Results of an experimental study on the structural performance of EWECS columns using glued-laminated timber of Japanese cedar are summarized. The specimens with different shear span ratios ranging from 1.0 to 2.0 were tested under constant axial load and lateral load reversals to figure out the influence of tree species composing woody shell and shear-span ratios. The results indicated that the superposition method is accurate means of estimating the ultimate strength of EWECS columns and there is little difference between tree species with respect to behavior of the wood shell.

Keywords: EWECS, Glued-laminated timber of Japanese cedar, Shear span ratio, Static test, Estimate of ultimate strength, Column

1. はじめに

わが国における建築物は、昭和 40 年代の高度経済成長期を最盛期として、昭和 30 年代以降一貫して増加し続けてきた。高度経済成長期から 40 年余りを経過した現在、これらの建築物ストックは更新期を迎えている。一方、21世紀における少子高齢化の進展による投資余力の減少や建設資材の有限性等を勘案すると、建築物の長寿命化は不可欠であり、近年、長期耐用型建築物の需要が高まってきている。しかし、わが国ののような地震国では、このような長期耐用型建築物は、その耐用期間中に大きな地震に遭遇する確率も高まるため、より高い耐震安全性と地震後の復原性を持つ十分な機能回復性が要求される。

一方、1997年12月の地球温暖化防止京都議定書締結以来、最近では2009年12月にデンマークのコペンハーゲンで開かれた第15回気候変動枠組条約締約国会議（COP15）などに見られるように、環境負荷の低い建設技術の開発も21世紀における重要な課題である。特に、わが国では環境問題の深刻化しており、森林破壊、水資源危機。}

筆者らはこのような社会的要求に的確に対処し、健全なストック型社会の形成に資する新しい建築構造システムとして、図1および図2に示すような集成材、鉄骨およびコンクリートで構成される木質ハイブリッド構造（Engineering Wood Encased Concrete +Steel：以下、EWECS構造と略称）を提案した。

EWECS構造は集成材の内側の鉄骨コンクリートが燃え止まり材となるため、現行の建築基準法で禁止されている4階建て以上の高層木質建築の建設が可能であるという特徴すべき点のほか、以下のような特徴を有する。

![図1 EWECS構造のイメージ](image-url)
図2 試験体概要

表1 実験計画

<table>
<thead>
<tr>
<th>試験体</th>
<th>WC1</th>
<th>WC2</th>
<th>WC3</th>
<th>WC1C</th>
<th>WC2C</th>
<th>WC3C</th>
</tr>
</thead>
<tbody>
<tr>
<td>せん断スパン比</td>
<td>a/D</td>
<td>a/D</td>
<td>a/D</td>
<td>a/D</td>
<td>a/D</td>
<td>a/D</td>
</tr>
<tr>
<td>a/D</td>
<td>2.0</td>
<td>1.5</td>
<td>1.0</td>
<td>2.0</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>せん断力</td>
<td>N (KN)</td>
<td>1031</td>
<td>1290</td>
<td>800</td>
<td>1600</td>
<td>1200</td>
</tr>
<tr>
<td>総せん断力比</td>
<td>N/N_{tot}</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
</tbody>
</table>

N_{tot}のせん断力比は、a/Dのせん断力比をN/N_{tot}で計算した。

2. 実験計画
2.1 試験体概要と使用材料

試験体の概要を図2に、実験計画を表1にそれぞれ示す。試験体は6種類の中層建築物の下層部の柱を想定した等尺率1/2のものであり、カラマツ集材材を用いたこれまでの試験体と樹種を同種ではなく同様に使用した。試験体にはせん断スパン比a/Dを選び、a/D=1.0、1.5および2.0の3種類とした。

各内の蔵鉄骨にはH-300×220×10×15 (mm)を使用し、外装基材の厚さは45 mmとした。本実験で使用した鉄骨と外装基材の力学的特性を表2および表3にそれぞれ示す。鉄骨の材料試験は、日本工業規格（JIS）Z2201に基づき、5号試験片を用いて引張試験を行い、集材材の材料試験は文献4に示す方法と同様とした。各試験体には設計基準強度24 N/mm²の普通コンクリートを用いた。試験体は、1600×4000 mmとして、柱内法高さはせん断スパン比に応じて800mm、1200mmおよび1600mmとした。

各内の蔵鉄骨はH-300×220×10×15 (mm)を使用し、外装基材の厚さは45 mmとした。本実験で使用した鉄骨と外装基材の力学的特性を表2および表3にそれぞれ示す。鉄骨の材料試験は、日本工業規格（JIS）Z2201に基づき、5号試験片を用いて引張試験を行い、集材材の材料試験は文献4に示す方法と同様とした。各試験体には設計基準強度24 N/mm²の普通コンクリートを用いた。試験体は、1600×4000 mmとして、柱内法高さはせん断スパン比に応じて800mm、1200mmおよび1600mmとした。

2.2 結果及び考察

各試験体の結果を図3に示す。各試験体は、せん断スパン比の実験結果と比較検討し、樹種およびせん断スパン比の差異が破壊性状、復元力特性、終局耐力に及ぼす影響を明らかにする。また、EWECS柱の終局曲げ耐力の評価法に関する検討結果についても併せて示す。
耐力計算値は、材料試験結果を用いて一般化応力強度理論により算定した。なお、計算の概要については、4.1節で詳述する。

2.2 荷重方法
実験は図3に示す載荷装置を用いて行った。各試験体には2台の鉛直油圧ジャッキを用いて、外装繊維材に内蔵されたコアコンクリートの圧縮強度の30%に相当する一定軸力（976kN）を作用させた状態で、水平油圧ジャッキにより静的断続繰返し水平力載荷を行った。なお、試験体は全て内藏繊維が軸方向に配置した。また、水平力を載荷すると同時に2台の鉛直ジャッキによって柱頭部に曲げ選れモーメントを作用させることにより、柱に正負引対称曲げモーメントを作用させた。その後、水平ジャッキと鉛直ジャッキはマニュアルで個別に制御した。

水平力載荷は、柱上下端の相対水平変位δと柱内法高さhで与えられる相対部材角R=δ/h）での変位制御とした。各試験体とも相対部材角R=0.005, 0.01, 0.015, 0.02, 0.03および0.04radを2サイクルずつ載荷し、最後にR=0.05radを半サイクル載荷して試験終了とした。

3. 実験結果
3.1 履歴特性
図4に荷重−変位関係を示す。なお、これ以降の全ての結果において、比較のためにカラマツ試験体を用いた既往の実験結果も併せて示す。図中の破線は一般化応力強度理論により求めた終局曲げ耐力の計算値を表している。なお、計算には式(1)を用いて載荷装置の特性によるP−δ効果の影響を考慮している（図5参照）。

\[P_{a}Q_{aw} = Q_{aw} - N \cdot \delta \cdot (h/L) - 1/L \]

(1)

ここで、\(P_{a} \)：基準力、\(Q_{aw} \)：計算耐力、\(N \)：導入軸力、\(\delta \)：水平変位、\(L \)：柱の内法高さ、\(h \)：上下ビン間の距離を表す。

部材降伏時と最大耐力時のせん断力と相対部材角を表6に示す。

ここで、各試験体の部材降伏時または柱の頭部または脚部の鉄筋フランジまたはウェブにおいて最初に降伏が確認されたとした（図4中の△印）。

せん断スパン比が2.0の試験体WC1Cでは、\(R=0.007\)radで鉄筋フランジに最初の降伏が確認され、その後、最終サイクルとなる\(R=0.05\)radまで荷重は増加し続けた。一方、せん断スパン比が1.5および1.0の試験体WC2CおよびWC3Cでは、最大耐力が確認された後に緩やかに耐力低下が生じた。しかし、各試験体とも急激な耐力低下は認められず、番号に係る未定した曲げ型でエネルギー吸収能力に優れた履歴特性を示している。また、カラマツを用いた試験体と比較しても、荷重−変位関係に大きな差異は確認されなかった。しかしながら、国産カラマツに比べて圧縮強度が約1/2およびヤング係数が約1/3である国産スギを用いた試験体の最大耐力が、国産カラマツを用いた試験体の最大耐力を上回っていることは特筆に値する。

3.2 破壊性状
写真1に各試験体の最終破壊状況を示す。試験体WC1Cでは、\(R=0.01\)radのサイクルで外装繊維材のめり込みと浮き上がりが始
表6 実験結果一覧

<table>
<thead>
<tr>
<th>試験体</th>
<th>荷重</th>
<th>最大耐力</th>
</tr>
</thead>
<tbody>
<tr>
<td>スギ試験体</td>
<td>Qy (kN)</td>
<td>Ry (rad.)</td>
</tr>
<tr>
<td>WC1C</td>
<td>415.5</td>
<td>0.007</td>
</tr>
<tr>
<td>WC2C</td>
<td>627.8</td>
<td>0.009</td>
</tr>
<tr>
<td>WC3C</td>
<td>691.5</td>
<td>0.007</td>
</tr>
<tr>
<td>カラマツ試験体</td>
<td>Qy (kN)</td>
<td>Ry (rad.)</td>
</tr>
<tr>
<td>WC1</td>
<td>386.0</td>
<td>0.005</td>
</tr>
<tr>
<td>WC2</td>
<td>423.1</td>
<td>0.005</td>
</tr>
<tr>
<td>WC3</td>
<td>666.2</td>
<td>0.006</td>
</tr>
</tbody>
</table>

写真1 最終破壊状況

 CES コアからすれば、内蔵鉄骨の同フランジと外骨材材にそれぞれを取り付けられた鉄骨反力の変位計による計測値を差分した値であり、柱頭、柱脚および中间部で計測している。同図では特に、正負荷時の柱頭の値を例として示しており、正の値は骨材が CES コアに対して上方向に変位したことを表し、負の値は下方向に変位したこと表している。同図より、せん断スパンに比した場合、柱の CES コア外骨材材間のすれ違いを含むことを明らかにした差異および共通点は見られなかった。しかしごし、全体として

3.4 外骨材材のずれ

各試験体のR=0.02rad.までの変位増幅の増加に伴うCES コアと外骨材材のずれの推移状況を図7に示している。外骨材材のずれは、試験体 WC1C および WC2C および WC3C は、それぞれR=0.04および0.02rad.のサイクルで最初の割れが確認され、各試験体とも変位の増加に伴い割れは高さ方向に伸展した。

外骨材材材にカラマツを用いた試験体と比較し、概ね同時期に割れが発生している。しかし、スギを用いた試験体の方が若干発生時期は遅れる傾向が見られ、特に試験体 WC2C でその傾向が強く見られた。また、スギを用いた試験体の方が割れの発生箇所が多くなっただけに、カラマツを用いた試験体の場合と同様にせん断スパン比の低下に伴い、外骨材材材の損傷の程度は増大する傾向が認められた。

図6は柱－スタビ接合部における外骨材材のめり込み量と浮き上がり量を示す。なお、計測値は柱脚部に設置した変位計の正負荷時の値とし、正の値は浮き上がり量（引張）を、負の値はめり込み量（圧縮）を表している。これらの図より、接合部での外骨材材のめり込み量および浮き上がり量は、樹種に係わりなくせん断スパン比の低下に伴い減少することが分かる。

図5 変形装置の特性によるP－δ効果の影響

Fig.5 Loading test equipment with the characteristic of small deformation, Fig.6 Deflection and uplift at each test point, Fig.7 Deflection and uplift at each test point.
図6 めり込みと浮き上がり (上段：スギ、下段：カラマツ)

図7 外径集成材のずれ (正載荷時・柱頭側)
（左図：スギ、右図：カラマツ）

図8 N-Q相関曲線 (左図：スギ、右図：カラマツ)

図9 めり込み変位(mm)

4. 終局耐力評価

4.1 一般化弾性強度理論

(1) 概要と実験結果との比較
一般化弾性強度理論の計算に際しては、理論的基本仮定に従って、
鉄骨、コンクリートおよび集成材とも剛塑性材料と仮定した。さ
らに、柱一スラブ接合部においては、外径集成材とスラブ側の集成
材パネルが非接着であるため、計算では外径集成材の引張強度を
0 としている。計算結果と実験結果の比較を図8に示す。ここで、
せん断スパン比を1.5、1.0 とした試験体の鉄骨の耐力は、式⑻に
より算出したウェブの降伏によるせん断耐力で図中にしている。
なお、材料特性はそれぞれ材料試験結果に基づいて設定し、鉄骨は
表2の降伏応力、コンクリートおよび集材は表1および表3の圧縮強度をそれぞれ使用した。

\[\sigma_{y} = f_{y} \cdot d_{y} \cdot \sigma_{y} / \sqrt{3} \]

この式で、\(f_{y} \): ウェブ厚、\(d_{y} \): ウェブせい、\(\sigma_{y} \): ウェブの降伏応力

図10 N-Q相関曲線（左図：スギ、右図：カラマツ）

図10 N-Q相関曲線（左図：スギ、右図：カラマツ）

の減少と集材パネルに上り込みが生じていることから、繊維方向の圧縮

| 表7 外殻集成材の上り込み降伏応力 |
|---|---|---|---|
| 試験体 | 軸方向のヤング係数 (N/mm²) | 上り込み降伏 |
| WC1 | 7737.0 | 109.8 |
| WC2 | 782.9 | 71.0 |
| WC3 | 1019.3 | 927.2 |

表8 累計強度結果一覧

| 表8 累計強度結果一覧 |
|---|---|---|---|
| 試験体 | 実験値 | 理論値 | 耐力比 |
| WC1 | 7706.5 | 6271 | 1.13 |
| WC2 | 771.9 | 730.0 | 1.06 |
| WC3 | 916.0 | 864.9 | 1.06 |

図10 N-Q相関曲線（左図：スギ、右図：カラマツ）

表3 部材耐力差内部

| 表3 部材耐力差内部 |
|---|---|---|---|
| せん断スパン比 | 部材の最大耐力差 | 類似に加算強度理 | 類似に加算強度理 |
| a/D | kN | kN | kN |
| 2.0 | 4.5 | 7.8 | 0.4 | 2.57 | -17.9 |
| 1.5 | 57.6 | 44.4 | 3.0 | -3.42 | 49.0 |
| 1.0 | 103.3 | 83.4 | 3.0 | -5.13 | 62.3 |

*各値はそれぞれ“スギ集成材を用いた試験体の値”から“カラマツ集成材を用いた試験体の値”で除し合ったものである。
材パネルの面外方向の反り返りや水平方向の変形が拘束されている。これによって、実際の集材パネルのとり込み強度は計算値よりも高くなることが予想され、これが過小評価の一因であると考えられる。

(3) 桁構による耐力差の検討
スギおよびカラマツを用いた試験体の実験値の最大耐力差をせん断スパン比ごとに求めたものを表 9 に示す。また、同表には図 10 による N-Q 相関曲線から求めたコンクリート、鉄骨および集材体それぞれのせん断耐力の差分\(\Delta Q\)、\(\Delta Q\)および\(\Delta Q\)を併せて示している。なお、全ての差分はスギを用いた試験体の結果からカラマツを用いた試験体の結果差を引いた値であり、正の値がスギ試験体の結果が大きいことを、負の値がカラマツ試験体の結果が大きいことを示している。

\(\Delta Q\)は、各試験体ともコンクリートの負せん断力が N-Q 相関曲線の極値まで達しているため、コンクリートの圧縮強度が大きせいせん断スパン比 1.5 および 1.0 の試験体でそれぞれ 44.4kN、83.4kN の耐力を生じている。また、\(\Delta Q\)は、スギを用いた試験体に使用した鉄骨におけるウェブの降伏応力が大きかったため、ウェブでの降伏が先行するせん断スパン比 1.5 および 1.0 の試験体で約 30kN の耐力差が生じている。一方、\(\Delta Q\)は、全ての試験体でカラマツを用いた試験体が大きい値を示しているが、せん断スパン比の低下に伴う変動は小さく、一定の割合で減少していることが分かれる。

したがって、せん断スパン比の低下に伴って大きな変動を示したコンクリートおよび鉄骨の負荷せん断耐力差の影響が大きく現れたため、3.1 節で述べたように、カラマツに比べて圧縮強度およびヤング係数が格段に小さいスギを用いた試験体の耐力がカラマツを用いた試験体の耐力を上回ったと考えられる。

4.2 曲げ解析
(1) 解析概要
解析は、文献 8)に示すものと同様とし、断面全面保持の仮定の下に、断面要素分割法に基づいた剛性マトリックスによる増分型解析法を用いた。解析断面は、図 11 に示すように 40 分割されたファイバーモデル要素から構成されるものとした。なお、断面は鉄骨要素と外設集成材およびコンクリート要素から構成されるものとし、それぞれ材料試験に基づいて異なる材料特性を使用した。したがって、カラマツも用いた試験体についても再評価している。

鉄骨要素には図 12 に示すような、柴田による区分線形の tri-linear 型モデルを用いた。変曲剛性 \(ES\) は \(ES=210kN/mm^2\)
とし、\(ES_2\), \(ES_3\) および補助曲線の勾配 \(C\) は一様としてそれぞれ、
\(ES_2\)=\(ES_1/5\), \(ES_3\)=\(ES_1/100\) とした。なお、ここで \(C\) はウェブのせん断耐力を考慮するため、表 10 に示すようにせん断スパン比 1.5 以下の試験体で使用した鋼の降伏応力は \(4.1\) 節の一般化累加強度理論で算出した鉄骨の曲げ耐力とせん断耐力の比率により低減している。

普通コンクリート要素の履歴ループは図 13 に示すような区分線形モデルとし、全ての試験体に共通して \(EC=29kN/mm^2\), \(EC=EC_1/1.5\), および \(EC=EC_1/100\) とした。さらに、コンクリート強度上昇係数 \(K\) を考慮して、全ての試験体について \(K=1.15\) とし、引張応力は無視している。

外設集成材要素の履歴ループは、一般化累加強度理論と同様に図 14 に示すような Prints を想定したモデルとし、スギでは \(EW=3.5kN/mm^2\), \(EW=EW/100\), \(\sigma=9.5N/mm^2\)、カラマツでは \(EW=11.5N/mm^2\), \(EW=EW/100\), \(\sigma=14.3N/mm^2\) とした。

また、柱・スタブ結合部においては外設集成材とスタブの木質パネルが非接着のため、外設集成材の引張応力を 0 としている。

材軸方向の曲率分布は曲げモーメント分布に比例するものとし、曲率と相関角材の関係式 \(\theta=\theta/h \quad (h: 柱内高さ) \quad 基本として、せん断変形および柱梁接合部の局所的な曲率分布等の影響を考慮し、既往の文献を参考にせん断力 - 水平変形関係の実験値と適合性を検討した 11)。最終的には、スギを用いた試験体では係数 6 をせん断スパンが大きい試験体から順にそれぞれ 1.85, 1.40, 0.85、カラマツを用いた試験体も同様に 2.05, 1.30, 0.70 に変えて評価した。

(2) 解析結果
スギおよびカラマツを用いた試験体の解析結果と実験値の比較を図 15 に示す。なお、解析結果には3.1 節と同様に被蔽装置の特性

<table>
<thead>
<tr>
<th>表 10 鉄骨の低減後降伏応力</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験体名</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>スギ試験体</td>
</tr>
<tr>
<td>WC2</td>
</tr>
<tr>
<td>WC3</td>
</tr>
<tr>
<td>カラマツ試験体</td>
</tr>
<tr>
<td>WC2</td>
</tr>
<tr>
<td>WC3</td>
</tr>
</tbody>
</table>
による$P-\Delta$効果の影響を考慮している。

同様に、荷重解析による解析結果は最大耐力や最大耐力後の耐力低下を完全に捉えることは出来ていないが、EWECS柱の終局耐力は外柱部材のめり込みの現象および鉄骨のせん断耐力を考慮することで、一般化累加強度理論と同程度の精度で安全側に評価できることが分かる。

各試験体の外柱部材、コアコンクリートおよび鉄骨の負担せん断力の挙動特性を図16に示す。これにより、解析断面要素内の集材、コアコンクリートおよび内蔵鉄骨の負担せん断力を求めたものである。図中の点線は一般化累加強度理論で算出した負担せん断力を示している。

同様に、鉄骨の負担せん断力は降伏応力を一般化累加強度理論の曲げ耐力とせん断耐力の比率で低減することにより累加強度による鉄骨耐力の計算値とほぼ一致していることが分かる。また、曲げ解析によるコンクリートの負担せん断力と累加強度によるコンクリート耐力の計算値の差がせん断スパン比の低下に伴い増大することが分かる。これは、一般化累加強度理論において集材の材料強度に応じて計算した値を用いたことで、部材耐力に占めるコンクリート耐力の寄与率が増大したためと考えられる。

5. まとめ

本研究では、外柱部材に国産スギを用いたEWECS柱の静的載
(1) EWECS 柱の変形性状は、樹種に関係なく安定した絞錐型でエネルギー吸収能力に優れた性状を示した。

(2) EWECS 柱の破壊性状は、外殻集成材にスギを用いた場合にひび割れが多くなる点を除いて、樹種に関係なく概ね同様の傾向を示す。

(3) 外殻集成材の挙動は樹種によらず同様の傾向を示し、ゆるみおよび浮き上がりはせん断スパン比の低下とともに減少し、CES コアとのずれはせん断スパン比の低下とともに増大する傾向にある。

(4) 外殻集成材の耐力はゆるみ強度で頭打ちになるため、外殻集成材に用いる樹種の材料強度およびヤング係数は EWECS 柱の耐力に大きく影響を与えない。

(5) EWECS 柱の終局耐力は、外殻集成材のゆるみ強度および鉄骨のせん断耐力を考慮することで、一般化際加強度理論により精度よく評価できるが、全体的に過小評価する傾向が見られる。

(6) 曲げ解析による計算値は、外殻集成材のゆるみ強度および鉄骨ウェブのせん断耐力を考慮することで、一般化際加強度と同等の精度で終局耐力を評価できる。

謝辞

本研究は農林水産省の「平成 21 年度新たな農林水産政策を推進する実用技術開発事業」における「国産材の新需要創造のための耐火性木質構造材料の開発」の一環として実施された。共同研究機関である神奈川総合研究所の原田正郎氏および新藤健太氏をはじめ、関係各位に記して感謝の意を表する次第である。

参考文献

4) 保管者名, 保管所名, 番号: 低強度の国産スギ材を用いた集成材パネルの圧縮・曲げ・ゆるみ試験, 日本木材学会研究発表会要旨集, 第 60 回, 2010.3
7) 日本建築学会: 木質構造設計規準・同解説, 1973.4

(2010年 5 月 7 日原稿受理, 2010年 9月28日採用決定)