任意壁長圧縮筋かい耐力壁のせん断力 - 変形関係の推定と検証
座屈が生じるまでの弾塑性挙動

PREDICTION AND VERIFICATION OF SHEAR FORCE-DRIFT ANGLE RELATIONS FOR COMPRESSIVE BRACING SHEAR WALL WITH ARBITRARY WALL LENGTH
- Elastic and plastic behavior before buckling -

岡本滋史*，村上雅英**，稲山正弘***
Shigefumi OKAMOTO, Masahide MURAKAMI and Masahiro INAYAMA

Formulae to predict shear force-drift angle relations of compressive bracing shear walls with arbitrary wall length are proposed in this paper, taking into consideration the equilibrium of forces and friction acting on end of the braces. These formulae are derived assuming the major component of deformation of compressive bracing shear wall is the compression of both ends of a brace into a girder and a sill. These formulae are verified with element tests of brace ends and tests of bracing shear walls.

Keywords: Compression brace, Wall length, Shear wall, Envelope curve, Load carrying mechanism, Compression perpendicular to grain

圧縮筋かい，壁長，耐力壁，履歴包絡線，耐荷機構，めり込み

1. はじめに
在来軸組工法において，筋かい耐力壁はよく使用される耐力要素の一つで，壁長は910mm～1820mmのものがよく見られる。一般的な木枠を筋かい材として使用する筋かい耐力壁の特徴としては，筋かい材に引張筋が作用するときの性能と，圧縮筋が作用するときの性能とが大きく異なることが上げられる。筋かい材に引張筋が作用する場合と圧縮筋が作用する場合に性能が異なる理由は，それぞれの軸方向に対して抵抗要素が異なるためである。筋かい材に引張筋が作用する場合は，筋かい端部の接合具の引張抵抗やせん断抵抗により抵抗し，筋かい材に圧縮筋が作用する場合は，筋かい端部の接合具のせん断抵抗と筋かい端部の軸方向へのめり込み抵抗により抵抗する。また，筋かい耐力壁の破壊としては，筋かい材に引張筋が作用する場合は，筋かい端部の接合具の破壊により耐力の低下が起こり，筋かい材に圧縮筋が作用する場合は，筋かい材の破壊により耐力の低下が起こる。これらのことは，既往の様々な研究により明らかにされている。

筋かいの研究は，多くの研究者により行われているが，研究内容を大別すると以下の通りになる。
1) 筋かい端部の接合金物の性能評価に関する実験研究
2) 筋かい材の座屈や座屈拘束に関する実験研究
3) 筋かい端部の加工精度の影響に関する実験研究
4) 筋かい耐力壁の壁高さ及び壁長さの影響に関する実験研究
5) 筋かい耐力壁の接合部を最小要素とした弾塑性解析モデル化のための実験研究
6) 圧縮筋かい端部の応力伝達機構のモデル化のための実験研究

筋かいの研究は，このような様々な種類の研究が行われている。文献13)では，圧縮筋かいの取り付接合部の応力伝達機構のモデル化として力の流れを明らかにしており，圧縮筋かい耐力壁では壁長の違いにより，摩擦力を誘起する筋かい端部の応力伝達機構が異なることを明らかにしている。しかし，任意壁長の場合での圧縮筋かい耐力壁の弾塑性解析モデルは提案されていない。圧縮筋かいの力学的性状は，座屈が生じる前後では大きく異なる。圧縮筋かいのせん断力変形関係を推定するためには，以下の2段階の研究を行えば，同様の成果を見込む必要がある。
①座屈が生じるまでのせん断力変形関係の推定
②座屈と拘束条件の関係の解明とその評価法の開発

そこで本論文では，圧縮筋かいの座屈が生じるまでのせん断力変形関係を推定することを目的として，文献13)で提案された筋かい端部の応力伝達機構を基に，任意壁長の圧縮筋かい耐力壁の耐荷機構に基づく力学モデルの構築と座屈が生じるまでのせん断力
変形角関係の推定方法の提案と検証を行う。

2. 試験の概要
2.1 試験体
試験体は、幅 910mm×高さ 2730mm の軸組に 45×90mm の筋かい材を片側に入れた 1P45、幅 910mm×高さ 2730mm の軸組に 90×90mm の筋かい材を片側に入れた 1P90、幅 1820mm×高さ 2730mm の軸組に 45×90mm の筋かい材を片側に入れた 2P45、幅 1820mm×高さ 2730mm の軸組に 90×90mm の筋かい材を片側に入れた 2P90 の 4 種類で各 3 体とした。試験体の詳細を図 1 に示す。
土台以外の使用材料は、一般に粘土や使用されている材料とし、軸材はめり込み強度のばらつきを少なくするためにスプールルス集成材とした。土台は、めり込み強度を他の材と同程度のものとするため、柱と同じものを用いた。軸組の柱頭柱脚接合部は矩形柱を差し (30×50×85mm) とした。筋かい材は、一般的に施工されている形状とするために、図 1 に示すように横架材と柱の交点に筋かい材の中心がくるように配置した。45×90mm の筋かい材を使用した試験体では、筋かい金物を使用し、45×105mm の間柱を 455mm ピッチに設けて、筋かい材と長さ 75mm のコースレッド 1 本で接合した。筋かいと柱、横架材を接合するボックスタイプの筋かい金物では、土台、横架材と柱との仕口部の抵抗モーメントが大きくなるため、柱と筋かいを密結するタイプのビス留めの 2 検定筋かい金物を

<table>
<thead>
<tr>
<th>使用材料</th>
<th>筋かいの長さ</th>
<th>倍率</th>
<th>材質</th>
<th>長さ</th>
</tr>
</thead>
<tbody>
<tr>
<td>筋かい</td>
<td>1.25倍</td>
<td>290</td>
<td>290</td>
<td>105mm</td>
</tr>
<tr>
<td>筋かい</td>
<td>1倍</td>
<td>290</td>
<td>290</td>
<td>90mm</td>
</tr>
<tr>
<td>筋かい</td>
<td>0.75倍</td>
<td>290</td>
<td>290</td>
<td>90mm</td>
</tr>
</tbody>
</table>

図 1 試験体図

写真 1 圧縮筋かい耐力試の破壊状況
使用した。筋かい金物は、図1に示すようにIP45では横架材から150mmの位置に設け、2P45では横架材から50mmの位置に設けた。90×90mmの筋かい材を使用した試験体は、柱と筋かいの繋ぎを行わず、間柱も設けなかった。

2.2 載荷方法及び計測方法
試験はタイロッド式とした。タイロッドは、図2に示すようにM24のボルトを用い、梁天端の加圧板の上に2つ抱き合わせてH形にした構造鋼を乗せたものとした。タイロッドの締付付けは手締めとし、初期軸力は計測していない。加力方法は筋かい圧縮側のみの繰り返し加力で、繰り返し変形角が1/1600、1/1400、1/300、1/200、1/150、1/100、1/75、1/50、1/30、1/15radの変形時に行い、同一変形段階で1回ずつ繰り返した。繰り返し加力を行った後、荷重が最大耐力の80%以下に低下するか、または変形角が1/15rad以上はさらにまで加力した。

3. 壊張筋かい耐力壁の試験結果及び考察
3.1 壊張筋かい
圧縮筋かい耐力壁の破壊状況を写真1に示す。すべての試験体において、変形が進むにつれて、筋かい端部の軸材へのめり込みが顕著に観察された。IP試験体では梁と土台にめり込み跡がみられたが、2P試験体では梁と土台以外に柱にも若干のめり込み跡がみられた。これからのめり込み変形が大きくなることにより圧縮筋かい

耐力壁の変形が進み、最後には、筋かい材が面外方向に座面破壊した。軸材へのめり込み以外にも、試験終了後に梁の天端にタイロッドの加圧板のめり込み跡がみられた。また、2P試験体ののみではあるが柱頭柱脚接合部の位置がめり込みにより変形して若干細くなった。すべてのめり込み跡は、等変位めり込みのように一様に繊維が切れて回んでいた。

3.2 試験結果
圧縮筋かい耐力壁のせん断力～変形角関係の履歴曲線と包絡線を図3に示す。初期の変形でのばらつきはあまりなかったが、すべての試験体において、筋かい材の面外方向の座面に起因して耐力低下を起こしたため、最大耐力が得られた。また、2P90の最大耐力は他の試験体よりもばらつきが大きくなった。その原因としては、筋かい材の等級であるため、材料強度のばらつきによると考えられる。
圧縮筋かい耐力壁のせん断力～変形角関係の包絡線から得られた完全弾塑性評価を表1に示す。壁増率は、IP45と2P45ではP0=0.2D/2、1P90ではP0=2サム、2P90ではP0で決まっている。また、45×90mmの筋かい材を使った試験体では、壁増率3.21～3.55であり、90×90mmの筋かい材を使った試験体では、壁増率4.12～4.51である。46条46条で求められている筋かい耐力壁の壁増率にN値計算をおこなう際の補正値を加算した壁増率と比較すると、45×90mmの筋かい材を使用した試験体では、実験値の方が壁増率が0.71～1.05高い値となったが、90×90mmの筋かい材を使用した試験体では、実験値の方が壁増率が0.49～0.88低い値となった。

<table>
<thead>
<tr>
<th>表1 完全弾塑性評価</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP45</td>
</tr>
<tr>
<td>K (KN/mm)</td>
</tr>
<tr>
<td>823</td>
</tr>
<tr>
<td>722</td>
</tr>
<tr>
<td>670</td>
</tr>
</tbody>
</table>

K10 = 2002 | 3709 | 3147 | 3189 | 0.19 | 0.93 | 2109 |

K (KN/mm)	No.1	No.2	No.3	平均値	CV	ばらつき
163	150	150	153	1.34	1.24	1.20
205	167	155	169	2.06	1.94	1.92
670	650	690	675	0.95	0.87	692

P0 = 5 (KN) | 11.86 | 11.86 | 11.86 | 11.86 | 0.07 | 0.07 | 17.65 |

| P0 (KN) | 3.21 |
| 932 | 985 | 865 | 937 | 0.07 | 0.07 | 907 |

K (KN/mm)	No.1	No.2	No.3	平均値	CV	ばらつき
163	150	150	153	1.34	1.24	1.20
205	167	155	169	2.06	1.94	1.92
670	650	690	675	0.95	0.87	692

P0 = 5 (KN) | 11.86 | 11.86 | 11.86 | 11.86 | 0.07 | 0.07 | 17.65 |

| P0 (KN) | 3.21 |
| 932 | 985 | 865 | 937 | 0.07 | 0.07 | 907 |

K10 = 2002 | 3709 | 3147 | 3189 | 0.19 | 0.93 | 2109 |

K (KN/mm)	No.1	No.2	No.3	平均値	CV	ばらつき
163	150	150	153	1.34	1.24	1.20
205	167	155	169	2.06	1.94	1.92
670	650	690	675	0.95	0.87	692

P0 = 5 (KN) | 11.86 | 11.86 | 11.86 | 11.86 | 0.07 | 0.07 | 17.65 |

| P0 (KN) | 3.21 | 4.12 | 4.51 |

K10 = 2002 | 3709 | 3147 | 3189 | 0.19 | 0.93 | 2109 |

K (KN/mm)	No.1	No.2	No.3	平均値	CV	ばらつき
163	150	150	153	1.34	1.24	1.20
205	167	155	169	2.06	1.94	1.92
670	650	690	675	0.95	0.87	692

P0 = 5 (KN) | 11.86 | 11.86 | 11.86 | 11.86 | 0.07 | 0.07 | 17.65 |

| P0 (KN) | 3.21 | 4.12 | 4.51 |

K: 壊張筋かい耐力壁 P0: 試験荷重 P0: 構造耐力 P0: 構造耐力 5: 圧縮筋かい耐力壁の配置形状（等圧） 5: 圧縮筋かい耐力壁の配置形状（等圧） 5: 圧縮筋かい耐力壁の配置形状（等圧） 5: 圧縮筋かい耐力壁の配置形状（等圧） 5: 圧縮筋かい耐力壁の配置形状（等圧）

ばらつき係数: 1-CV-k 1 係数 50% 下限値: 信頼限界85%における50%下限許容限界値

- 2021 -
4. 压縮筋かい耐力壁のせん断カー変形角関係の推定

4.1 压縮筋かい耐力壁の耐荷機構に基づく力学モデルの提案

耐荷機構に基づく力学モデルの評価式に用いる文字の定義は本節の末に示す。なお、力学モデルの評価式の提案に当たって、以下の1), 2) の仮定を設定し、評価式は座標破壊するまでを適用範囲とする。

1) 抗軸の軸方向変形、せん断変形、曲げ変形は無視する。
2) 筋かいの座屈を考慮しないものとする。

筋かいの端部では、図4のように柱と横材からそれぞれ水平方向と鉛直方向の応力が作用する。筋かい端部は図4のような釘合い状態となっており、筋かいの圧縮軸力Sと外力Pは式(1), (2) のような関係となっている。また、SxとSxは式(3), (4)式を表すことができる。

\[
\begin{align*}
P &= S_x + \mu S_y - S_x \sin \beta \\
P \cdot L_x &= S_y + \mu S_x - S_x \cos \beta \\
S_x &= P \left[\frac{1}{L_x - \mu L_y} \right] \left(1 - \mu^2 \right) \\
S_y &= \frac{P (L_x - \mu L_y)}{L_y} \left(1 - \mu^2 \right)
\end{align*}
\]

筋かいの角度が小さくなると、図5に示すように横材から筋かい端部に作用するSxとそれによって生じる摩擦力μSxが筋かいの圧縮軸力Sの水平成分とそれぞれ一致し、Sx=0となる状態が存在する。Sx=0となる時のLxとLxの割合は、式(1), (2)から式(5)で表すことができる。

\[
L_x / L_y = \mu
\]

よって、筋かいの角度が小さくなり、Lx/Ly=μの状態になると、Sx=Sxとなるため、そのときの外力Pは式(6)におけられる。

\[
P = S_x \cdot L_x / L_y
\]

筋かいを剛体と仮定したときの圧縮筋かい耐力壁の変形特性は、圧縮筋かい耐力壁の試験の考察から、外力Pに対して図6のようにモデル化できる。主な変形成分として、図6の黒塗りの部分の筋かい端部のみ込まや圧縮材へのみ込ま変形、筋かいからの突き上げによる柱頭柱脚接合部の変形が上げられる。図6の抵抗要素を分解すると、筋かいからのX方向成分Sxにより筋かいが柱にみ込む変形(図7(a)), 筋かいからのX方向成分Sxによる柱頭柱脚接合部のせん断変形(図7(b)), 筋かいからのY方向成分Sxにより筋かいが横材にみ込む変形(図7(c)), 筋かいからのY方向成分Sxによる柱頭柱脚接合部の引張方向の変形(図7(d)), 筋かいの圧縮軸力Sによる筋かいの軸方向の変形(図7(e))の変形成分に分けることができる。各変形成分による変形角は、式(7), (8), (9), (10), (11)のよう関係となっている。

\[
\begin{align*}
\theta_x &= \left(\delta_{\theta x} + \delta_{\theta x2} \right) / L_x \\
\theta_y &= \left(\delta_{\theta y} + \delta_{\theta y2} \right) / L_y \\
\theta_x &= \left(\delta_{\theta x} + \delta_{\theta x1} \right) / L_x \\
\theta_y &= \left(\delta_{\theta y} + \delta_{\theta y1} \right) / L_y \\
\theta_c &= \delta_c / (L_x \cdot \cos \beta)
\end{align*}
\]

また、外力Pに対して各変形成分の影響が同時に発生していると仮定すると、各変形成分による変形角の総和は、式(12)のように変形角Rと等しくなる。

\[
R = \theta_x + \theta_y + \theta_x + \theta_y + \theta_c
\]

圧縮筋かい耐力壁に筋かい金物を用いた場合、筋かい金物は筋かい端部がずれた変位分だけ抵抗する。筋かいの圧縮軸力Sの柱へのみ込み変形(図7(a), 筋かいの柱へのみ込み変形(図7(b)), 筋かいの柱への引張方向の変形(図7(c)), 筋かいの柱脚接合部のせん断変形(図7(d)), 筋かいの柱脚接合部の引張方向の変形(図7(e))に\による筋かい端部がずれた変位分だけ抵抗する。よって、筋かい金物を用いた場合の圧縮筋かい耐力壁は、筋かいの柱へのみ込み変形(図7(a)), 筋かいの柱脚接合部のせん断変形(図7(b)), 筋かいの柱脚接合部の引張方向の変形(図7(c)), 筋かいの柱脚接合部の引張方向の変形(図7(d))を筋かいの軸方向の変形成分に置換すると図8のようモデル化できる。各変形成分の筋かい材の軸方向の変形成分への換算は、式(13), (14), (15), (16), (17), (18)により行うことができる。

\[
\begin{align*}
S &= S_x \left[\left(1 - \mu^2 \right) \left(1 - \mu L_y / L_x \right) \sin \beta \right] \\
S &= S_y \left[\left(1 - \mu^2 \right) \left(L_x / L_y - \mu \right) \sin \beta \right] \\
\delta_x &= \delta_{\theta x} - \sin \beta \\
\delta_y &= \delta_{\theta y} - \sin \beta \\
\delta_c &= \delta_{\theta c} - \cos \beta
\end{align*}
\]
図 8 筋かい金物を用いた場合の圧縮筋かい耐力壁の力学モデル

図 9 軸材のめり込み試験

図 10 軸材のめり込み試験結果

4.2 圧縮筋かい耐力壁の各変形成分の荷重一変位関係の推定

圧縮筋かい耐力壁の各変形成分の荷重一変位関係は以下の①～⑤に示すように推算する。また、めり込みの荷重一変位関係は括山らの等変位めり込み算定式により推算し、めり込み算定式の諸係数は図 9 に示すめり込み試験の結果（図 10）により得られた値を用いる。

①柱へのめり込み変形分のS_{e},S_{e} 関係（図 7(a))

繊維平行方向に近い筋かい材が、繊維直交方向の柱にめり込む現象を、筋かい材を剛体と仮定して、筋かい材の柱部分へのめり込みを推算する。めり込み算定式に用いる寸法パラメータは図 11 のように設定した。

②横材へのめり込み変形分のS_{e},S_{e} 関係（図 7(c))

繊維平行方向に近い筋かい材が、繊維直交方向の横材にめり込む現象を、筋かい材を剛体と仮定して、筋かい材の横材部分へのめり込みを推算する。横材部分のめり込みに関しては、めり込み位置の近くにはず穴があるため、めり込み算定式を用いるこ
③接合部のせん断の変形成分のS_δ,δ_0 関係（図 7(b)）
繊維平行方向のほぞ穴が、繊維直交方向のほぞ穴に挟み込む現象を、ほぞ穴を剛体仮定して、ほぞ穴のほぞ側面へのめり込みを推算する。めり込み算定式に用いる寸法パラメータは図 11 のように設定した。

④接合部の浮き上がりの変形成分のS_δ,δ_0 関係（図 7(d)）
タイロッドにより浮き上がらないように拘束しているが、タイロッドの加圧板が梁の天端にめり込み、M24 ボルトのタイロッドも伸びている。そこで、接合部の浮き上がり力 S_δ が作用したときの変形は、加圧板を剛体仮定して、加圧板の梁端天端へのめり込みによる変形とタイロッドの伸びによる変形を加算して推算する。梁端天端のめり込みは、加圧板の幅が 125mm であるので、めり込み算定式に用いる寸法パラメータは図 11 のように設定した。タイロッドの伸びは、M24 のボルト (SS400) を 2 本として推算し、タイロッド以外の治具は変形せず、初期導入力でないと仮定した。また、タイロッドにより接合部を拘束しているので、柱頭接合部と柱脚接合部の浮き上がり変形は等しい (δ_0=δ_0) と仮定した。

⑤筋かいの軸方向の変形成分のS_δ,δ_0 関係（図 7(e)）
木材の繊維平行方向の剛性が非常に高く、他の変形成分に比べ変形が極めて小さいので、筋かいは軸方向に変形しないものと仮定した。

⑥筋かいに加わる圧縮軸力 S の影響（図 7(f)）
筋かいに加わる圧縮軸力 S による荷重変位関係図 13 を作成した。圧縮軸力 S が 0 の場合、荷重は筋かいの圧縮力、変位は図 14 に示す位置に変位を設定して計算を行った。また、ほぞ穴のめり込み変形を防止するために減弾止めを設けている。筋かいの変形子の抵抗を変形分解値を要素試験の実験結果の平均値から得られた三角形モデル（図 15）を用いる。

変位計を設置して計測を行った。要素試験では、ほぞ穴めり込みによる変形を防止するために減弾止めを設けている。
筋かいに加わる圧縮軸力 S は、式 (19)、式 (20) で表すことができる。ここで、摩擦係数 μ は文献 (3) により μ = 0.4 とする。

\[S_\delta = f_\delta \cdot \sin \beta + f_\delta \cdot \cos \beta \] (21)

ここに、δ_0: 筋かいの軸方向変位

筋かいに用いた IP45 と 2P45 の要素試験の荷重一変位関係図は、筋かいの抵抗の変形成分の S_δ,δ_0 関係から δ_0,δ_0 のときの S と S_0 をあらかじめ推定する。
筋かい端部の要素試験の実験値と推定値の比較を図 17 に示す。IP 要素試験体の場合 L_e=910mm, L_e=2730mm, 2P 要素試験体の場合 L_e=1820mm, L_e=2730mm とした。実験値と推定値の比較の結果、推定値は実験値と概ね一致した。

4.4 压縮筋かい耐力壁のせん断力変形関係の推定方法の検証
各変位成分の荷重一変位関係から式 (1) 18) で 3.2 節の圧縮筋かい耐力壁のせん断力変形関係を荷重増分解析法によって推算する。ここで、摩擦係数 μ は μ = 0.4 とする。外力と筋かい端部から軸用作力の関係は、IP では L_e/L_e と
S_δ_0 = f_δ_0 = \frac{f_\delta_0}{L_e/L_e} (23) (3)
2P では L_e/L_e と S_δ_0 = f_δ_0 = \frac{f_\delta_0}{L_e/L_e} (24)
4.3 筋かい端部の要素試験の荷重一変位関係の推定
圧縮筋かい耐力壁の筋かい端部のみを取り出した要素試験 (図 16) を行った。荷重は筋かいの压縮力、変位は変位計を用いて示した位置に設定して計測を行った。また、要素試験では、ほぞめり込みによ

図 14 筋かい金物の要素実験

図 15 筋かい金物の要素実験結果

4.3 筋かい端部の要素試験の荷重一変位関係の推定
圧縮筋かい耐力壁の筋かい端部のみを取り出した要素試験 (図 16) を行った。荷重は筋かいの圧縮力、変位は図 16 に示す位置に設定して計測を行った。また、要素試験では、ほぞめり込みによる変形を防止するために減弾止めを設けている。

筋かい端部の要素試験の荷重一変位関係は、4.2 節で得られた柱のめり込みの変形成分の S_δ,δ_0 関係、横架材のめり込みの変形成分の S_0,δ_0 関係から荷重増分解析法によって推算する。
筋かいに加わる圧縮軸力 S から S_δ,δ_0 を求め、式 (19)、式 (20) で表すことができる。ここで、摩擦係数 μ は文献 (3) により μ = 0.4 とする。

\[S_e = f_e = \frac{f_e}{L_e/L_e} \] (23) (3)
\[S_e = f_e = \frac{f_e}{L_e/L_e} \] (24)

筋かい端部の要素試験の実験値と推定値の比較を図 17 に示す。実験値と推定値の比較の結果、推定値は実験値と概ね一致した。
の変形成分（降伏変形角 0.0025rad）。IP90 では梁のしめ込みの変形成分（降伏変形角 0.0017rad）、IP45 では梁のしめ込みの変形成分（降伏変形角 0.0018rad）、IP90 では接合部のせん断の変形成分（降伏変形角 0.0023rad）であった。実験値と推算値の比較の結果、L/L2<μとなるため柱側へせん断力が流れない 1P と、L/L2>μなるため柱側へせん断力が流れる 2P の 2 種類あ、推算値は筋かいが座屈破壊するまでの最大耐力付近まで実験値と概ね一致した。よって 4.1 節の推定方法は、筋かいが座屈破壊するまでの圧縮筋かい耐力壁のせん断力－変形角関係を概ね再現できており、任意の壁厚に対しても推定可能であると判断できる。

4.5 圧縮筋かい耐力壁の各変形成分の割合

式 (1)～(12) で求めた圧縮筋かい耐力壁の図 7 の各変形成分の変形角の割合を図 10 に示す。IP45 では、梁のしめ込み変形が 55%、土台のしめ込み変形が 40% を占めており、5%の接合部の浮き上がり変形が見られた。IP90 では、梁のしめ込み変形が 60%、土台のしめ込み変形が 30% を占めており、また、IP45 より耐力が高く、筋かいの上端が梁を突き上げる力が大きいため、接合部の浮き上がり変形は 10% 以上見られた。IP45 では、梁のしめ込み変形が 45%、土台のしめ込み変形が 30%、接合部のせん断変形が 10% ずつ占めており、柱のしめ込み変形と接合部の浮き上がり変形はほとんど見られなかった。IP90 では、梁のしめ込み変形が 35%、土台のしめ込み変形が 15%、接合部のせん断変形が 20% ずつ、接合部の浮き上がり変形が 5% 以下しており、柱のしめ込み変形はほとんど見られなかった。これらのことから、壁長が 1P の圧縮筋かい耐力壁は、変形のほとんどが梁と土台のしめ込み変形でており、壁長が 2P の圧縮筋かい耐力壁は、変形のほとんどが梁と土台のしめ込み変形と接合部のせん断変形で占めていることがわかった。また、1P では筋かいの角度 β が小さいので柱側へ力が流れないし、柱のしめ込み変形と接合部のせん断変形が現れないが、2P では柱側へ力が流れるため、柱のしめ込み変形と接合部のせん断変形が現れることがわかった。このことより、外壁に変形を配慮される筋かい耐力壁の場合、2P では柱頭のみではなく柱脚もせん断に対する補強が必要であることがわかった。

今回の実験体例では、柱頭肢が浮き上がらないようにタイロッドとして実験を行ったが、それでも圧縮筋かい耐力壁の変形角の割合のなかで接合部の浮き上がり変形が 5%～10% と少なくなさる。柱頭固定式の様に柱頭枝柱接合金物を用いた場合は、柱頭枝柱接合部の浮き上がりによる変形成分を接合金物の荷重－変位関係を用いた場合に、タイロッド式での柱頭枝柱接合部の浮き上がりによる変形成分の方が、耐性が高いと考えられたため、今回は異なる結果になることがわかった。また、2P の圧縮筋かい耐力壁は、接
合部のせん断変形が20%〜40%とかなりの大部分を見積っているため、そざの形状が異なったり、金物を用いた接合部とすることで、今後とは異なる結果になることがわかる。

4.6 筋かい端部形状の異なる圧縮筋かい耐力壁

4.5節の各変形成分の変形角の割合から、1Pの圧縮筋かい耐力壁の変形のほとんどが横架材のめり込み変形で占められていることがわかった。そこで、横架材のめり込み耐力を上げるために、筋かい端部の横架材側の接する面積を大きくした図20のように筋かい端部を切り欠いた1P試験体を製作した。試験体は1P45、1P90と同じ仕様で筋かい端部のを図20のように切り欠いた1P45、1P90の2種類で2体とした。試験結果を図21に示す。また、試験結果には4.5節と同じように1P45、1P90のせん断力-変形角関係の推定値を同時に行示す。1P45、1P90ともに1P45、1P90よりも耐力が高くなった。1P45の1体のみ1P45と同様な結果となったが、筋かい端部の横架材のめり込みが筋かい耐力が高くなったことが原因と考えられる。また、1P45、1P90の実験値と推定値の比較の結果、推定値は筋かいが座屈破壊までの最大耐力を近似まで実験値と概ね一致した。よって、筋かい筋かいの形状が異なった場合でも筋かいが座屈破壊までの圧縮筋かい耐力壁のせん断力-変形角関係を概ね再現できていると判断できる。

図21筋かい端部の形状が異なる圧縮筋かい耐力壁の試験結果

5.まとめ

本論文では、圧縮筋かい耐力壁の耐荷機構に基づいた力学モデルを構築し、任意壁厚圧縮筋かい耐力壁のせん断力-変形角関係の推定方法の提案と検証を行った。実験結果により得られた主要な成果を①、②に、本論文で提案した力学モデルにより得られた主要な成果を③〜④に要約する。

筋かい管材が45〜90mmと90〜99mmのどちらでも、筋かい管材が外側に耐圧破壊することにより耐力が低下した。

圧縮筋かい耐力壁の実験結果の考察から、主な変形成分として、筋かい端部が柱にめり込む変形、せん断変形、筋かい端部が横架材にめり込む変形、柱頭柱脚接合部のせん断変形による変形成分、柱頭柱脚接合部の引張方向の変形により変形成分が支配的であったことがわかった。

筋かい筋かいの耐荷機構に基づいた、任意壁厚圧縮筋かい耐力壁のせん断力-変形角関係の推定方法の提案を行い、実験結果と推定結果を比較検討した結果、提案した推定方法が妥当であることを確認した。

壁厚が1Pの圧縮筋かい耐力壁は、壁厚のほとんどが梁と台所のめり込み変形で占めており、壁厚が2Pの圧縮筋かい耐力壁は、変形のほとんどが梁と台所のめり込み変形と接合部のせん断変形で占めていることがわかった。

1Pでは筋かいの角度βが小さいので柱へ力が流されず、柱のめり込み変形や接合部のせん断変形が見られず、2Pでは柱へ力が流れるため、柱のめり込み変形や接合部のせん断変形が現れることがわかった。

1P試験体のみではあるが、筋かい端部の横架材側の接する面積を大きくすることによって、圧縮筋かい耐力壁の耐力が高くなることを検証した。

本論文で提案した圧縮筋かい耐力壁の耐荷機構に基づいた力学モデルの構築では、筋かいの座屈変形や座屈破壊を考慮していなかった。圧縮筋かいの終局までのせん断力-変形角関係を推定するためには、荷重変形と拘束条件の関係の解明を行う必要がある。今後、課題である。

参考文献

1) 井上正文、後藤靖：筋かい端部の接合方法が片耐力鋼製組合構造に与える影響について、日本建築学会構造系論文集、第521号、pp.89~94、1997
2) 小林隆一、渡辺藤治：筋かいの能力の補強効果について、日本建築学会大会学術講演集概要、構造III、C-1、pp.37~38、1995
3) 後藤英昭、鈴木雄三：筋かいの能力の補強効果（その2）、日本建築学会大会学術講演集概要、構造III、C-1、pp.357~358、2000
4) 成田敏基、新木清二、安藤高太：木造組合構法における筋かい耐力壁の座屈破壊挙動、日本建築学会大会学術講演集概要、構造III、C-1、pp.273~274、2000
5) 成田敏基、松本敏博、安藤高太：木造組合構法における筋かい耐力壁の座屈破壊挙動解析、日本の2耐力レベルでの挙動および両柱の座屈荷重解析、日本建築学会大会学術講演集概要、構造III、C-1、pp.291~292、2001
6) 成田敏基、大正太郎、横崎英徳：筋かいの座屈荷重挙動解析その3筋かいの、柱頭柱脚条件および筋かいの材料の影響、日本建築学会大会学術講演集概要、構造III、C-1、pp.91~92、2003
7) 成田敏基、大正太郎、横崎英徳：筋かいの座屈荷重挙動解析その4筋かいの、柱頭柱脚条件および筋かいの材料の影響、日本建築学会大会学術講演集概要、構造III、C-1、pp.367~368、2004
8) 藤野栄一：内装仕上げによる筋かいの座屈耐荷重、日本建築学会大会学術講演集概要、構造III、C-1、pp.499~500、2008
9) 佐藤鋭至、岡部伸、成田敏基、横崎英徳：軸力耐力壁のせん断性能に及ぼす筋かい端部接合部の加工精度の影響、日本建築学会大会学術講演集概要、構造III、C-1、pp.289~290、2001
10) 守屋真英、川上修、星崎寛明、金井建二：筋かい耐力壁の壁厚及び壁厚の違いがせん断耐力に及ぼす影響に関する実験的研究、日本建築学会大会学術講演集概要、構造III、C-1、pp.497~498、2008
11) 武本喜喜、諏訪哲明、五十國博、片山賀雄、筋かい耐力壁のせん断変形特性解析評価モデルの推定、日本建築学会大会学術講演集概要、構造III、C-1、pp.153~154、1998
12) 神沢信行、武本喜喜、五十國博、円田伸一、森塚浩、嚴納広一、桑原健治：筋かい耐力壁のせん断変形特性解析評価モデルの推定、筋かい耐力壁の変形特性解析評価モデルの推定、日本建築学会大会学術講演集概要、構造III、C-1、pp.187~188、2002
13) 村上英幹、佐渡正規、加藤正樹、石田正正、圧縮筋かいの取り付け方の影響について実験を行った結果、日本建築学会構造系論文集、第611号、pp.103~109、2007
14) モディファイにより設計・設計に『許容耐力・許容耐力設計』第1版、社団法人日本建築学会、pp.306~307、2006.12

(2010年4月30日確認受理、2010年8月9日採用決定)

- 2026 -