 5. 耐震骨組と建物支持骨組からなる米国式の鉄骨ラーメン構造
の概略構の概略を付図2に示す。詳細な説明は文献10)に示される。

付録4 4.2解析モデルの設定条件

本研究で対象にした3階、9階、20階建ての建物とともに、\(X \)、\(Y \)
方向の耐震骨組は同一であり、建物支持骨組内は半分の内柱で\(X \)、\(Z \)
の強度が、半分の内柱で引張、圧縮方向を一様に仮定した。よ
って、解析方向は問題とならない。耐震骨組の柱体部は地面に固定、
建物支持骨組の柱体部はビン接合として、混合せん断+曲げ棒モデル
の1層部分のせん断棒のバネ定数と曲げ棒の境界条件を設定した。
せん断棒の各層の変形はひずみ硬化3%のバイアス型とした。

付録5 混合せん断+曲げ棒の定式化

混合せん断+曲げ棒モデルの定式化の概略を付図3に示す。ここに
で、曲げ棒は、梁材とビンで接合された柱材と同様、各層において
せん断力は入力するが、曲げモーメントは入力しない。よって、曲
げモーメント分布は、付図3に示すように、高さ方向に連続した
形状となる。各層において入力される曲げモーメント \(M_{li} \) と \(\theta_{li} \)
となる条件を用いて、曲げ棒の剛性行列（付2）に示される。

なお、秋山らによる研究9)では、梁材とビンで接合させることで曲
げモーメント入力を低減した特定層への損失（エネルギー）を集中化
する特性を「配力柱」と定義している。本研究の「心棒」なら
びに「曲げ棒」は、秋山の定義する「配力柱」と同一義であると解釈される。ただし、秋山による研究19）では、配力柱を柔の「せん断棒」でモデル化し、耐震骨組をモデル化した剛の「せん断棒」と並列に連続した形式の「せん断棒+せん断棒」モデルを数値解析に用いている。本研究では、梁材とビンで接合した柱材を柔の「曲げ棒」でモデル化し、耐震骨組の部分骨組をモデル化した剛の「せん断棒」と並列に連続した形式の「せん断棒+曲げ棒」モデルを用いた。この心棒のモデル化の違いが、本研究と秋山による「配力柱」を用いた柔剛混合構造に関する研究8）との相違点の1つであると考える。

付録6 9階建ての建物の応答

前報4）において、9階建ての建物を対象にして、仮定した塑性ヒンジ機構に対する固有価解析結果、ならびに静的増幅載荷時における心棒効果について述べた。これらの結果を付図4と5に再掲する。

付図4 9階建て建物の固有値

付図5 静的増幅載荷時の挙動、9階建ての場合

付図6 9階建て建物の応答

付録7 日本のレベル1.2に相当する設計用地震に対する応答

本論文の第7章では、SAC鉄骨プロジェクト11）の方法に従い、建物の1次固有周期における加速度応答スペクトル値Saが50%、100%、2%の地震動レベルに相当するように地震動加速度に倍率を掛けて動的時刻歴解析を行った。日本の地震動設計では、次に示す4つの設計用地震動レベルの地震動加速度PGVに相当するように前実の地震動加速度に倍率を掛けて入力し、建物の地震時応答を評価することが一般的に行われる。

【レベル1】PGV=25kine

構造物の弾性限界内に留まることを確認するための地震動レベル

【レベル2】PGV=50kine

構造物の各部が塑性化を起こしても安定した復元力領域内に留まっていることを確認するための地震動レベル

日本の設計用地震動レベルに対する、本研究で用いた米国式建物の挙動・倒壊の把握を目的に、地震動NFOS15）のPGV=25, 50, 100kineによって設計地震動レベルを解析した結果、最大規模形よりSDAを付図6に、耐震骨組のみの場合、ならびに耐震骨組と建物支持骨組を合わせた場合に相当するαcに対する全体安定係数κcの最小値を付表1に示す。

付表1に示すように、PGV=25kine（レベル1）の地震動に対して、3階建ての建物は塑性化を起こすが、9階、20階建での建物は弾性挙動を示し、κcの最小値は0.93程度（1.0倍と小さいのはP-Δ効果による）が高い値になった。付図6に示すように、3階、9階建での建物の最大SDAは1%程度で、20階建では0.5%程度であり、P-Δ効果による層間変形の増加は見られない。PGV=50kine（レベル2）の地震動に対しては、3階、9階、20階建にて建物とともに、耐震骨組みに相当するαcでも、κcの最小値は0.095, 0.101, 0.103と正の値となった。すなわち、レベル2の地震動レベルに対して、各部は塑性化を起こすが全体として安定した挙動を呈し、上記の目標性能を達成すると考えられる。3階、9階、20階建ての建物ともに、最大SDAは2%前程度であり、P-Δ効果による層間変形の増加は見られない。

付図7 今後の課題

本研究では、動的安定性の観点からみた心棒効果を評価すため、安定性と同一義である「剛性」に着目した。今後の課題として、弾性挙動を確保するために必要な心棒の「強度」についても検討する必要がある。また、本研究では、層間変位（増分）形式の運動方程式をさらにモデル分解することで建物の時刻変な安定性を評価した。今後の課題として、運動方程式を積分することで総和をとしてのエネルギーの観点からみた心棒効果を大局的に評価する必要がある。

付表1 全体安定係数κcの最小値

<table>
<thead>
<tr>
<th>耐震骨組のみ</th>
<th>PGV(kine)</th>
<th>3階建て</th>
<th>9階建て</th>
<th>20階建て</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(レベル1)</td>
<td>0.214</td>
<td>0.937</td>
<td>0.924</td>
<td></td>
</tr>
<tr>
<td>50(レベル2)</td>
<td>0.095</td>
<td>0.101</td>
<td>0.103</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.047</td>
<td>-0.028</td>
<td>0.094</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>耐震骨組と建物支持骨組</th>
<th>PGV(kine)</th>
<th>3階建て</th>
<th>9階建て</th>
<th>20階建て</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(レベル1)</td>
<td>0.283</td>
<td>0.938</td>
<td>0.925</td>
<td></td>
</tr>
<tr>
<td>50(レベル2)</td>
<td>0.046</td>
<td>0.164</td>
<td>0.137</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.046</td>
<td>-0.015</td>
<td>0.125</td>
<td></td>
</tr>
</tbody>
</table>

（2009年9月9日原稿受理、2010年1月8日採用決定）