Full-scale shaking table tests were carried out at E-Defense to evaluate the seismic performance of a traditional wooden residential structure. The specimen was a post-and-beam frame with a plan dimension of 5.91 × 11.82 m and height of 7.53 m. A key feature of the specimen was the oversized beams and columns. The design seismic load resistance was provided entirely by mud plaster walls. The beam-to-column joints were achieved by an oak peg using no metal fasteners. Under BCJ-L2 shaking, the first story exhibited a story drift of 3.7%, and one of the corner columns cracked. At that stage, many of the mud-plaster walls had crumbled. The maximum recorded base shear coefficient was 0.5.

Keywords: Traditional wooden building, Mud plaster wall, Post and beam structure, Seismic performance, Base shear coefficient, Full-scale test

1. はじめに

伝統的な木造建物とは、主に手作りで作られ、古い民家に見られるような構法を採用した軸組構法の建物を指す。これらの建物は、各地域の気候風土に適応した構造の・意匠的な特徴を持つように変化し、現在でも地方や都市郊外などに新築されている。伝統的な木造建物は、組合せ屋根・簡易な構造用合板で構成された耐力壁を多く有する現代の在来木造と比較して、剛性・最大耐力が低く建物重量も重いと言われている。1995年兵庫県南部地震の被災調査では、在来構法の木造建物は、古くななる程、大きな被害を受ける傾向にある」と報告された 1)。しかし、近年、伝統木造建物の耐震性能を再評価する調査・研究 2) 3) 4) 5) 6) 6)が多く行われている。

伝統的な木造建物の特徴的な耐震性能は、変形性能が高く耐力が弱いことが鈴木らの研究より明らかとなってきた 3)。また、伝統木造が持つ構造的・意匠的な地域性が耐震性能にも影響を与えることが指摘されている 4)。これらの建物で主要な耐震要素である土塗り壁については、中治 6) や大橋 7) らの実験的研究により、壁断面率が 1.5 まで認められるようになかった 8)。これらの研究成果を基にした伝統的な木造建物の構造計算手法として、保有耐力による手法 (精密診断法 1) 9) が挙げられる。その他にも、限界耐力計算による手法 10) や、許容応力度計算による手法 11) などが挙げられる。しかし、伝統的な木造建物の耐震性能は、現在でも未解明の部分が多く、特に建物の最大耐力が実大振動実験で計測された事例はない。

筆者らは、平成 20 年度の国土交通省補助事業「木造住宅の安全性・信頼性向上のための供給体制調査事業」の一環として、伝統的な木造建物の耐震性能を再評価する調査・研究 2) 3) 4) 5) 6) 6) が多く行われている。
2. 試験体概要

2.1 試験体の耐震仕様と構造的概要

試験体は、伝統的な構法の実大2階建て1棟（以下、A棟）を新築した。基本モジュールを985mmとし、平面寸法11.82×5.91mの最長高さ7.55m、階高は1階2.85m、2階2.75mである。筋かいは無く、柱と梁などの接合部には金物を極力用いていない。試験体のアイソメ図を図1に、試験体各階の平面図を図2に示す。

土壁の壁厚を1.5とし、接合部の仕様規定を満たすとした場合
の建築基準法施行令（以下、令）および、「住宅の品質確保の促進等に関する法律（以下、品質法）」における各階耐力壁の壁厚、柱を充実率（以下、充実率）、偏心率などを表1に示す。品質法の充実率では、1階各方向とも0.9程度と必要壁厚を満足しているが、令の充実率では各階とも1.0を超える壁厚である。偏心率も令において1階が概ね0.3以下とした。

![図1 試験体平面図](image1.png)

![図2 A棟各階平面図（単位mm）](image2.png)

<table>
<thead>
<tr>
<th>表1 建築基準法施行令および品質法によるA棟構造概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>A棟</td>
</tr>
<tr>
<td>品質法</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>令</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

![図3 A棟1階室内（リビングより）](image3.png)

a) ほ一柱断面（1階） b) ほ一柱接合部詳細長手（1階） c) ほ一柱接合部詳細短手（1階） d) 仮鴨居詳細長手（2階）

![図4 接合部の仕様（単位mm）](image4.png)

- 2002 -
試験体の軸線について述べる。材種は、ほぼ天然乾燥のスギを用いた。含水率は概ね15~20%であり、天然乾燥期間は約12ヶ月である。

製作された段階で柱の曲げ実験を行い、ヤング係数が等級E70 からE90に相当する材を試験体軸線に用いた。柱はスギの120~210mm 角までと比較的大きいサイズとした。通し柱は計12本とし、標準断面寸法は150mm 角、図3の写真中央に示す「は一四柱および、「り一四柱」の2本のみ210mm 角とした。管柱は120mm 角である。接合部は長さぞまし検査を行うと、柱の厚さを長さ120mm、厚さ36mmである。

この柱は直径15mmとカシを用いた。1階柱脚は、地盤上層である120mm 角のスギに対して、通し柱、管柱の柱勝ちとして礫石の上に載せるのみとした。横材は、柱にスギとし、梁の断面寸法120×300mmとした。ただし、2階梁の四通りを通る長さ約12mの丸太梁の地盤のみ、底口350mmのマホを用いた。表木柱は図2に示すよう1階10本、2階14本設置した。差し梁の断面寸法は、長手・短手で違い、長手方向300mm、短手方向240mmの差をとった端部は15×18mmの角柱断面とした。「は一四柱」差し梁接合部の詳細を図4に示す。貫は15×105mmとし、1階は4段、2階は3段とした。

水平構造の床板は、各階とも杉板の厚さ30mm、幅190mmの実物とし、N75 釘を3本通天釘打で各階梁に根太無しで留めつける柔軟な仕様とした。小屋根は、各階120×120mm、小屋根には15×105mmの小屋貫を入れ、60×60mmの垂木、120×12mmの野地板を敷いた。

土塗りは文献13に準拠した施工を行い、関西土(京都深草)を使用した。塗り厚は耐震および防火機能を確保するため、荒土60mm、中塗り20mmの計80mmとした。なお、半柱にとりつけは、荒土45mm、中塗り土20mmの計65mmである。塗布は無しとし、下地は、真漆し竹、小舞柱とともに耐久竹を使用し、真漆し竹材竹材竹は樹皮をせん分し、真漆し竹材竹材は樹皮をせん分し、真漆し竹材竹材は樹皮をせん分し、真漆し竹材竹材は樹皮をせん分し、真漆し竹材竹材は樹皮をせん分し、真漆し竹材竹材は樹皮をせん分し、真漆し竹材竹材は樹皮をせん分し、真漆し竹材竹材は樹皮をせん分し、真漆し竹材竹材は樹皮をせん分し、真漆し竹材竹材は樹皮をせん分し、真漆し竹材竹材は樹皮をせん分し、真漆し竹材竹材は樹皮をせん分し、真漆し竹材竹材は樹皮をせん分し、真漆し竹材竹材は樹皮をせん分し。小屋根は、すす5分均配の切り替え根とし、軒の出900mm、けらの出640mmである。瓦は乾燥無しで三州瓦を用い、ガイドライン工法13で施工した。

段階は、建物の耐震性能に影響を与えることが既往の研究11より明らかとなっているため、仮設段階を用い、実験中は取り外すことで、段階無しの状態とした。また、天井・窓ガラスなどの建材やサッシ・浴室など、二次部材や非構造部材は無し。実験では、試験体を地盤と見なした鉄骨枠の礫石上に建設する。礫石は高さ100mmとし、横断面寸法は柱サイズの約1.5倍を目安として315×315mm(210mm角の柱)から165×165mm(105mm角の束)とした。鉄骨枠と試験体は、水平方向の移動は拘束するが、上下方向の浮き上がりは150mmまで許容するよう鋼製ダゴボを施工した。鋼製ダゴボの径は、通し柱で30mm、管柱で22mmとし、柱にはダゴボ径+5mmの穴を設け、ダゴボが柱が割れないように、柱側を鋼板のタガで割った。上下方向は、すべての通し柱1階柱脚にホルダウワン金物(以下、HD金物)を設置し、柱が150mm以上浮き上がった時にのみ拘束するようした。また、試験体の内部には建物が鋼製にする際にのみ使用し、倒壊を防止するワイヤーを各階に配置した。

2.2 試験体の建設と重量

実験日は100日以上前から土塗りの土塗りをはじめ、夏期の間に水を行わせを行い養生した。施工手順は、荒塗り、荒塗りを行い、むらし・ちり作りの作業のあと、中塗りを実施した。荒塗りの施工は荒塗りの1週間に後に、中塗りは荒塗りが十分に乾燥したことを確認して荒塗りから3週間に後に実施した。試験体の各階には、固定荷重・積載荷重として石両ボロードを敷き、ボルト等で各階梁に固定した。なお、小屋根には、天井を想定した固定荷重として鶴鉄製を配置した。積載荷重は、令第54条に定められた地震力を計算する場合より600kN/m²とした。固定荷重は、令第84条から建前、天井などを想定した重量とした。積載荷重の合計は1階55.9kN、2階70.4kN、小屋14.7kNである。

試験体の正確な重量を明らかにするため、実験前に建物全体の重量計測を実施した。その後、各要素の単位重量・面積などから質量系に割り振り、重量を求めた。以上より、試験体の質点系に置換した荷重は、図5に示す1階207.43kN、2階173.86kNである。

2.3 常時微動試験における試験体の振動特性

試験体は、床面に杉板の床を用いたため、柔軟な振動が顕著となる可能性が高い。そこで、試験体の基本的な振動特性の把握を目的とした常時微動計測を実施前に実施した。本論文で実験体は、水平構造がせん断変形することを示す。常時微動計測にはサプープ速度計を使用し、図2に示す地表面面1点(A)、1階1点(B)、2階1点(C)の計3点を設置した。計測は、長手方向微動を、サンプリング周波数100Hzで10分間、計測した。計測は、長手で4点(A, D, E, F), 短手3点(A, E, G)および3点(A, G, H)の同時計測とした。計測された常時微動データから、ノイズがない40~96秒の区間を複数個選び、FFTおよびアンサンブル平均により、2階C-H各点の地表面面A点に対する速度フーリエスペクトル比および位相角を算定した。求めたスペクトル比のピーク振動数から、建物の卓越振動数を読み取った。また、卓越振動数におけるスペクトル比の振幅および位相角から、建物の平面振動モードを求めた。

試験体の常時微動計測から得られたフーリエスペクトル比と各振動モードを図示する。
動数の平面振動モードを図6、7に示す。図6および位相差から、試験体の固有振動数は、長手方向2.8Hz、短手方向2.6Hzと読み取った。また、3.8Hzにおいて、試験体が振れ振動している様子が見られた。図7の平面振動モードからも、2.6Hz、2.8Hzでは床がせき断変形しながら振動し、水平横梁が柔らかいように見えて取れるがその影響は比較的小さい。3.8Hzでは全体の振動性状に占める割合は小さいものの、振り振動が見られる。短手方向で、「い通り」側の振幅が大きくなる傾向が見られるが、建物としては一体となって振動している様子が見られた。

以上より、建物は一体となって振動しており、柔軟の影響は比較的小さいことが常時微動計測から読み取れる。

3. 試験体の損壊状況と建物全体の耐震性能評価

3.1 計測計画
試験体の振動特性を計測するため、加速度計、変位計、ひずみゲージの3種類のセンサーを試験体に配置した。加速度計は歪型、変位計はロッド式、キーワー式やレーザー式変位計を、ひずみゲージはポリエチレン製のものを使用した。

加速度計は、試験体の根部分に配置し、各層5箇所の1-3方向計測を実施した。変位計は、層の層間変位を計測するために各層14箇所の計測と、画像変位計測も行った。各合柵の変位を回転の計測には、ロッド式の変位計を用いた。ひずみゲージは接合部近くに貼り付け、各合柵部分から200mm離れた箇所がゲージ中央となるようにした。

3.2 入地震動と試験体の卓越振動数
加振は2日間実施した。入地震動は、日本建築センター模擬波（基盤波）のBCJ-L2波、1995年兵庫県南部地震の強震記録（JMA・神戸波、JR・宮島波）で、ステップ波を用い震動台に変位制御で入力した。

BCJ-L2波による加振は、変位振幅を20%、100%に調整して2種類を水平1方向に加振を行った。これは、20%の加振が建築基準法（以下、基準法）の中地震に、100%の加振が基準法の大地震に相当する地震力を想定している。JMA神戸波、JR・宮島波は3方向同時入力の100%加振を行った。これらの強震記録による加振は、基準法を超える地震動と位置づけた。強震記録波は、試験体長手方向にJMA神戸波でNS成分、JR・宮島波でEW成分を入力した。震動台上の加速度計で得られた各波形より、加速度応答スペクトル（Sa）と変位応答スペクトル（Sa/d）の関係を図8に示す。加振は、BCJ-L2波20%（水平1方向毎）、100%（水平1方向毎）、JMA神戸波、JR・宮島波の順番で実施した。

また、各加振間にはステップ波加振を行い、試験体の卓越振動数、
3.3 損傷状況
加振は、BCJ-L2 波 20%長手加振・短手加振、BCJ-L2 波 100%長手加振・短手加振、MA 神戸波 100%方向同時加振、JR 鹿児島波 100%方向同時加振の順番で実施した。実験を通じて試験体の補修は行わなかった。試験体は、BCJ-L2 波 20%加振（基準法の地中震想定）で柱と土壁間に隙間が生じなかった程度で損傷が見られなかった。損傷が顕著となったのは、BCJ-L2 波 100%加振以後である。各加振における損傷写真を図 9-11 に、1 階の損傷状況を図 12 に示す。なお、すべての加振を通じて、2 階土壁の剥落、屋根瓦の損傷は見られなかった。

・BCJ-L2 波 100%加振
BCJ-L2 波 100%加振（基準法の大地震想定）によって、土壁のひび割れ・剥落、柱 1 本にひび割れが生じた。土壁のひび割れは加振方向の 1 階壁表面に多く見られ、貫金および筋筋部の横梁部よりひび割れが発生し、伸ばしている様子であった。なお、短手方向の加振時には、長手・短手の土壁が 1 階ずつ剥落した（図 12）。軸組の損傷では、短手方向の加振において、「L」を矢印付し柱 1 本にひび割れが発生した（図 9 a）、（図 12）。また、加振中の様子より、1 階柱脚の浮き上がりが隅角部において数 mm 生じていることを確認した。

以上より、基準法の大地震を想定する加振によって、試験体 1 階の土壁の剥落、柱のひび割れが生じたが建物は倒壊しなかった。

・JMA 神戸波 100%加振
JMA 神戸波 100%の加振（基準法の想定地震を想定）では、多くの土壁・柱に剥落、ひび割れが生じた。柱の損傷は、図 12 に示す通り柱 8 本、管柱 2 本にひび割れが見られ、通し柱の 2 本は割れ損し高さで、管柱は差違高さでひび割れが発生していた。1 階柱脚の浮き上がりは隅角部において大きく生じたことを確認した。土壁の損傷は、図 10 に示すように 1 階部分の土壁の多くが剥落し、小舞竹が見える状態となった。

以上、基準法の想定地震に相当する 1 回目の加振により、1 階の多くの土壁・柱に剥落、ひび割れが生じたが、建物は倒壊しなかった。

・JR 鹿児島波 100%加振
JR 鹿児島波 100%の加振（基準法の想定地震を想定）では、1 階すべてにひび割れが生じ、図 11 a) に示すようになった倒壊防止ワイヤーが作用した。これは、倒壊防止ワイヤーによって倒壊を防ぐ状態である。損傷は、土壁・柱に図 11 b), c) のようにひび割れ・剥落が生じた。

以上より、試験体は実質的な倒壊状態となった。

3.4 荷重変形角関係
試験体の各通りに設置した加速度計、変位計より、建物の荷重変形角関係を求めた。変形角・耐力の値は、図 2 に矢印で示す方向を正とした。質点系荷重および層間変形角を求める各階の階高は、図 5 に示す値を用いた。層間変形角は、層間変位を図 5 に示す階高で除して無次元化したものを 100 倍した「%」で表現した。建物全体の荷重変形角関係は、長手方向で「老」、「四、七通り」の短手方向では、「は、り通り」の平均値より算出した。なお、加速度計、変位計
の計測値は15Hz以上の周波数成分をロパスフィルタカットした。主要な加振における各段長手・短手方向の荷重変形角関係および、骨格曲線を図13に示す。JR鷲取線を用いた実験は、試験体が倒壊状態で計測値にノイズが多く含まれていたため本論文では議論しない。

図13 a)より、試験体長手方向1階は、BCJ-L2波100%加振によって最大耐力を198.2kNを記録した。これは、質点系重量の合計で除したベースシア係数(以下、C)0.52となり、1階層間変形角(以下、R)3.1%で記録した。その後実施したJMA神戸波100%の加振では、再度C0.52をR4.1%で記録している。また、Rが最大値となった7.8%でも最大耐力の85%を保有しており、本試験体の高い能性を確認した。試験体短手方向は、図13b)よりBCJ-L2波100%加振によってC0.41を2.0%で記録した。JMA神戸波100%の加振ではC0.47をR2.4%で記録した。

以上より、建築基準法の大地震を想定した加振において、試験体の最大ベースシア係数は約0.5を記録した。

3.5 大変形時の試験体挙動

試験体の振れ挙動を確認するため、各通りに設置した変位計により、通り毎の最大層間変形角を求めた。主要な加振における各通りの最大変形角を長手・短手方向別に図14に示す。図14は各通りが最大変形角を記録した時刻は異なるが、長手方向では開口部が多い「七通り」がすべての加振において最も変形し、BCJ-L2波100%加振で3.7%(図13において3.1%)、JMA神戸波100%の加振では9.1%(図13において7.8%)を示した。短手方向は、BCJ-L2波100%加振にて、「一通り」が最も大きく変形したが、JMA神戸波100%の加振では「通通り」が最も大きく次に、「一通り」が大きく変形している。これは、BCJ-L2波100%加振によって図9a)に示す「いー壊」通し柱にひび割れが発生したためと考えられる。

次に、JMA神戸波100%加振時の平面振動モードから、試験体の水平剛性と振れ挙動を確認する。応答変位の時刻歴より、長手方向・短手方向が、それぞれ最大変形した時刻の平面振動モードを図15に示す。水平柾面の柔軟なせん断挙動よりも振れ振動成分が含まれることが確認できる。

以上より、試験体の最大層間変形角は、主要な通りで異なる値を示した。また、大変形時には振れ挙動が顕著に見られた。

4. 強震時における接合面挙動および軸組応力の考察

4.1 柱脚の浮き上がり

本試験体の柱脚は、2.1節で述べたように節石の上に載せただけの状態であり、柱脚が150mm以上浮き上がった場合にのみ作用するHD金物を設置して実験を行った。加振実験では、映像から柱脚の浮き上がりが確認されたため、浮き上がり変位量を検討する。柱脚の浮き上がり変位は、柱脚に設置したレーザー式変位計より、両柱脚浮き上がり変位を算出した。具体的には、柱の回転角が1階の層間変形角と等しいとし、層間変形角に幅を乗じて得られる柱の回転変位を減じた値とした。JMA神戸波100%加振における真の柱脚の浮き上がり変位の最大値を図16に示す。浮き上がりの計測は試験体外壁面のみで実施した。図16は加振開始から17秒までの最大値であり、各柱が最大値を記録した時刻は異なる。17秒以後の計測値は、土壁の剥落・脱落によりレーザー光が遮られてしまったため、本論文では用いない。

図16より、真の柱脚の浮き上がり量は、「わ・七」柱脚が約85mm
あった。また、試験体 4 例の柱の浮き上がり量は大きい。BCJ-L2 波 100%加振でも同様の傾向が認められ、最大浮き上がり量は約 25mm であった。HD 金物に貼付けたひずみゲージから求めた軸力も極めて小さく、浮き上がり拘束によって生じたものは考え難しい。

以上より、試験体の強震時挙動は JMA 神戸波までの加振において柱脚の浮き上がりに対する拘束が少ないことが確認された。

4.2 接合部の曲げモーメント回転角関係

強震時における軸組の応力状態について検討する。軸組の応力は、柱脚側に貼り付けたひずみゲージ値から曲げモーメントとせん断力を算出する。曲げモーメントはひずみ値にヤング係数と断面係数を乗じ、ローバスフィルタ処理を行った。土壁を持つ柱の場合、土壁を施設していない「り一」の部分にゲージを貼り付けた JMA

図 17 JMA 神戸波 100%加振における長手方向の曲げモーメント（単位：kNm）

図 18 JMA 神戸波 100%加振における短手方向の曲げモーメント（単位：kNm）

同様に JMA 神戸波 100%加振における短手方向の曲げモーメント分布として、「い一通りの曲げモーメント分布を図 19 に示す。図 17 と同様に、「い一」柱の曲げモーメントは最も大きく、2 階の値はすべての柱で小さい。一方、全面壁が多い「い通りの曲げモーメントは全体的に小さい。

JMA 神戸波における 1 階柱頭部分の最大曲げモーメント分布を図 19 に示す。図 19 は柱が最大値を記録した時間帯であるが、「い一四」柱頭で 53.8kNm を記録した。これより、柱の断面欠損が無いと仮定したスギの曲げ基準材料強度 (E90:34.8N/mm²) と同等の 34.9N/mm² となる。その他の柱では、「い一四」柱、150mm 角の隅柱「い一七」柱と、「い一七」柱の値が大きい。「い一七」柱の最大曲げモーメントは 16.7kNm であり、応力比は 29.7N/mm² となる。これは、スギの曲げ基準材料強度 (E70:29.4N/mm²) と同等である。図 12 に示す柱の断面の形状で、図 19 の大きな曲げモーメントが記録された箇所は、良い相関を示している。また、断面寸法の大きな柱が大きな曲げモーメントを記録している様子が見られる。

以上より、損傷した柱の応力比は曲げ基準材料強度程度で実測していたこと、独立柱には大きな曲げモーメントが作用したことが確認された。

5. まとめ

柱・梁などの主要軸組が比較的よく接合金物を多用しない、いわゆる伝統的な構法で建設された木造軸組建物の耐震性能の検討を目的とした実大震動台実験を行った。試験体は地方型の比較的軸組断
面が大きい住宅を想定した。建築基準法の必要壁面率1.0を土壌域壁で満足するが、接合部の仕様規定は満たさない新築3階建である。損傷観察、ベースシア係数、層間変形角、軸組のモーメント、接合部の挙動を用いた分析より、耐震性能の検討を行った。本実験で得られた結論を示す。

1) 建築基準法の大震度を想定したBCL-2波100%加振において、試験体1階の土壌が剥落し、通し柱のひび割れが生じた。この加振による最大ベースシア係数は約0.5、1階最大層間変形角は5.7%であったが建物は倒壊しなかった。

2) 建築基準法を超える地震動ととした加振では、1回目のJMA神戸波加振によって1階最大層間変形角9.1%に至り、2回目のJRA鷹取波加振によって倒壊状態となった。ベースシア係数は、1階最大層間変形角3.0〜9.0%程度まで最大値0.5程度を維持していた。

3) 柔床仕様とした本試験体は、大変形時における1階最大層間変形角が主要な通りで達わる値を示したが、建物全体は一体として振動し、柔床の影響は比較的小さい。また、大変形時には振り揺れ動揺が見られた。このような特徴は、常時微動計測からも確認された。

4) 柱脚の上下方向の移動を拘束しない納まりとしたが、大変形時には1階柱脚の浮上がり挙動が見られた。浮上がり変位は隔壁柱を大きく、最大85mmを記録した。

5) 大変形時に生じる軸組の曲げモーメントは、同じ通りであっても土壌基面に傾斜する柱より土壌基面に垂直な柱の方が大きい。特に断面の大きな独立柱の曲げモーメントが大きくなり、本実験で損傷した柱の応力度は、曲げ基準材料強度程度に達していた。

本実験から、土壌、柔床仕様かつ接合部が込み背留めの伝統的な木造建物は、建築基準法の充足率1.0を超える壁量を持つ場合、最大ベースシア係数が0.5程度を有する壁量計算の有用性が確認された。

また、1階層間変形角9.1%に至るまで、柔床的な挙動は小さく、柱脚接合部の浮上がりが生じた状況で建物は主にせん断変形し、柱脚の浮上がりが建物全体の挙動に大きな影響を与えなかった。柱の曲げモーメントは、面の大きな柱で大きな値となり、土壌に接する柱では小さかったことが分かった。今後、土壌やその他の耐震要素が建物の耐震性能に与える影響を引き続き検討する予定である。

謝辞
本実験は、国土交通省の補助により（財）日本住宅・木材技術センターが設置した「伝統的構法の設計法作成及び性能検証実験検討委員会（委員長：坂本光 東京大学名誉教授）」のもとで、同団体が（独）防災科学技術研究所との共同研究として実大三次元地震破壊実験施設（ディフェンス）を用いて実施したものである。実験実施においては、研究者・実務者など多くの方々に多大なるご協力を頂いた。特筆すべき事項は、試験体の設計においては渡場隆氏（風防株式会社）、岩波正氏（三和総合設計株式会社）、軸組工事は神田定秀氏（有限会社播磨社寺工務店）、左官工事は服部一夫氏（株式会社山崎組）に多大なるご協力を頂いた。屋根瓦は岩佐園陶業工業組合よりご提供を頂いた。実験で使用したJR航波振は、文献14)に示す（財）鉄道総合技術研究所の記録波形を使用した。ここに記して謝意を表します。

参考文献
1) 日本建築学会: 地震予測技術研究報告 建築学会-4 木造建築物・建築基準構造、pp.66-67，1998,3。
2) 文部科学省研究開発局: 大都市大震による構造物の耐震性向上研究 平成17年度成果報告書，pp.171-247，2006,5。
3) 木造軸組構法建物の耐震設計マニュアル編集委員会: 伝統構法を生かす木造軸組設計マニュアル 頂界耐力計算による耐震設計・耐震補強設計法、学芸出版社，pp.75-97，2004,3。
4) 清水秀丸，林光師，鈴木貞洋，香緒幸雄，後藤正美：2003年7月26日宮城県北部の地震による被災木造住宅の構造特性と耐震性能，日本建築学会構造系論文集，No.598，pp.43-49，2005,12。
5) 清水秀丸，新井邦，森敷徹，山川英樹，林光師：2007年熊本県北部地震における被災木造建物の耐震性能と地域特性の評価，日本建築学会構造系論文集，No.631，pp.1508-1510，2008,9。
6) 鈴木一重，中治弘行: 木造住宅土壌土壁の実大実験による耐震性能の再検討，日本建築学会構造系論文集，No.515，pp.115-122，1999,1。
7) 土壌壁等告示に係る技術解説書作成編集委員会: 土壌壁・耐荷重・落・落し込み補強の壁を係る技術解説書,（財）日本住宅・木材技術センター，2003,2。
8) 国土交通省告示第1543号: 建築基準法施行令第46条第1項第1号（上）項から（下）項にまで掲げる軸組工法等と同様以上の耐力を有する軸組及び当該軸組と係る耐力の数値を定める件，2003,12。
9) 日本建築防災協会: 木造住宅の耐震診断と補強方法，木造住宅の耐震診断と補強方法（改訂版），pp.45-107，2004,8。
10) 木造軸組工法住宅の限界耐力計算解説書編集委員会: 木造軸組工法住宅の限界耐力計算による設計手引き，（財）日本住宅・木材技術センター，2005,3。
11) 日本住宅・木材技術センター: 木造軸組工法住宅の許容応力度設計（2008年度版），pp.33-168，2009,6。
12) 全日本工事業連合会: 木材構造標準設計・施工ガイドライン，pp.43-70，2001,8。
13) 梁階栞明，五十田田村，植崎伸和平，小林修平: 木造軸組構法建物の耐震診断と耐震診断の実効性実験，日本建築学会大会学術講演摘要集C-I，pp.337-338，2009,8。
14) 中村昭，上村英史，飯塚英司：1995年兵庫県南部地震の地震動記録波形と分析（上）・JR地震情報, No.234，1996,3。
15) 日本建築学会: 木質構造設計基準-改訂版（2006年度版）, pp.396，2006,12。
16) 日本住宅・木材技術センター: 伝統的木造軸組法住宅の耐震性能検証実験報告書，pp.7-159，2009,3。

（2010年3月9日受付、2010年8月16日採用決定）