ストレングス計算方法の提案

STRENGTH CALCULATION METHOD OF TIMBER BEAM WITH TWO HOLES

Masahiro NOGUCHI and Noboru NAKAMURA

今、非住宅建築物への利用が求められている。このため、従来の木造建築技術だけでは不十分であり、新しい技術が必要とされている。特に、長大な多層木造建物では、設備の配管が必要であり、このため、柱には大きな穴をあける必要がある。この研究では、二つの丸穴を持つ木材の強度計算方法を提案し、実験結果を通じて検証を行った。

1. はじめに

木造構造でも、住宅の空調化や非住宅多層木造建築への利用用途拡大に伴い、梁セーションが必要となり、構造上の線管や配管等の設備配管が必要になったため、梁や小梁に貫通孔をあけることが求められる。本研究では、2007年構造工法建築物設計の手引と日本建築学会構造系論文集を基に、二つの丸穴を持つ木材の強度計算方法を提案している。

実験結果をもとに、強度計算方法を提案し、その有効性を示した。この方法は、実験的に得られた結果を基に、従来の方法よりも精度の高い計算を行うことができる。今後は、さらに多くの条件を考慮した実験を行い、強度計算方法の改善を目指す予定である。

2. 実験方法

2.1 試験体概要

120×30×3000mm のスギ材（平均密度 332kg/m³、平均含水率 12.8%）、材木が 160×105×4000mm、および、240×105×4000mm のスギ集成材（材木等級構成 F65-F225）を用いて図1に示すよう

な二つの丸穴を持つ木材の強度計算を行った。なお、材木端部の孔、材木の端部の強度計算方程式を用いて計算した。さらに、材木端部の強度計算方程式を用いて計算し、実験結果と計算結果を比較し、その精度を検証した。

図1 試験体の幾何学的寸法の定義

Keywords: 強度計算方法, 丸穴, 裂隙力学

強度計算法、有孔梁、破壊力学

秋田県立大学木材専門研究部

流动研究所・農博

Postdoctoral Fellow, Institute of Wood Technology, Akita Prefectural University, Dr. Agr.

Post., Institute of Wood Technology, Akita Prefectural University, Dr. Agr.
<table>
<thead>
<tr>
<th>表1 材せい120mmの場合</th>
<th>間隔</th>
<th>0.25h</th>
<th>0.5h</th>
<th>h</th>
<th>1.33h</th>
</tr>
</thead>
<tbody>
<tr>
<td>孔径</td>
<td>0.3h</td>
<td>3体</td>
<td>3体</td>
<td>3体</td>
<td>3体</td>
</tr>
<tr>
<td></td>
<td>0.4h</td>
<td>3体</td>
<td>3体</td>
<td>3体</td>
<td>3体</td>
</tr>
<tr>
<td></td>
<td>0.5h</td>
<td>3体</td>
<td>3体</td>
<td>3体</td>
<td>3体</td>
</tr>
<tr>
<td></td>
<td>0.6h</td>
<td>3体</td>
<td>3体</td>
<td>3体</td>
<td>3体</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表2 材せい160mm及び240mm</th>
<th>間隔</th>
<th>0.25h</th>
<th>0.5h</th>
<th>h</th>
<th>1.33h</th>
</tr>
</thead>
<tbody>
<tr>
<td>孔径</td>
<td>0.3h</td>
<td>2体</td>
<td>2体</td>
<td>2体</td>
<td>2体</td>
</tr>
<tr>
<td></td>
<td>0.4h</td>
<td>2体</td>
<td>2体</td>
<td>2体</td>
<td>2体</td>
</tr>
<tr>
<td></td>
<td>0.5h</td>
<td>2体</td>
<td>2体</td>
<td>2体</td>
<td>2体</td>
</tr>
<tr>
<td></td>
<td>0.6h</td>
<td>2体</td>
<td>2体</td>
<td>2体</td>
<td>2体</td>
</tr>
</tbody>
</table>

2.2 加力および計測方法
加力は、図1に示すように中央載荷の3点曲げせん断試験とした。
加力は静的単調加力し、破壊に至らした。荷重加力点上部に
ロードセルを設置して計測した。また、梁の中央たわみおよび支点
部のずれみやガタが変位計で連続的に測定し、真の中央たわみは
支点部のずれみやガタをキャンセルした値とした。

3. 強度算定法の誘導
3.1 節ではモデル化の方針を、3.2 節では破壊形態と破壊の定義を、
3.3 節ではせん断破壊を、3.4 節では割裂破壊での強度算定法を導く
する。3.5 節で有孔梁の強度算定式をまとめて示す。

3.1 モデル化の方針
まず、有孔梁の孔から生じる割裂破壊の破壊面および破壊機構を
想定する。そして、梁の初期力工を用いて有孔梁をモデル化し、せ
ん断力と曲げモーメントの作用下で割裂破壊面に生じるそれぞれの
応力の算定式を誘導する。また、全体を通して式が複雑になりそう
な部分では、なるべく式がシンプルになるように仮定を設定した。
なお、孔の円形をそのまま扱うと、計算過程（積分時）で対数が入
ってしまうため、本論文では円形孔を適当な矩形孔に置き換えてモ
デル化した。

3.2 破壊形態と破壊の定義
まず、実験で観察された破壊形態の分析を行う。破壊形態観察か
ら、孔径や材せい寸法による破壊形態の違いは無く、材せいに対す
る孔間隔比により破壊形態が異なった。実験では、写真1(a)に示す
ような二つの孔が全く関連せず各々の孔から割れが生じた破壊形態
と、写真1(b)に示すような二つの孔の間の木部がせん断破壊して、
それがトリガーとなって全体に割れが進展した破壊形態の二つが観
察された。本論文では、前者を割裂破壊、後者をせん断破壊と呼ぶ。
割裂破壊は孔間隔が材せいの1.0倍および1.33倍と孔間隔が大きな
条件の場合に、せん断破壊は孔間隔が材せいの0.25倍および0.5倍
と孔間隔が小さな条件の場合に観察された。

破壊形態の観察に基づき、破壊機構を図4に示すように割裂破壊
とせん断破壊の2つのクラテリアを想定し、それらの小さい方の
強度が有孔梁の強度と定義した。

(a)割裂破壊
(b)せん断破壊

写真1 破壊形態一覧

(a)割裂破壊
(b)せん断破壊

図4 実験観察により確認できた破壊モード

3.3 せん断破壊
孔と孔との間の木部がせん断破壊する場合を想定してモデル化を
行う。3.3.1 節では破壊クラテリアの定義を、3.3.2 節でせん断力
を、3.3.3 節で曲げモーメントにより破壊想定面に作用するせん断応
力算定法を説明する。3.3.4 節でFEMを用いた検証を行う。
3.3.1 破壊クライテリア

実験で得られた破壊形態から、図5(a)の実験で示す部分、または、点線で示す部分にせん断破壊が観察された。この破壊形態の違いは、試験条件の違いでは説明できない。せん断破壊想定面のせん断長さが最も小さくなるように、図5(b)に示すように孔の円を内接円とした正方形形とし、点線で示す部分をせん断破壊想定面とした。

有孔梁のせん断破壊は、梁に作用するせん断力および曲げモーメントにより破壊想定面に生じるせん断応力が材料のせん断強度に達した時と定義した。つまり、破壊面の長さsと材幅tとの積であるせん断破壊想定面積を用いて表現すると、

\[\tau = \frac{Q_{as} + Q_{Mh}}{st} \] 　　…(1)

と定義した。ただし、Q_{as}は3.3.2節で、Q_{Mh}は3.3.3節で詳細に扱う。

![（a）実験観察からの破壊面 (b) 孔の置換モデルと破壊想定面](image)

図5 せん断破壊の想定

3.3.2 せん断力により破壊想定面に作用するせん断応力

まず、図6に示すように孔と孔との間の木部がせん断破壊する前の状態とせん断破壊した後の状態を想定した。梁にせん断力が作用している場合、せん断破壊する前、および、せん断破壊した後の変形は図7のようになる。また、各部に作用する応力は、それぞれ、図8(a)および図8(b)になると仮定する。次に、孔と孔との間の木部がせん断破壊した後の状態からせん断破壊する前の状態にするために必要な条件を考える。

図7(b)に示すせん断破壊後の状態に図9(a)に示すようにブロックを挿入して、そのブロック部がせん断破壊前に位置していたであろうせん断力を外力として与えると、図8(a)と同じ応力分布になる。しかし、ブロックに直交方向の応力のみを与えると、全体としてモーメントも値にされるため、このモーメントを打ち消す方向の水平方向の応力を与える必要がある。なお、水平方向の応力は、図9(b)に示すように、せん断破壊想定面に作用するせん断力Q_{as}を与えた。図9(b)に示すモーメントの釣合い条件から、

\[\frac{Q_{as}}{h} \times s = Q_{as} \times D \] 　　…(2)

が求まる。Q_{as}について解き出せると、せん断破壊想定面に作用するせん断応力の総和（せん断力）Q_{as}は梁に作用するせん断力Qを用いて、

\[Q_{as} = \frac{s}{h}Q \] 　　…(3)

として表現できる。

![（a）せん断破壊前 （b）せん断破壊後](image)

図6 せん断力によるせん断破壊後の想定モデル

![（a）せん断破壊前 （b）せん断破壊後](image)

図7 せん断力によるせん断破壊後のせん断変形想定図

3.3.3 曲げモーメントにより破壊想定面に作用するせん断応力

曲げモーメントについても、3.3.2節と同様な方法でモデル化する。まず、図10に示すように孔と孔との間の木部がせん断破壊する前の状態とせん断破壊した後の状態を想定した。梁に曲げモーメントが作用している場合、平面保持が成立すると仮定すると、せん断破壊する前、および、せん断破壊した後の面AA'の曲げ応力分布は、それぞれ、図11に示すようなになる。次に、孔と孔との間の木部がせん断破壊した後の状態からせん断破壊する前の状態にするために必要な条件を考える。そうすると、孔せん断破壊前にブロック（孔と孔の間の木部）が負荷されていたはずのモーメントM_{b}を外力として用いる。

\[Q_{as} = \frac{s}{h}Q \] 　　…(3)

として表現できる。
3.3.4 モデルのせん断破壊に作用する応力のFEM解析による妥当性の検討

一般的に、梁のせん断応力は、材せいの中央が最大の放置線状の分布になる。これは欠点のない梁の場合の話であり、欠点のある梁の場合はその周辺は欠点によって応力が乱れて放置線状分布にならない。例えば、図8aの状態を考えると、左端に作用するせん断力は、孔がある部分では孔の上側と下側に流れるはずである。そして、それらのせん断力はさらに右側に流れる場合、孔の上側と下側のせん断力はさらに大きな梁理論のような理想的なせん断応力分布になる。しかし、理想的なせん断応力分布になるのは、応力が乱れたところであるせん断距離が遠いためである。等方性体のようない場合は、45度に応力拡散すると考えられるため、材せいの中央の距離が遠くなると理想的なせん断応力分布になると考えられる。異方性体の材料では、既往の研究 FEM解析より、異方性体材料の場合、梁周辺からせん断応力分布角度は約10度と報告がある。このことから考えると、理想的なせん断応力分布になるのは、少なくとも梁の2～3倍以上の距離が必要と考えられる。このことから、今回の実験の範囲内では、すときと孔との間の距離の平均的な本研究のせん断応力分布、等分布と放置線状分布の間の状態と考えられる。3.3.2節では、材せい方向のせん断応力分布を等分布としてモデル化しているため、その工学的妥当性を検討する必要がある。

せん断破壊部に作用する応力の総和（せん断力）をFEM解析の応力解析の算定値（FEM値）とモデルでの計算値の比較を行い、材せい方向のせん断応力分布を等分布と仮定した力学モデルの妥当性を検討した。有限要素法を用いた解析は、2Dの平面応力状態の有限要素モデルを作成し、線形応力解析を行った。図13に検討モデルの一例を示す。なお、全ての実験条件を対象とした。3.3.4に材料定数を示す。なお、材料定数は、木材工学ハンドブックを参考にした。荷重および境界条件は、実験の条件を再現できるように設定した。荷重は鋼製の試験機に等分布荷重を与えた。木材および鋼材は4節点平面要素で表現した。要素分割は、孔の円周を1mmごとに、他の部分を5mmごとに節点を設けた。計算値は存在応力分布（3）から算出したせん断力の和を用いた。図14に孔と孔とはさまれるせん断破壊模様面に作用しているせん断力（せん断応力の総和）について、FEM値と計算値の比較を示す。FEM値と計算値は比例関係で、FEM値は計算値の1倍から1.5倍の間に収まっていることが確認できる。孔間隔が小さい場合はFEM値は計算値の1倍に近く、孔間隔が大きくなるにつれてFEM値は計算値の1.3倍に近づく傾向であった。FEM値が計算値の1倍の場合は材せいの方向のせん断応力分布は等分布を仮定。一方、FEM値が計算値の1.5倍の場合は材せいの方向のせん断応力分布は等分布と放置線分布との間の状態と比較できる。孔からの距離が異なれば材せい方向のせん断応力分布が観察されること、孔の応力集中により応力が乱れること、条件が多いこと、及び、FEMの応力分布の詳細な傾向を詳細化することが困難であった。そのため、本論文では、せん断破壊孔間隔が小さい場合に観察された破壊体形であること、および、孔間隔が小さい場合にFEM値は計算値の1倍に近いことを推定に、材せいの方向のせん断応力分布を等分布と仮定した力学モデルでは工学的に概ね妥当と判断した。なお、せん断応力分布の非線形のルール化は今後の課題である。
ここでは、孔と孔が無関係に割裂破壊が生じるケースを対象に
強度算定式を誘導する。

3.4.1 モデル化流れと割裂破壊の定義

まず、割裂で材が2つに分離する破壊面を想定し、クラックが面
積ΔA進展するに伴うポテンシャルエネルギーの損失ΔWを基の初
等理論を用いて表す。

次に割裂破壊位置について検討する。実験では、有孔材に曲げモー
メンツのみが作用している時は図15のAとBの位置付近に割れが
生じ、一方、せん断力が卓越して作用している時は図15のAとCの位
置付近に割れが生じて破壊した。本論文で対象とする曲げモーメンツ
とせん断力の複合応力が作用する場合は、各々の共通部分である
Aの位置に割れが生じる時点で破壊と定義した。

また、既報13)から、純曲げの場合は36度近辺、純せん断の場合は
40度近辺に応力集中するとの報告を参考に、割れ発生位置を図16に
示すように孔中心から40度の角度をもった位置とした。有孔材の場
合は、せん断力の方が卓越する場合が多いと考え、せん断力が作用
する場合の応力集中部を破壊想定位置とした。また、誘導の簡易化
のため、図17(a)に示す有孔梁を、図17(b)に示すようにモデル化した。

![図15 破壊想定位置](image)

![図16 割れ発生位置の想定](image)

(a)幾何学的記号
(b) 想定モデル

図17 孔の簡易モデル化

既報の実験データ13)から、木材有孔棟におけるせん断力と曲げモー
メンツ複合応力の破壊構成則は、おおむね2乗則があてはまった
ため、本報でもこれに従い、

\[
\left(\frac{M}{M_m} \right)^2 + \left(\frac{Q}{Q_m} \right)^2 = 1
\]

とした。なお、M：存在曲げモーメント、M_m：純曲げの場合の破壊
モーメント、Q：存在せん断力、Q_m：純せん断の場合の破壊せん断
力を表す。

木材の割裂破壊は、Hibehort等の結合力モデルで表現した。材料
定数として破壊エネルギー\(G_f\)を用いた。つまり、破壊クライテリアは

\[
G_f = \frac{ΔW}{ΔA}
\]

を用いた。

3.4.2 せん断力による割裂破壊強度

図18(a)に示すように有孔材の孔の中心を通る持たせ方向と材長
方向の線で4分割に切断し、そのうちの1/4部分に焦点をあてて梁の
基礎理論を用いてモデル化した。図18(b)に示すようにΔxクラッ
ク長が進展した場合、梁のクラック長さの分布（図18(b)の領域
A）には力を流れており、梁の剛性に寄与していないと考えた。そう
すると、クラック長さがΔx進展した場合、図18(d)に示すように曲
げ曲げ長さがΔxだけ増加した梁として扱うことができる。

ここで、本論文ではなるべく簡易で耐力算定式誘導を目的にして
いるため、梁の変形計算の簡易化を行う。図19に、図18(b)に示す
一部もモデルで計算した曲げ変形とせん断変形に対する孔径と
材せい比の関係を示す。変形計算は、図18(b)に示す片持ち梁モデル
で梁先端のたわみをもとめた。梁せい120mmの場合を想定し、幾
何学的寸法は図16を用いた。孔径と材せい比が0.3の場合は曲げ変
形はせん断変形の0.016倍、孔径と材せい比が0.4の場合は曲げ変
形はせん断変形の0.085倍、孔径と材せい比が0.45の場合は曲げ変
形はせん断変形の0.25倍となる。孔径と材せい比は、鉄筋コンクリ
tート造では0.3であること、なるべく簡易で耐力算定式誘導を目的
にしていること、及び軸等のモデル化では曲げ変形の項を最終的に
省略している報告が多いこと16)～19)等も考慮し、本論文では、図18(b)
と(d)に示す片持ち梁モデルのたわみ量は梁のせん断変形のみで計
算した。

![図18 モデル化の想定と割裂と切り欠きの扱い](image)

図15に示すAとCの位置に同時に割れが入ると仮定した。せん断
力が一定Q、矩形断面、切り欠き部分のある部分とない部分における
それぞれのせん断たわみ量の和をとって計算すると、クラック長さ
がx時までの加力点でのたわみ量の増分Δbは

\[
Δb = \frac{2.44 \times Q}{Gb} \left(\frac{1}{a} \right)
\]

で表現できる。ただし、bは材幅、hは材せい、Gはせん断弾性係数、

\[
a = \frac{(0.5h - 0.32D)}{0.5h}
\]

を表す。ポテンシャルエネルギー増分ΔWは

\[\Delta W = \frac{Q \Delta s}{2} = \frac{MA \theta}{2} \quad (9) \]

で表現できる。式（7）、式（8）、および、式（9）を連立すると、せん断力による破壊変形の弾性変数式 \(Q_m \) は

\[Q_m = \frac{b G f a h}{0.6(1-\alpha)} \quad (10) \]

として導出できる。

図 19 曲げ変形とせん断変形比と孔径と材せいの関係

3.4.3 曲げモーメントによる割裂破壊強度

図 20 に示すように、孔の中心を通る鉛直線で切断した片方に焦点をあて、モデル化できる。曲げ変形のせん断力のみが作用していると考える。そうすると、図 20 の領域 A と領域 C の曲げ変形はクラックが入る前と入った後では変化がない。一方、図 20(a)に示すように孔の端から距離 \(x \) までの領域（領域 B）では、クラックが入る前は曲げモーメントに対する応答的な材せい \(b \) であるから、曲げモーメントによる変形角 \(\theta \) は

\[\theta = \frac{M}{E I} \Delta x \quad (11) \]

で表現できる。ただし、\(I = bh^3/12 \)、\(E \) はヤング係数。

次に、クラック入りた後を考慮する。図 20(b)に示すように割れが入るためには割れの上部と横切る下部の間に鉛直方向の変位が発生しているはずであり、平面による仮定の前提が完全に崩れる。最たる安全側の評価として、割れの上部に力が流れず、曲げモーメントに対する有効な材せいは割れの下側のみとした。そうすると、割れが生じた前の領域 B での曲げモーメントによる変形角 \(\theta \) は

\[\theta = \frac{M}{E I} \Delta x \quad (12) \]

となる。ただし、\(I = bh(0.5b+0.32d) \Delta x/12 \) そこで、\(\gamma = 0.5b+0.32d \)

と置き換え、割れ進展後の変形角が割れ進展前の変形角を差し引かれた差分 \(\Delta \theta \) 是

\[\Delta \theta = \frac{M}{E I} \Delta x - \frac{M}{E I} \Delta x = \frac{M}{E I} \Delta x \left(\frac{1}{\gamma} - 1 \right) \quad (13) \]

となる。式（7）、式（9）、式（13）を連立すると、純曲げの場合は破壊モーメント \(M_m \) の計算式が

\[M_m = \frac{2EI G_f b}{\left(\frac{1}{\gamma} - 1 \right)} \quad (14) \]

として導出できる。ただし、\(I = bh^3/12 \)、\(\gamma = (0.5b+0.32d)/b \)

3.5 有孔梁の強度算定法

存在応力式（15）、および式（16）を満たす事を確認する。

\[\tau > \frac{Q_m}{M_m} \quad \cdots (15) \]

\[\left(\frac{M}{M_m} \right)^2 + \frac{Q^2}{Q_m^2} < 1 \quad \cdots (16) \]

ただし、\(Q_m = \frac{3 \alpha}{8} \quad Q_m \quad M_m = \frac{M_1}{D} = \frac{D^2}{b^3} M \)

\[Q_m = b \frac{G_f a h}{0.6(1-\alpha)} \quad M_m = \frac{2EI G_f b}{\left(\frac{1}{\gamma} - 1 \right)} \]

3.6 計算に用いた材料定数

ヤング係数 \(E \) は 6.5GPa、せん断弾性係数は日本建築学会木質構造設計規準に準じて \(E/15 \) を用いた。破壊エネルギー \((G_f) \) は \(G_f = (162+1.07)/12 \) から算定した。ただし、\(G_f \)の単位は \(

4. 実験結果と算定値の比較

4.1 孔径の影響

図 21 に示すような 12mm の場合の孔径ごとの孔径と有孔梁の実験結果と算定値での関係を示す。まず、実験結果について検討する。全体として、孔径が大きくなるに伴いせん断耐力が小さくなっていることが確認できる。しかし、孔間隔が 12mm の条件では、孔径が 50mm まで孔間隔が小さくなるに伴いせん断耐力が小さくなっているが、孔径が 50mm 以上ではせん断耐力の減少割合が小さくなっている。しかし、孔間隔が 180mm の場合でも孔径が大きくなるに伴いせん断耐力が小さくなっている。孔径が 120mm 以上の場合はスギ材を用いていることを考えると、孔径が 50mm 以上ではせん断耐力の減少割合が小さくなっている。

算定式で計算した値は、概ね実験値の安全側の評価を示すことが確認できる。このことから、提案算定式は孔径の影響をおおむね良く

- 932 -
表現できており、妥当であると判断できる。

![グラフ1](a)孔間隔 30mm (b)孔間隔 60mm

![グラフ2](c)孔間隔 120mm (d)孔間隔 180mm

図21 孔直径の影響（材せい 120mm）

ただし、○：実験結果、■：算定値

4.2 孔間隔の影響

図22に孔径ごとの孔間隔と有孔梁のせん断耐力の関係を示す。まず、実験結果について検討する。孔径が36mmおよび48mmの場合は、孔間隔によらずせん断耐力はほぼ一定であることが確認できる。

孔径が60mmおよび72mmの場合、孔間隔30mm、60mmではほぼ一定のせん断耐力を示したが、孔間隔120mm、180mmでは、孔間隔30mmのせん断耐力と比べて平均値で約1.4倍および1.7倍のせん断耐力を示した。これは、孔間隔が30mmおよび60mmの場合は、孔径と孔との間でせん断破壊が生じたのに対して、孔間隔が120mmおよび180mmの場合は、孔径と孔の関係にせん断破壊が生じたことが原因と考えられる。

![グラフ3](a)孔径 36mm (b)孔径 48mm

![グラフ4](c)孔径 60mm (d)孔径 72mm

図22 孔間隔の影響（材せい 120mm）

ただし、○：実験結果、■：算定値

孔間隔が36mm、48mmと小さな場合には、両孔間にせん断破壊が生じても孔が小さいために耐力があり低下せず、その後の孔から割裂破壊で最大せん断耐力が決まったものと考えられる。一方、孔径が大きな場合は、両孔間にせん断破壊が生じて一気に有孔梁が崩壊したために、孔間隔が小さい場合に、小さなせん断耐力となったものと考えられる。算定式で計算した値は、実験結果をもとに算出されたものである。

4.3 寸法効果

図23に材せいに対する孔径および孔間隔の比率と同じくした場合の、材せいとせん断強度（平均せん断応力度）の関係を示す。まず、実験結果について検討する。全ての条件で、材せいが大きくなるにつれてせん断耐力が小さくなっていることが確認できる。この事から、有孔梁には大きな寸法効果があると考えられる。また、全ての条件で、せん断耐力を公称断面で除したせん断応力度は、基準強度（スギ製材:1.8MPa、スギ集成材:3.9MPa）を下回っていることが確認できる。つまり、梁に材せいの0.3倍以上の貫通孔を設ける際は、適切な補強をするか、有孔梁のせん断耐力を算定して使うかのどちらかの方法が必要と考えられる。

![グラフ5](a)孔径 0.3h、孔間隔 0.25h (b)孔径 0.4h、孔間隔 0.25h

![グラフ6](c)孔径 0.5h、孔間隔 0.25h (d)孔径 0.3h、孔間隔 1.33h

![グラフ7](e)孔径 0.4h、孔間隔 1.33h (f)孔径 0.5h、孔間隔 1.33h

図23 寸法効果

ただし、○：実験結果、■：算定値
算定式より計算された値は、材枠に伴うせん断耐力の変化の影響を概ね表現できていることが確認できる。ただし、図23(d)に示す孔径1.3h、孔間隔1.3hの場合は、適度の完全側の評価に至ることが分かった。無補強の有孔梁は、RC造では材枠の0.3倍まで、S造では材枠の0.5倍まで許容されている。提案算定式を用いる場合、RC造と等同の材枠の0.5倍までとすれば、安全側に評価できると考えられる。S造と同様に材枠の0.5倍まで許容すると考えると、大きな材枠での実験結果を収集して適切な安全率の設定が必要と考えられる。木質有孔梁の実験データは、あまり報告されていないため、大きな材枠の実験データの収集が今後の課題と考えられる。

4.4 強度算定式の推定精度

図24に全ての実験データを用いた実験値と計算値を比較し、せん断耐力、およびせん断力を用いた場合でも、大きな傾向としては算定値はおおむね安全側の評価をすることが確認できた。ただし、4.3節でも述べたが孔径1.3h、孔間隔1.3hの時に適度の安全側評価になるため、更なる推定精度向上の実務利用には、実験データの収集が必要である。また、およびが実用的な設計式確立のためには、適切な安全率の設定が必要と考えられる。

5. まとめ

2つの孔を持つ木質有孔梁を対象として、力学モデル化および実験の2つの手法を用いて有孔梁の強度性能について検討し、以下の結果を得た。

・有孔梁の強度算定法を以下のように提案した。

存在応力が下式を満たすことを確認し、

\[
\tau > \frac{Q_{as} + Q_{cm}}{st}
\]

\[
\left(\frac{M}{M_{m}} \right)^2 + \left(\frac{Q}{Q_{m}} \right)^2 < 1
\]

ただし、

\[
Q_{as} = q_0 \frac{Q_{am}}{h} \frac{M_{m}}{D} \frac{D}{h^3} M
\]

\[
Q_{m} = b \left(\frac{G_{c}}{0.6(1 - \alpha)} \right) \frac{\alpha h}{1 - \frac{1}{\alpha}} M_{m} = \frac{2bE_{c}G_{c}}{1 + \frac{1}{\alpha}}
\]

\[
I = bh^{3}/12, \quad \alpha = (0.5h - 0.32D)/h, \quad \gamma = (0.5h + 0.32D)/h
\]

\[
n = \left(\frac{M_{cm}}{M_{m}} \right)^3 + \left(\frac{Q_{cm}}{Q_{m}} \right)^2 < 1
\]

\[
E : 弾性係数, G : せん断弾性係数, \tau : せん断耐力, h : 梁の長さ, \alpha : 破壊エネルギー, \gamma : 梁の長さ, b : 梁幅、
\]

参考文献
1) 日本ツーバイファイア建築協会: 柱組工法建築物設計の手引 2007年、日本ツーバイファイア建築協会
2) 住宅金融普及協会: 柱組み工法プラット 35, 住宅金融支援機構, 2007
3) Johannesson, B.: Design problems for glulam beams with holes, PhD thesis Dep. of Structural Engineering, Chalmers University of Technology, Göteborg, Sweden, 1983
9) L. Höflin, S Aicher : Weibull Based Design of Round Holes in Glulam, Proc. CIB W18 06-12-2, 2003
10) Aicher S., Höflin L. : Load capacity and design of glulam beams with round holes – Safety relevant modifications of design methods according to Eurocode 5 and DIN 1052, MPA Otto-Graf-Institute, University of Stuttgart, 2005
11) デザイン用等: 有孔集成材の強度予測と補強方法に関する研究 その1～その4, 日本建築学会大会学術演講会要集 C-1, 構造 III, pp.19-22, 2006
12) 畑部正彦他 : 残存および曲げ曲げモーメント耐力下の木質有孔梁の強度算定式, 日本建築学会構造系論文集, 74, 640号, pp.1121-1129, 2009.09
13) 森林総合研究所: 木材工業ハンドブック, 岸善, 2004
14) van der Put他 : Evaluation of perpendicular to grain failure of beams caused by concentrated loads of joints. Proc. of CIB-W18 Paper 33-7-7, 2000
17) 畑部正彦他: 材質に設置する鋼鉄直角方向負荷を受ける単体木質ボルト接合の強度算定法の提案, 日本建築学会構造系論文集, 74, 640号, pp.1099-1105, 2009.06
18) 畑部正彦他: 木質鋼板単体ボルト接合の繊維方向荷重に対する強度算定法の提案, 日本建築学会構造系論文集, 74, 638号, pp.681-690, 2009.04
20) 畑部正彦他: 堆抜けせん断について, 日本木材学会大会研究発表要旨集, CDRM収容, 2010.03

(2010年5月10日原稿受理, 2011年1月31日採用決定)