ビニロン繊維補強ポーラスコンクリートの調合設計法の提案

PROPOSAL OF MIX DESIGN SYSTEM OF VINYLON FIBER-REINFORCED POROUS CONCRETES

斎藤 俊克*, 出村 克宣**

Toshikatsu SAITO and Katsunori DEMURA

This paper proposes a mix design system of vinylon fiber-reinforced porous concretes with exact continuous voids and fiber content. The voids and the fiber content in mix proportions are proposed as factors of the mix design. The correction parameters of the fiber content in the mix proportion are also investigated in consideration of the target voids and water-cement ratio. The applicability of the proposed mix design system is confirmed in the case study of the concrete with the target voids of 20% and the fiber content of 0.5% using vinylon fiber having the length of 40 mm.

Keywords:
Vinyalon Fiber-Reinforced Porous Concrete, Mix Design System, Continuous Voids, Fiber Content, Correction Parameters
に示す。なお、繊維の形状は、モノフィラメント、ねじり無し、3：4断面である。

2.2 試験方法

2.2.1 繊維と粗骨材の混合物の単位容積重量及び実積率試験

JIS A 1104（骨材の単位容積重量及び実積率試験方法）に従って、繊維混和及び粗骨材の混合物について、単位容積重量及び実積率試験を行った。なお、試験は、繊維混入率（体積分率）を 0, 0.5, 1.0, 1.5 及び 2.0% と変化させて行った。

2.2.2 供試体の作製

JCI-SPO1-1「ポーラスコンクリートの供試体の作り方（案）」に従って、Table 6 に示す調合で、繊維混強ポーラスコンクリートを練り混ぜ、振動数 3200rpm のテーブルバイブレーターを用いて、寸法及び 10×10×40cm に成形し、JCI-SE4「湿潤法（70℃）によるコンクリートの促進強度試験方法」に従い、24h 湧空、24h 湧水（70℃）及び 1h 湧水中（20℃）養生を行って供試体を作製した。なお、平板からは、ポーラスコンクリートに使用する繊維のフロー値を 230 程度とすることによって、表面性状が良好で、下部にペーストが垂れないポーラスコンクリートを作製することが出来ると報告している。そこで、本研究においても材料層が生じないことを予備実験において確認し、結合材としてのセメントモルタルのフロー値が 230±20 となるように、高性能 AE 減水剤添加率を変化させて、調整した。

Table 1 Physical Properties and Chemical Compositions of Ordinary Portland Cement

<table>
<thead>
<tr>
<th>Density (g/cm³)</th>
<th>Blaine Specific Surface (cm²/g)</th>
<th>Setting Time (h:min)</th>
<th>Compressive Strength of Mortar (MPa)</th>
<th>Chemical Compositions (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.16</td>
<td>3310</td>
<td>2-17</td>
<td>28d</td>
<td>MgO 30.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SO₃ 65.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ug. loss 1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Alkali 0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chloride Ion 0.011</td>
</tr>
</tbody>
</table>

Table 2 Properties of Fine Aggregate

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>Density (g/cm³)</th>
<th>Water Absorption (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5~20</td>
<td>2.64</td>
<td>1.13</td>
</tr>
</tbody>
</table>

Table 3 Properties of Coarse Aggregate

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>Density (g/cm³)</th>
<th>Water Absorption (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5~20</td>
<td>2.64</td>
<td>1.13</td>
</tr>
</tbody>
</table>

Table 4 Properties of Air-Entraining and High-Range Water-Reducing Admixture

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Density (g/cm³)</th>
<th>Alkaline Content (%)</th>
<th>Chloride Ion Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark Reddish Brown Liquid</td>
<td>1.040~1.060</td>
<td>0.9</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Table 5 Physical Properties of Fibers

<table>
<thead>
<tr>
<th>Fiber Length (mm)</th>
<th>Average Diameter (mm)</th>
<th>Density (g/cm³)</th>
<th>Tensile Strength (MPa)</th>
<th>Elastic Modulus in Tension (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0.66</td>
<td>1.30</td>
<td>880</td>
<td>29.4</td>
</tr>
</tbody>
</table>

Table 6 Mix Proportions of Fiber-Reinforced Porous Concretes

<table>
<thead>
<tr>
<th>W/C (%)</th>
<th>Voids in Mix Proportion (%)</th>
<th>Water</th>
<th>Cement</th>
<th>Fine Aggregate</th>
<th>Coarse Aggregate</th>
<th>Fiber</th>
<th>AE-WRA** (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6</td>
<td>92</td>
<td>406</td>
<td>256</td>
<td>1568</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>9.8</td>
<td>88</td>
<td>392</td>
<td>246</td>
<td>1568</td>
<td>0</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>12.7</td>
<td>80</td>
<td>355</td>
<td>224</td>
<td>1568</td>
<td>0</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>13.4</td>
<td>78</td>
<td>345</td>
<td>217</td>
<td>1568</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>16.6</td>
<td>69</td>
<td>304</td>
<td>192</td>
<td>1568</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>17.2</td>
<td>67</td>
<td>298</td>
<td>187</td>
<td>1568</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>17.6</td>
<td>66</td>
<td>292</td>
<td>184</td>
<td>1568</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>22.2</td>
<td>53</td>
<td>233</td>
<td>147</td>
<td>1568</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>27.7</td>
<td>37</td>
<td>163</td>
<td>103</td>
<td>1568</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>8.7</td>
<td>98</td>
<td>433</td>
<td>273</td>
<td>1501</td>
<td>3.9</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>10.1</td>
<td>94</td>
<td>417</td>
<td>262</td>
<td>1501</td>
<td>3.9</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>12.8</td>
<td>86</td>
<td>381</td>
<td>241</td>
<td>1501</td>
<td>3.9</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>13.8</td>
<td>83</td>
<td>369</td>
<td>232</td>
<td>1501</td>
<td>3.9</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>16.7</td>
<td>75</td>
<td>332</td>
<td>210</td>
<td>1501</td>
<td>3.9</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>17.6</td>
<td>72</td>
<td>321</td>
<td>202</td>
<td>1501</td>
<td>3.9</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>17.8</td>
<td>72</td>
<td>318</td>
<td>201</td>
<td>1501</td>
<td>3.9</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>22.2</td>
<td>59</td>
<td>262</td>
<td>165</td>
<td>1501</td>
<td>3.9</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>27.8</td>
<td>43</td>
<td>191</td>
<td>121</td>
<td>1501</td>
<td>3.9</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>9.3</td>
<td>100</td>
<td>445</td>
<td>280</td>
<td>1457</td>
<td>6.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>10.3</td>
<td>97</td>
<td>433</td>
<td>272</td>
<td>1457</td>
<td>6.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>13.7</td>
<td>88</td>
<td>389</td>
<td>245</td>
<td>1457</td>
<td>6.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>14.0</td>
<td>87</td>
<td>385</td>
<td>242</td>
<td>1457</td>
<td>6.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>16.7</td>
<td>79</td>
<td>351</td>
<td>221</td>
<td>1457</td>
<td>6.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>17.8</td>
<td>76</td>
<td>336</td>
<td>212</td>
<td>1457</td>
<td>6.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>19.2</td>
<td>72</td>
<td>319</td>
<td>201</td>
<td>1457</td>
<td>6.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>22.2</td>
<td>63</td>
<td>281</td>
<td>177</td>
<td>1457</td>
<td>6.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>27.8</td>
<td>47</td>
<td>210</td>
<td>132</td>
<td>1457</td>
<td>6.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>10.6</td>
<td>107</td>
<td>475</td>
<td>299</td>
<td>1346</td>
<td>13.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>11.7</td>
<td>104</td>
<td>461</td>
<td>291</td>
<td>1346</td>
<td>13.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>14.6</td>
<td>96</td>
<td>425</td>
<td>267</td>
<td>1346</td>
<td>13.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>16.5</td>
<td>90</td>
<td>401</td>
<td>253</td>
<td>1346</td>
<td>13.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>16.7</td>
<td>90</td>
<td>398</td>
<td>251</td>
<td>1346</td>
<td>13.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>18.6</td>
<td>84</td>
<td>375</td>
<td>236</td>
<td>1346</td>
<td>13.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>21.7</td>
<td>75</td>
<td>334</td>
<td>211</td>
<td>1346</td>
<td>13.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>22.2</td>
<td>74</td>
<td>328</td>
<td>207</td>
<td>1346</td>
<td>13.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>27.8</td>
<td>58</td>
<td>257</td>
<td>162</td>
<td>1346</td>
<td>13.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Notes: *: Fiber content in concrete by volume. **: Air entraining and high range water-reducing admixture content to cement by mass.
2.2.3 空隙率試験

JCI-SP02-1「ポラーラスコンクリートの空隙率試験方法（案）」の「付属書（参考）角柱供体試」に準じて、空隙率試験を行い、供体体の連続及び全空隙率を算出した。

2.3 試験結果及び考察

Fig.1 には、繊維と骨材の混合物の失極率と繊維混入率の関係を示す。繊維混入率の増加に伴って、繊維と骨材の混合物の失極率は減少する傾向にある。又、繊維混入率が 0～2.0%増加することによって、実験値は 20%程度低下する傾向にある。このように、繊維混入率のわずかな増加によって実験値が著しく減少するのは、骨材間の短繊維が混入し、骨材の充てん性が損なわれるためと考えられる。従って、繊維補強ポラーラスコンクリートにおいては、短繊維が増加する体積分だけ単位繊維材量が減少するばかりではなく、充てん性の欠如による単位繊維材量の減少が生じると考えられる。したがって、繊維補強ポラーラスコンクリートにおいては、所要の繊維混入率を持つ繊維と骨材の混合物の実試験値を求めた上で適宜設計を行う必要がある。なお、繊維混入率と繊維と骨材の混合物の実試験値の関係は、次式の一般式で表すことができる。

\[y=ax+b \] (1)

ここで、\(y \) : 繊維と骨材の混合物の失極率（％）
\(x \) : 繊維混入率（％）（体積率分）
\(a \) 及び \(b \) : 実験定数

Fig.2 には、繊維補強ポラーラスコンクリートの調合時の空隙率（以下、調合空隙率と称する）及び実測した連続空隙率（以下、測定連続空隙率と称す）の関係を示す。繊維補強ポラーラスコンクリートの調合空隙率と測定連続空隙率の間には高い相関性が認められるが、測定連続空隙率は調合空隙率よりも大きくなる傾向にある。なお、Table 6 に示した調合空隙率は、上述した繊維と骨材の混合物の空隙を骨材としてのセメントモルタルが充填して、所要の空隙率が得られるように算出したものである。しかし、本研究における繊維補強ポラーラスコンクリートにおいては、骨材としてのセメントモルタルが骨材を被覆し、そのモルタル相に繊維が分散して、骨材を構成することによって短繊維による補強効果が生じる。その結果、繊維と骨材の混合物に比べて、骨材間の距離が大きくなり、このような現象が生じるものと推察される。従って、繊維補強ポラーラスコンクリートの調和設計時には、調合空隙率を目標空隙率よりも小さく設定する必要がある。

ここで、測定連続空隙率が調合空隙率よりも大きいということは、繊維補強ポラーラスコンクリートの練り上がり総量を 1000（ℓ）とし、Table 6 の調合に比べて、練り混ぜ後の総量は、それを超えていることになる。そこで、Table 6 に示した調合表の調合空隙率に測定連続空隙率を代入して、1000（ℓ）から測定した連続空隙の体積を減じた残りの体積を、Table 6 に示した各材料の体積の比率で分配して 1000（ℓ）に補正した。

練り混ぜ後の繊維補強ポラーラスコンクリートの総量が 1000（ℓ）となるように補正した後の連続空隙率と調合空隙率の関係を Fig.3 に示す。連続空隙率と調合空隙率の関係は、図中の実験式で示され、次に示す式（2）で表すことができる。

\[A_{\text{cont}} = a \times A_{\text{mix}} \] (2)

ここで、\(A_{\text{cont}} \) : 連続空隙率（％）
\(a \) : 実験定数

又、Fig.4 には、式（2）の実試験定数 \(a \) と繊維混入率の関係を示す。実験定数 \(a \) と繊維混入率の間には高い相関性が認められ、それらの関係は次実験式で表すことができる。

\[a = -0.066F_{\text{wra}} + 1.24 \quad (\gamma = 0.93) \] (3)

ここで、\(a \) : 式（2）の実試験定数

\(F_{\text{wra}} \) : 繊維混入率（体積率分）

従って、繊維補強ポラーラスコンクリートの調和設計においては、繊維混入率から式（3）を用いて実験定数 \(a \) を求める。
空隙率を得るための調合空隙率を次式によって算出できる。

\[A_{\text{mix}} = \frac{A_{\text{cont}}}{a} \] \hspace{1cm} (4)

ここで、\(A_{\text{mix}} \) : 調合空隙率(\%)
\(A_{\text{cont}} \) : 目標とする連続空隙率(\%)
\(a \) : 式(3)で与えられる定数

一方、調合空隙率とは、調合の繊維補強ポーラスコンクリート1000(\%)中の空隙の割合であり、その空隙には連続空隙と独立空隙が含まれている。従って、調合時には、それらの空隙の割合を示す必要がある。

そこで、Fig.5 には、連続空隙率と全空隙率の関係を示す。連続空隙率と全空隙率の間には高い相関性が認められ、これらの関係は次の実験式で表すことができる。

\[A_1 = 0.97A_{\text{cont}} + 1.63 \] \hspace{1cm} (5)

ここで、\(A_1 \) : 全空隙率(\%)
\(A_{\text{cont}} \) : 連続空隙率(\%)

3. 調合繊維混入率の検討

3.1 使用材料

使用材料は、2.1と同様である。

3.2 試験方法

3.2.1 ウェットスクリーニングによる繊維混入率の測定

JIS A 1112（プレッシュコンクリートの洗い分析試験方法）に準じて、Table 7 に示す繊維補強ポーラスコンクリートを繊り混ぜた。繊り混ぜた繊維補強ポーラスコンクリートを2層に分けて、100の容器に詰めて上をなした。その後、容器に詰めた繊維補強ポーラスコンクリートを鋼口寸法0.5mmふるいに排出しながら水をかけて、モルタル成分を洗い流し、ふるいにとどまった繊維を採取し、その後、採取した繊維を乾燥させ、その質量を測定して、繊維混入率を算出した。なお、Table 7 に示した繊維混入率を調合繊維混入率と称する。

3.3 試験結果及び考察

Fig.6 には、目標空隙率20%及び水セメント比22.5の繊維補強ポーラスコンクリートについて実測した繊維混入率（以下、測定繊維混入率と称）と調合繊維混入率の関係を示す。なお、2.3 で考察したように、Table 7 の調合で製造した繊維補強ポーラスコンクリートの総量を1000(\%)を超えることになるため、繊り混ぜ後の総量が1000(\%)になるように補正した調和上の測定繊維混入率を示している。繊維補強ポーラスコンクリートの測定繊維混入率は、

<table>
<thead>
<tr>
<th>W/C (%)</th>
<th>Target Voids (%)</th>
<th>Mix Proportions by Mass (kg/m³)</th>
<th>Fiber Content in Mix Proportion (%)</th>
<th>AE-WRA**</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0</td>
<td>20 (14.0)*</td>
<td>Water 80, Cement 398, Fine Aggregate 250, Coarse Aggregate 1457, Fiber 6.5</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>22.5</td>
<td></td>
<td>15 (10.3)* 97, 433, 272, 1457, 6.5</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td>25.0</td>
<td>20 (14.1)*</td>
<td>20 (13.4)* 78, 345, 217, 1568, 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20 (13.8)*</td>
<td>83, 369, 232, 1501, 3.9</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 (14.0)*</td>
<td>87, 385, 242, 1457, 6.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 (14.6)*</td>
<td>96, 425, 267, 1346, 1.3</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 (17.8)*</td>
<td>76, 336, 212, 1457, 6.5</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

*Notes: *：Voids in mix proportion (%)。
**：Air entraining and high-range water-reducing admixture content to cement by mass.
調合繊維混入率の増加に伴い大きくなる傾向にある。その差は、調合繊維混入率の増加に伴い大きくなる傾向にある。従って、繊維補強ポーラスコンクリートの調合設計時には、調合繊維混入率を目標とする繊維混入率よりも大きく設定する必要がある。なお、繊維補強ポーラスコンクリートの測定繊維混入率と調合繊維混入率の間には、高い相関性が認められ、図中に示すように、それぞれの関係は次の実験式で表すことができる。

\[F_{\text{mix}} = 0.75 F_{\text{min}} \quad (\gamma = 0.99) \]

ここで、\(F_{\text{mix}} \)：測定繊維混入率(%) \(F_{\text{min}} \)：調合繊維混入率(%)

Fig.7 には、水セメント比 22.5%及び繊維混入率 0.5%とした繊維補強ポーラスコンクリートの測定繊維混入率と目標空隙率の関係及び、目標空隙率 20%及び繊維混入率 0.5%としたものの測定繊維混入率と水セメント比の関係を示す。目標空隙率及び水セメント比の増加に伴い、繊維補強ポーラスコンクリートの測定繊維混入率は若干増大する傾向にある。従って、繊維補強ポーラスコンクリートの調合設計時にはこのことを考慮する必要がある。

そこで、水セメント比 22.5%及び繊維混入率 0.5%の繊維補強ポーラスコンクリートについて、目標空隙率 20%における測定繊維混入率に対するその他の空隙率をとした時の測定繊維混入率の比を、空隙による繊維混入率の補正係数 \(RF_v \) として求めた。

Fig.8 には、繊維補强ポーラスコンクリートの目標空隙率による繊維混入率の補正係数 \(RF_v \) と目標空隙率の関係を示す。

目標空隙率による繊維混入率の補正係数と目標空隙率の間には高い相関性が認められ、図中に示すように、それぞれの関係は次の実験式で表すことができる。

\[RF_v = -0.024A_m + 1.55 \quad (\gamma = 0.90) \]

ここで、\(RF_v \)：目標空隙率による繊維混入率の補正係数 \(A_m \)：目標空隙率(%)

又、目標空隙率 20%及び繊維混入率 0.5%の繊維補強ポーラスコンクリートについて、水セメント比 22.5%における測定繊維混入率に対するその他の水セメント比とした時の測定繊維混入率の比を、水セメント比による繊維混入率の補正係数 \(RF_w \) として求めた。

Fig.9 には、繊維補強ポーラスコンクリートの水セメント比による繊維混入率の補正係数 \(RF_w \) と水セメント比の関係を示す。

水セメント比による繊維混入率の補正係数と水セメント比の間に高い相関性が認められ、図中に示すように、それぞれの関係は次の実験式で表すことができる。

\[RF_w = -0.048W + 2.15 \quad (\gamma = 0.90) \]

ここで、\(RF_w \)：水セメント比による繊維混入率の補正係数 \(W \)：水セメント比(%)

以上のことを考慮して、繊維補強ポーラスコンクリートの調合設計においては、式 (6) の測定繊維混入率を目標とする繊維混入率を次式のように算出できるものと考える。

\[F_{\text{mix}} = F_{\text{min}} \times RF_v \times RF_w \]

ここに、\(F_{\text{min}} \)：調合繊維混入率(%) \(F_{\text{mix}} \)：目標とする繊維混入率(%)

4. 調合設計法の提案

以上の検討結果から、短繊維が増加すると、1)短繊維の体積分以上の単位体積骨材量の減少が生じること、2)調合時の 1000 (g) 中の空隙の量は繊維混入率において多くなること、3)調合時の繊維混入率に比べて繊維混入後のそれは小さくなることが明らかである。そこで、目標空隙率及び目標とする繊維混入率を得るために、調合時のこれらのことを考慮した、式 (4) 及び式 (9) のような調合空隙率及び目標繊維混入率を導いている。

これらを用いることにより、ビロニン繊維補強ポーラスコンクリートの調合設計法の手順を次のように提案する。なお、ここでは、本研究で用いた材料を使用することとする。しかし、他の材料を用いる繊維補強ポーラスコンクリートの場合でも、上述したような、短繊維の増加による①、②及び③の現象を考慮して、各実験定数を明らかにすることにより、同様の手順で調合設計が可能であると考える。

【使用材料】

セメント：普通ポルトランドセメント
骨材：細骨材（寸法：5mm 以下）、粗骨材（寸法：5～20mm）
補強用繊維：長さ 40mm のビロニン繊維
混和剤：高性能 AE 滅水剤

【調合条件の設定】

水セメント比：\(W_c \)（％）
セメント：\(C_{\text{em}} \)
骨材：\(V_{\text{em}} \)（体積比）
目標空隙率：\(A_m \)（％）（繊維混入後に目標とする繊維混入率）
目標繊維混入率：\(F_{\text{con}} \)（％）（繊維混入後に目標とする繊維混入率）
混和剤添加率：\(Ad \)（％）
【調合設計の手順】

(1) 次式より、繊維混入率から、調合空隙率算定定数を求める。
\[a = -0.065F_{\text{con}} + 1.24 \] \hspace{1cm} (10)
ここに、\(a \) : 調合空隙率算定定数
\(F_{\text{con}} \) : 繊維混入率(体積分率)

(2) 次式より、目標空隙率及び調合空隙率算定定数から、調合空隙率を求め、単位空隙率を\(V_{\text{am}} \) (k/m³)を算出する。
\[A_{\text{mix}} = \frac{A_{\text{a}}}{a} \] \hspace{1cm} (11)
ここに、\(A_{\text{mix}} \) : 調合空隙率(%)
\(A_{\text{a}} \) : 目標空隙率(%)
\(a \) : 調合空隙率算定定数

(3) 目標空隙率及び水セメント比から、調合繊維混入率の補正係数を求める。
\[RF_{w} = -0.024A_{\text{a}} + 1.55 \] \hspace{1cm} (12)
ここに、\(RF_{w} \) : 目標空隙率による繊維混入率の補正係数
\(A_{\text{a}} \) : 目標空隙率(%)

\[RF_{w} = -0.048W_{c} + 2.15 \] \hspace{1cm} (13)
ここに、\(RF_{w} \) : 水セメント比による繊維混入率の補正係数
\(W_{c} \) : 水セメント比(%)。

(4) 次式より、調合繊維混入率を求め、単位繊維量\(V_{\text{fm}} \) (k/m³)を算出する。
\[F_{\text{mix}} = \frac{F_{\text{con}} \times RF_{v} \times RF_{w}}{0.75} \] \hspace{1cm} (14)
ここに、\(F_{\text{mix}} \) : 調合繊維混入率(%)
\(F_{\text{con}} \) : 計算に用いる繊維混入率(%)

(5) 次式より、調合繊維混入率から、纖維と粗骨材の混合物の実積率を求め、単位粗骨材量\(V_{\text{gm}} \) (k/m³)を算出する。
\[y = -7.42F_{\text{mix}} + 61.9 \] \hspace{1cm} (15)
ここに、\(y \) : 繊維と粗骨材の混合物の実積率(%)
\(F_{\text{mix}} \) : 調合繊維混入率(%)

(6) 次式より、結合材としての単位モルタル量を算出する。
\[V_{\text{mm}} = 1000 - (V_{\text{am}} + V_{\text{fm}} + V_{\text{gm}}) \] \hspace{1cm} (16)

(7) モルタルの必要量は次のように算出する。
\[V_{\text{mm}} = V_{\text{mm}} + V_{\text{vm}} + V_{\text{gm}} \] \hspace{1cm} (17)
ここに、\(V_{\text{mm}} \) : 単位モルタル量(k/m³)
\(V_{\text{vm}} \) : 単位水量(k/m³)
\(V_{\text{gm}} \) : 単位骨材量(k/m³)

(8) 化学和剤を使用する場合には、モルタル中に添加するものをとして、その使用量を決定する。

(9) 決定した調合で試し練りを行い、所定の空隙を満たすことを確認する。
なお、Fig.10には、製作している調合設計法の手順を示す。

(10) 高性能骨材（5mm以下）を含むもの、および繊維混入量の練混ぜ調合は、Table 8のよう手順できる。

(11) 繊維が含まれている調合を作成するに当たって、目標とする総空隙率\(A_{\text{con}} \)の時の全空隙率\(A_{\text{a}} \)を次式より算出する。

\[F_{\text{mix}} = 0.97A_{\text{con}} + 1.63 \] \hspace{1cm} (18)
ここに、\(A_{\text{a}} \) : 全空隙率(%)
\(A_{\text{con}} \) : 総空隙率(%)

(12) 繊維混入コンクリート調合をTable 9のように記載できる。

5. 調合設計のケーススタディ

以下に示す例題において、提案した調合設計法を適用して、ビニロン繊維補強ポーラスコンクリートの調合を行い、その調合空隙率及び繊維混入率を確認し、調合設計法の有用性を検証する。

【例題】
次の調合設計条件におけるビニロン繊維補強ポーラスコンクリートの調合を求める。

(1) 使用材料
・セメント: 普通ボルトランドセメント（密度: 3.16g/cm³）
・骨材: 細骨材（粒径: 5mm以下）（密度: 2.57g/cm³）
・粗骨材（粒径: 5~20mm）（密度: 2.64g/cm³）
・補強用繊維: ビニロン繊維（纖維長さ: 40mm）（密度: 1.30 g/cm³）
・和剤: 高性能AE減水剤

(2) 調合条件
・水セメント比: 22.5(%)、セメント: 細骨材=1:0.77(体積比)
Table 8 Mix Proportions of Fiber-Reinforced Porous Concretes for Preparation

<table>
<thead>
<tr>
<th>W/C (%)</th>
<th>Voids in Mix Proportion (%)</th>
<th>Mix Proportions by Mass (kg/m³)</th>
<th>Fiber Content in Mix Proportion (%)</th>
<th>AE-WRA** (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Water × Density</td>
<td>Cement × Density</td>
<td>Fine Aggregate × Density</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W_{cm}</td>
<td>C_{cm}</td>
<td>V_{sm}</td>
</tr>
</tbody>
</table>

Table 9 Mix Proportions of Fiber-Reinforced Porous Concretes after Mixing

<table>
<thead>
<tr>
<th>W/C (%)</th>
<th>Total Voids (%)</th>
<th>Mix Proportions by Mass (kg/m³)</th>
<th>Fiber Content (%)</th>
<th>AE-WRA** (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Water × Density</td>
<td>Cement × Density</td>
<td>Fine Aggregate × Density</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W_{c}</td>
<td>C_{c}</td>
<td>V_{s}</td>
</tr>
</tbody>
</table>

Table 10 Mix Proportions of Fiber-Reinforced Porous Concretes for Case Study

<table>
<thead>
<tr>
<th>W/C (%)</th>
<th>Voids in Mix Proportion (%)</th>
<th>Mix Proportions by Mass (kg/m³)</th>
<th>Fiber Content (%)</th>
<th>AE-WRA** (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Water × Density</td>
<td>Cement × Density</td>
<td>Fine Aggregate × Density</td>
</tr>
</tbody>
</table>

論文中に示したような検討を行って、各実験値を明らかにすることにより、同様の手順で調合設計が可能であると考える。

謝辞
本研究の一端は、平成 20 年度科学研究費補助金特別研究員奨励費（研究代表者：齋藤俊行）の助成を受けた、ここに記して、謝意を表する。

参考文献
1) 日本コンクリート工学協会編：「コンクリートの設計・施工法の確立に関する研究委員会報告書」, 231pp., 2003.5
2) 村上 隆, 大谷俊治, 三井直之, 岩佐茂一：「コンクリートの強度性状, セメント・コンクリート論文集, No.54, pp.784-789, 2000
5) 齋藤俊行, 奈良和賢, 有岡大輔, 出村真宣：「コンクリートの強度性状, セメント・コンクリート論文集, No.30, No.1, pp.307-312, 2008.7
6) 平良 隆, 田中清人, 谷川孝雄, 森 博毅：「コンクリートの調合設計法に関する基礎的研究, コンクリート工学年次論文集, Vol.23, No.1, pp.121-126, 2001
9) 有岡大輔, 齋藤俊行, 出村真宣：「コンクリートの力学的性質, コンクリート工学年次論文報告集, Vol.31, No.1, pp.1717-1722, 2009.7

(2010年4月10日原稿受理, 2010年8月4日採用決定)