The lateral bracings are usually set to upper flanges of H-shaped beams in the moment resisting frames, and then the stress of the braced flange may become tensile. If the bracings are connected to the tensile flange of H-shaped beams, its lateral buckling strength is more increased than that without bracing. The bracing connected to tensile flange must restrain torsion to increase the lateral buckling strength of the beams.

In this paper, the elasto-plastic lateral buckling load for H-shaped beams with lateral and rotational bracings is presented, and the relationship between the bracing stiffness and strength is estimated.

Keywords: H-Shaped Beams, Lateral Buckling Strength, Stiffness Demand, Stiffness Strength Demand, Stiffness Moment Demand

1. **序**

H形鋼梁の横座屈荷重において、小梁に作用する曲げモーメントをフランジに作用する単力と捉えれば、圧縮側フランジでは面外方向に水平変形を生じるもの、引張側フランジでは水平変形がほとんど生じないと考えられる。つまり、両フランジで水平変形の挙動が異なるため、圧縮側フランジの水平変形に伴い、梁としては振れや曲げ振れを生じるが、そのため、圧縮フランジの水平変形を拘束すれば、高い補剛効果が得られるため、鋼構造設計規定において、鋼構造限界状態設計指針では両フランジの水平変形を拘束するが、圧縮側フランジに小梁等の補剛材を設けることを想定して、必要補剛剛性を設定している。

しかし、長期荷重と地震荷重の組み合わせによって、小梁が取り付く上フランジが圧縮応力になると仮定され、上フランジ補剛は引張側フランジ補剛となる場合もある。そのため、梁の横座屈に対して圧縮側フランジ補剛を検討しなければならないが、横座屈を圧縮側フランジの曲げ座屈と考えれば、引張側フランジの水平変形拘束は、座屈変形に対する補剛効果を極めて小さいものになる。

一方、座屈を生じるH形鋼梁に対して小梁を取り付ける際、振れを拘束できるような接合すれば、引張側フランジ補剛であっても横座屈荷重の上昇は期待できる。そこで、引張側フランジ補剛したH形鋼梁の実験が行われているが、補剛剛性と座屈荷重の関係や補剛力については明らかにされていない。

本論文では、H形鋼梁の横座屈荷重に対する断面内で補剛位置の違いとして、圧縮側フランジ補剛と引張側フランジ補剛による補剛効果を検討する。引張側フランジ補剛の場合、水平補剛だけではほとんど効果がない、ある一定の回転補剛剛性が必要であることから、横座屈荷重に対する両者の補剛効果を検討する。

その際、最も基本的な補剛条件として、材料支持条件として、等モーメントで単純支持の場合について、エネルギ法により座屈荷重式を誘導する。弾性横座屈荷重に対するフランジの水平変形拘束と断面の振れ拘束の効果を明らかにし、梁の座屈モードが高次モードに移行するための必要補剛剛性を提示する。そして、これまで明らかにされていなかった引張側フランジ補剛における補剛性能を把握する。

さらに、弾塑性大変形解析を行い、補剛位置の異なるH形鋼梁の横座屈性状を明らかにし、H形鋼梁の弾性横座屈荷重を一般化長比に用いることで、現行の設計指針における圧縮材の座屈応力度規定への準用を検討する。最後に、補剛材に要求される補剛剛性と補剛耐力との関係を把握する。
2. 引張側フランジ補削された H 形鋼梁の弾性横座屈荷重

本章では、引張側フランジ補削された H 形鋼梁の弾性横座屈荷重式を説明し、横座屈荷重における各因子の関係を明らかにする。そして、横座屈モードが高次モードに移行するための必要剛性値を提示する。

2.1 引張側フランジ補削された H 形鋼梁の弾性横座屈荷重式の誘導

図 1(a)に示すように、上フランジで横補削され、下フランジが引張、下フランジが圧縮となるとき、横座屈時の水平変形及び振れ変形は上フランジ曲げ変形として表すことができる。等モーメント荷重を受ける H 形鋼梁が部材中央で水平・回転補削されているときのボテンシャルエネルギー \(U \) は次式のようになる。

\[
U = \frac{1}{2} \left[EI_1 u_1'^2 + EI_2 u_2'^2 + GKB_1 \left(R u''_1 + R u_1'' \right) \right] \frac{1}{l^2} \\
+ \frac{1}{2} K_1 u_1'^2 + \frac{1}{2} K_1 u_1'' \frac{1}{l^2} \\
+ \frac{1}{2} K_2 u_2'^2 + \frac{1}{2} K_2 u_2'' \frac{1}{l^2}
\]

(1)

ここで、\(EI_1 \): H 形鋼梁の上フランジの曲げ剛性、\(GKB_1 \): H 形鋼梁の振り剛性、\(K_1 \): 補削材に作用する軸荷重、\(K_2 \): 補削材による回転補削剛性、\(u_1 \): 下フランジの水平変位、\(u_2 \): 補削材取り付け位置における水平変位、\(\beta \): 補削材取り付け位置における回転変形である。\(l=1.2 \) で、上フランジを示している。等モーメント荷重を対象とし、端部に作用する梁フランジの慣性は等しいことから、\(P_1 = P_2 = P \) とする。

材端支持条件は強軸回り、弱軸回りに対し単純支持、軸回りを固定とされる。また、梁中央の弾性模数の座屈変形拘束を考慮して座屈変形を材長方向に \(\sin \theta \) 和の組み合わせとし、上フランジの水平変位 \(u_1 \) を簡略的に次式のように仮定する。

\[
u_1 = q \sin \frac{\pi}{l} z + a_1 \sin \frac{2\pi}{l} z, \quad u_2 = h_1 \sin \frac{\pi}{l} z + h_2 \sin \frac{2\pi}{l} z
\]

(2)

本論文では、補削材は下フランジに取り付くことを想定しており、補削材の水平変位 \(u_0 \) 及び回転角 \(\beta \) は次式で表される。

\[
u_0 = u_1 - u_2 + \frac{u_0}{d}
\]

(3)

\[
\beta = \frac{u_0}{d}
\]

(4)

このとき、\(u_1 \) と \(u_2 \) は、(2)式に材軸方向の補削位置 \(z=d/2 \) を代入することで求められる。

(2)〜(4)式を(1)式に代入し、\(a_1, a_2, b_1, b_2 \) について変分とすることにより次式が得られる。

\[
\frac{\partial U}{\partial a_1} = [EI_1 (\frac{\pi}{l})^2 + GKB_1 \frac{2}{l^2} (\frac{\pi}{l})^2 \frac{K_2}{d^2} \frac{2}{l^2} (\frac{\pi}{l})^2 - P] a_1
\]

(5)

\[
\frac{\partial U}{\partial a_2} = -[GKB_1 \frac{2}{l^2} (\frac{\pi}{l})^2] a_2
\]

(6)

\[
\frac{\partial U}{\partial b_1} = [4EI_1 (\frac{\pi}{l})^2 + GKB_1 \frac{2}{l^2} (\frac{\pi}{l})^2 - P] a_1 - GKB_1 b_2 = 0
\]

(7)

(9)式は弾性横座屈補削の場合、(10)式は引張側フランジ補削の場合で H 形鋼梁が座屈するときのフランジに作用する拘束力である。このとき、横座屈変形は補削位置で完全に拘束されていない。(11)式は引張側フランジ補削、引張側フランジ補削に関わらず、補削位置で完全に拘束される場合である。上下フランジの中心間距離 \(d \) を乗することは、弾性横座屈モーメント \(M_{cr} \) が得られる。本論文では、横座屈時のフランジの拘束力を横座屈荷重 \(P \) と呼ぶ。

2.2 引張側フランジ補削された H 形鋼梁の弾性横座屈荷重に対する補削剛性の影響

数値解析はある条件を仮定した ABAQUS 9.1 による弾性有限要素法解析である。本節では、2.1 節で求めた弾性横座屈荷重式の妥当性を検証するために弹性有限要素法解析を行い、図 2 に示すように、H 形鋼梁のフランジ、ウェブ及びウェブ変形を拘束する場合の収支特性を 4 節点シェル要素、水平・回転補削材をパネ要素としている。また、パネ要素をとる剛体要素を連絡している。H 形鋼梁の材端支持条件は断面中心でピニオン支点とし、梁の回転を拘束し、反りを自由としている。本論文における数値解析では、補削位置でのウェブ変形を拘束するために、ヤンスティフナウを設けている。また、荷重条件は梁端部で等モーメント荷重とし、梁の側三角形分布の軸応力となるような荷重を各節点に与えている。なお、各荷重節点に
おける支配面積は図2右に示すとおりである。本論文で対象とした梁断面は、細幅H形鋼のH-500×250×9×16、H-450×201×10×17、中幅H形鋼のH-390×300×10×16、H-446×302×13×21である。

図3に上フランジ補削されたH形鋼梁の座屈応力度と幅比との関係を示す。図の鋸歯はH形鋼梁の横座屈荷重を圧縮側フランジの断面積及びウェブ断面積の1/6の和除した次式の横座屈応力度であり、横幅は文献1)で提案されている次式の無補削の場合の横座屈換算幅比をαで示す。

\[\sigma_c = \frac{P}{A} \quad \therefore \lambda_c = \alpha_c \frac{A}{A_c} \]

図3(a)~(c)で用いた梁断面は細幅H形鋼H-500×250×9×16である。本論文では、補削剛性が横断面荷重に及ぼす影響を明らかにするために、補削剛性が0から無限大（補削点の変位を固定）の範囲について検討する。

図3(a)では図面内の補削位置（圧縮側フランジ補削、引張側フランジ補削）と回転拘束の有無をパラメータとしている。水平補削剛性は、梁の弱軸回りの曲げ剛性に対する補削材の水平抵抗の比（水平補削剛性比）を示す。回転補削剛性は、フランジの強軸剛性に対する補削材の回転抵抗の比（回転補削剛性比）を示す。ここで、無次元化の指標としてGEK/Edを用いた理由は、補削されたレートのフランジのねじり剛性に対して、フランジに取り付く横材の回転剛性の割合を把握するためである。図3は無補削の横断面荷重を、その他の各線は(9)~(11)式の横座屈応力度を示している。

各プロットは弾性固有値解析結果であり、解析モデルは図2に示すとおりである。補削位置に関わらず、回転拘束がある場合の横座屈応力度は回転拘束がない場合に比べて高く、圧縮側フランジ補削の場合、\(\phi = 90^\circ \)では回転拘束の有無に関わらず、梁は補削位置で完全拘束され、座屈モードは高次モードとなるが、\(\phi = 80^\circ \)では回転拘束されていても、図1に示すように補削点で水平変位が完全拘束されない。

一方、引張側フランジ補削の場合、回転拘束がないとき細長い比に関わらず、無補削の場合に比べて広い範囲で水平補削の有無によりずら、横座屈応力度はほぼ等しく、水平補削の有無によりずら、回転拘束がある場合、\(\phi = 90^\circ \)以上で完全拘束された状態となり、\(\phi < 110^\circ \)では回転側フランジ補削に比べて横座屈応力度は低くなっているものの、横座屈応力度は上昇しており、ある一定の補削効果が得られている。

数値解析結果と座屈曲線は概ね良い対応を示しており、(9)~(11)式の有効性が示されている。

図3(b)では引張側フランジ補削の場合の回転補削剛性比の違いについて比較している。水平補削剛性比は図3(a)と同様、GEK/Ed=200である。引張側フランジ補削では、回転補削剛性比が大きくなるにつれて、横座屈応力度は低くなる。GEK/Ed=10のときは、横座屈応力度は圧縮側フランジ補削で回転補削剛性比が0のときとほぼ等しくなくなっている。

図3(c)では引張側フランジ補削の場合の水平補削剛性比の違いについて比較している。回転補削剛性比はK_p(GEK)/Ed=10である。水平補削剛性比が大きくなろうと横座屈応力度はあまり上昇せず、補削
位置で引張側フランジの水平変形を固定した場合でも，
\(K_r(Gk/d)=10 \)， \(K_r(EI/l)=200 \) の圧縮側フランジ補剛の場合よりも横座屈応力を低くなっている。引張側フランジ補剛の場合，横座屈応力の上昇に対しては，水平補剛よりも回転補剛の方がより効果的である。

図4 に上フランジ補剛されたH形鋼梁の横座屈モーメント上昇率
と補剛剛性比ととの関係を示す。図4(b)～(c)で用いた梁断面図は図3と
同じである。(a)は補剛形式の違いを，(b)は引張側フランジ補剛の場合
の補剛剛性比の違いを示している。横軸の横座屈モーメント上昇率は
無補剛の横座屈モーメント \(M_{cr} \) に対する横補剛された場合の
横座屈モーメント \(M_{cr} \) の比 \(M_{cr}/M_{cr0} \) である。 \(M_{cr0} \) は，文献1より求め
られる横補剛における弾性横座屈モーメントであり， \(M_{cr} \) は，(9)式より求められる弾性横席補重 \(P_r \) と図1(b)の上下フランジ中心間
距離 \(d \) を乗じることで求められ，それぞれ次式のようになる。

\[
M_{cr} = P_r \cdot d, \quad M_{cr0} = \frac{E}{l} \cdot y \cdot K_u \cdot d
\]
(13)

(a)及び(b)の横軸は水平補剛剛性比 \(K_r(EI/l) \)，(b)の横軸は回転
補剛剛性比 \(K_r(Gk/d) \) である。梁断面は中幅H形鋼H-350×300×10×16，
梁長は \(l=10000mm \) （弱軸回りの板長比 \(\lambda = 120 \)）である。図中では
(9)式もしくは(10)式から(11)式，すなわち，座屈変形が完全拘束され
高次モードに移行するときの補剛剛性であり，本論文では必要補剛
剛性と呼ぶ。特に，文献11）を参考にして，回転補剛剛性が0のとき
の水平補剛剛性を必要最小水平補剛剛性とする。必要最小回転補
剛剛性については，文献10）と同様，水平補剛剛性が∞のときの回
転補剛剛性とする。

(a)では圧縮側フランジ補剛及び引張側フランジ補剛について示
しており，回転拘束を受ける場合，回転補剛剛性比 \(K_r(Gk/d)=5 \)
をしている。回転拘束のみを受ける場合，回転拘束がない場合に比べ
て，横座屈モーメント上昇率は2倍程度となり，回転拘束による横
補剛効果は期待できる。圧縮側フランジ補剛の場合，図の横梁の範囲
では回転拘束の有無に関わらず，高次モードに移行する。そのと
きの水平補剛剛性比は，回転拘束がなければ \(K_r(EI/l)=60 \) 程度で，回
転拘束がなければ \(K_r(EI/l)=150 \) 程度となり，回転補剛剛性比の大
さにより必要水平補剛剛性の値は異なる。

一方，引張側フランジ補剛の場合，水平補剛剛性比を大きくして
も横座屈応力の上昇せず，補剛効果はあまり期待できない。それ
て、回転補剛剛性比が小さければ、水平補剛剛性比を大きくしても図の範囲では高次モードに移行しなかった。

(b-1) では引張側フランジ補剛の場合の回転補剛剛性比の違いについて示している。回転補剛剛性比を大きくするため、小さい水平補剛剛性比であっても完全拘束される座屈変形に移行する。

(b-2) では引張側フランジ補剛の場合の水平補剛剛性比の違いについて示している。水平補剛剛性比が大きくなるにつれて、完全拘束された座屈変形となる回転補剛剛性比は小さくなるが、引張側フランジの水平変形を固定した場合でも、一定の回転補剛剛性比以下では完全拘束された座屈変形に移行しない。

図 5 に必要最小水平補剛剛性及び必要最小回転補剛剛性と断面の関係を示す。図 5(a), (b)で示した断面は、細幅 H 形鋼 H-456×201×10×17, H-500×250×9×16, 中幅 H 形鋼 H-300×300×10×16, H-446×302×13×21 である。

図 5(a)の図は、圧縮側フランジの補剛位置で水平変形を拘束した場合の必要最小水平補剛剛性 K_y であり、$K_y = 0$ とした場合に(9)式と(11)式が等しくなるときの補剛剛性である。

また、図 5(b)の図は、引張側フランジの補剛位置で水平変形を固定した場合の必要最小回転補剛剛性 K_{EIy} を示しており、K_{EIy} を無限大とした場合に(10)式と(11)式が等しくなるときの補剛剛性である。断面については細幅 H 形鋼と中幅 H 形鋼からそれぞれ2種類を選定している。

梁長が等しい場合、中幅 H 形鋼梁の必要補剛剛性は細幅 H 形鋼梁の場合よりも大きく、断面形状に関わらず、梁長が長いほど必要補剛剛性は小さくなる。

図 6 に引張側フランジの水平および回転変形を拘束した場合の必要水平補剛剛性 $K_y(1/EI_y)$ と必要回転補剛剛性 K_{EIy}/d の関係を示す。図 6 で示した断面は、図 5 と同様、細幅 H 形鋼及び中幅 H 形鋼の 4 断面である。強軸回りの細軸断面をパラメータとしている。等しい細軸断面では、中幅 H 形鋼梁の必要補剛剛性は細幅 H 形鋼梁の場合より大きい。細断比が小さくなるほど必要補剛剛性は大きく、ある一定以下の回転補剛剛性比では、水平補剛剛性比の大小に関わらず、必要補剛剛性に達しない。

3. 引張側フランジ補剛された H 形鋼梁の弾塑性座屈特性

本章では、引張側フランジ補剛された H 形鋼梁の座屈特性を弾塑性解析を行い、補剛位置の異なる H 形鋼梁の横座屈状態を明らかにし、2 重で誘導した弾塑性座屈荷重式を用いた修正一般化細断比により弾塑性座屈応力度を評価し、座屈応力度と補剛

表 1 材料特性

<table>
<thead>
<tr>
<th>E</th>
<th>2.06×10^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_y</td>
<td>294</td>
</tr>
<tr>
<td>σ_m</td>
<td>436</td>
</tr>
<tr>
<td>E_u</td>
<td>2.74×10^3</td>
</tr>
</tbody>
</table>
附記との関係を把握する。

3.1 引張側フランジ補強されたH形鋼梁の弾塑性大変形解析概要

数値解析モデルは前章と同様であり、図2に示すとおりである。本章では、弾塑性大変形解析を行うため、鋼種をSS400 と想定し、H形鋼梁の材料特性は表1 に示す通りである。また、補助パネル要素は弾性である。梁の初期不整は、文献8) を参考にして図7に示すように、外方向に最大値が梁長の1/2500 となるsine波及び同方向に最大値が梁長の1/1000 となるsine波を足し合わせた複数形と、転回角で梁長方向に最大振れ角が梁長の1/2500(φ/2) となるsine波の振れ変形としている。なお、本論文の初期不整の妥当性は、Appendix IIで検討している。

図8に必要補剛剛性における水平補剛剛性と回転補剛剛性と組み合わせる定常を示す。図8(a)は水平補剛剛性と回転補剛剛性が比例的に変化する場合を示している。必要補剛剛性の曲線上における任意の点をkをとす。例えば、原点からk0までの距離の半分の場合を0.5k0 と表記する。

図8(b)は必要補剛剛性に対し水平補剛剛性もしくは回転補剛剛性のどちらかの補剛剛性の値を変化させた場合を示している。例えば、必要補剛剛性の曲線上の点からk0までの補剛剛性が半分になった場合を0.5k0、回転補剛剛性が半分になった場合を0.5k0 と表記する。

次節では、梁の補剛剛性として想定される必要補剛剛性を中心に、補剛剛性や耐荷重をパラメータとして弾塑性大変形解析を行う。

3.2 引張側フランジ補強されたH形鋼梁の弾塑性横変位回復状態

図9に上フランジ補強されたH形鋼梁の弾塑性横変位回復状態を示す。断面は細幅比H形鋼H-500×250×9×16、梁長はl=1050mm (k=160)である。パラメータは断面内での補剛位置、引張側フランジ補強については回転拘束の有無である。回転拘束を受ける梁では、回転補剛剛性をK=(EIy/l^3)=5 と仮定している。

図9(a)は作用モーメント－材端回転角関係、図9(b)は水平変位－材端回転角関係、図9(c)は最大振り角－材端回転角関係である。図9(a)～(c)は横軸は材端回転角を降順モーメント状態で示したもののである。縦軸は図9(a)で作用モーメントを梁の降順モーメントで示したもの。図9(b)は梁中央の水平変位を梁長で除したものの、図9(c)は梁中央の振り角である。図9(d)は材端回転角θ=0.2 のときの上フランジの位変形モードであり、縦軸は水平変位を材長で除したものの、横軸は材端方向の位置を材長で除したものである。各図は関連に示す通りである。

なお、kを図6と同様、弱回りの線長比である。図9(a)で無補剛の梁に対して、引張側フランジで水平補剛のみを受ける梁の最大モーメントは上昇しているものの、その上昇率は5%程度である。

引張側フランジで水平及び回転拘束を受ける梁の最大モーメントは、圧縮側フランジ補強の場合よりはるかにモーメントで上昇し、非恒性座屈を生じている。引張側フランジ補強であるにも回転拘束により圧縮側フランジ補強と同様の効果が得られる。

図9(b), (c)で無補剛と引張側フランジで水平拘束のみを受ける場合、梁中央の水平変位及び振れは最大モーメント後、急激に増加していくが、引張側フランジ補強で水平及び回転拘束を受ける場合、最大モーメント後も一定値に留まっている。そして、圧縮側フランジ補則では、水平変位及び振れはほぼ拘束されている。

図9(d)で無補剛と引張側フランジで水平拘束のみを受ける場合、座屈変形モードは梁中央で最大となるが、引張側フランジ補則で水平及び回転拘束を受ける場合、梁中央ではなく拘束されているものの、高次モーメントに移行してある。そして、圧縮側フランジ補則の場合、高次モーメントに移行している。

図10に引張側フランジ補強されたH形鋼梁の弾塑性横変位回復状態を示す。水平補剛剛性をK=(EIy/l^3)=500 とし、回転補剛剛性を図8(b)に示すように必要補剛剛性に対する割合として、0.25k0, 0.5k0, k0とする。図10(a)で回転補剛剛性が大きくならつて、次モーメントは上昇し、図10(b), (c)で梁中央の水平変位、振れ角も抑制されている。そして、図10(d)の座屈変形モード、回転補剛剛性が大きくなるにつれて、梁中央で最大となるモードから梁中央で完全拘束されるモードに移行していく様子が分かる。

3.3 引張側フランジ補則されたH形鋼梁の弾塑性座屈力エネルギー評価

図11に上フランジ補則されたH形鋼梁の弾塑性横変位回復状態を示す。図は弾塑性解析結果より得られた最大モーメントを梁の断面係数で除した座屈座屈力とσ0, σ0に対する補則剛性比をパラメータとして弾塑性大変形解析を行った。

ここで、式中のM0 は各補則条件について(13)式の横断面モーメントを代入して求めたものである。

図中の実線は鋼構造設計基準30 の座屈設計を示す。点線は鋼構造限界状態設計基準31 の座屈設計を示している。また、σ0/σ0=0.6 ～1.0 の実線は軸方向0.6 のオイラー座屈荷重の接線である。ただし、ここでは安全率を考慮していない。各プロットは弾塑性大変形解析結果である、△：引張側フランジ補則（水平及び回転拘束）、●：引張側フランジ補則（水平拘束のみ）、△：圧縮側フランジ補則（水平拘束のみ）、△：無補則の場合である。各数値解析結果は鋼構造設計規準及び鋼構造限界状態設計指針の設計式を上回り、接線を上限として表示している。引張側フランジ補則されたH形鋼梁の座屈力エネルギーは、(14)式の修正－一般化補則を適用した限界状態設計指針の設計式により概ね評価することができる。

図12にH形鋼梁の圧縮側フランジの水平変形モード比と補則剛性比を示す。図12で用いた断面は、細幅H形鋼H-500×250×9×16。
H-500×250×9×16, 中幅 H 形鋼 H-390×300×10×16 である。縦軸は圧縮側フランジの水平変形モード比の付け根比で、横軸は図 8(a)の必要補剛剛性 k₀ である。各プロットは角括弧 2 のときの値を示している。

ここで、圧縮側フランジの水平変形モード比とは、図 12(c)に示すように梁中央の位置 z=0.5L の変位変位 u₀,0 を材長方向の梁位置 z=0.25L の変位変位 u₀,0,25 を除した値である。すなわち、中央での補剛剛性が大きくならず座屈形状が拘束され、高次のモードに近づき、u₀,0,25 は小さくなる。

図 12(a)は圧縮側フランジ補剛の場合、図 12(b)は引張側フランジ補剛の場合である。圧縮側フランジ補剛については回転補剛剛性を 0 としたときの必要水平補剛剛性を k₀ と定義し、k₀ の 0.25～3 倍の補剛剛性とする。引張側フランジ補剛については図 8(a)に示す必要補剛剛性比 k₀を基準に 0.25～3 倍した補剛剛性比としている。

圧縮側フランジ補剛、引張側フランジ補剛ともに補剛剛性比が大きくなるにつれて水準変形モード比の値は大きくなるが、等しい補剛剛性比で比較した場合、図 12(a)の圧縮側フランジ補剛に比べて、図 12(b)の引張側フランジ補剛の水平変形モード比の値は大きい。横軸が 1 のとき、圧縮側フランジ補剛の場合、u₀,0,25 は 30～50%程度で分布しているが、引張側フランジ補剛の場合、20～35%と大きくなくなっている。

図 13 に圧縮側フランジ補剛と引張側フランジ補剛された H 形鋼梁の材長に対する中央での水平変位変位比の u₀,0,1 に対する変化を示している。図 13 で用いた梁断面は図 12 と同様である。縦軸は引張側フランジ補剛の場合、横軸は圧縮側フランジ補剛の場合の梁長の水平変形比である。プロットは、図 12(a)および(b)の横軸に対する補剛剛性比の値が等しい場合の水平変形比を比較したものがでる。黒プロットは図 12(a), (b)で水平変形モード比 u₀,0,25≤20%の場合を、灰色プロットは圧縮側フランジ補剛の場合のみ u₀,0,25>20%となった場合を示している。

等しい補剛剛性比であっても、圧縮側フランジ補剛の場合よりも引張側フランジ補剛の場合方が中央での水平変位が小さい。また、圧縮側フランジ補剛で u₀,0,25≤20%となる場合のの範囲は概ね 0.1%以下であり、このとき必要水平補剛剛性比 k₀は 1.25 であった。

一方、引張側フランジ補剛で u₀,0,25≤20%となる場合のの範囲は概ね 0.2%以下であり、このとき必要補剛剛性比 k₀は1.5程度であった。

引張側フランジ補剛の場合、圧縮側フランジ補剛の場合と同程度まで横断変形を抑制するために、より大きな補剛剛性が必要となる。

4. 引張側フランジ補剛された H 形鋼梁の水平補剛力及び補剛モーメント

本章では、上フランジ補剛された H 形鋼梁の弾性変形解析を行い、補剛剛性と水平補剛力、補剛モーメントの関係を把握する。

4.1 引張側フランジ補剛された H 形鋼梁の弾性変形解析概念

数値解析モデルは H 形鋼梁及び補剛材ともに前章と同様である。k₀=1 のときの水平補剛剛性と回転補剛剛性の値の組み合わせは前章で定義したとおりである。補剛剛性は 0.25k₀, 0.5k₀, 0.75k₀, k₀, 1.5k₀, 2.5k₀, 3.0k₀である。前章では H 形鋼梁の座屈形状を把握するため、既存の結果に対するような初期不整を与えなかった。本章では補剛材に作用する水平力、曲げモーメントを把握するために、文献
は大きく、\(k_0 = 0.25 \) で \(\lambda = 120 \) のとき水平補剛力比は低下している。これは、細部長が小さい場合では補剛剛性が小さく、座屈後も塑性変形が進展し、最大耐力を達するまで、面外変形が大きくなることから水平補剛力比も大きくなる。一方、細部長が大きい場合、梁の曲げ剛性が相対的に小さく、非弾性座屈を生じると、面外変形が急激に増え、すぐに最大耐力を達し、補剛力が小さくなるためである。また、図中に示す右軸の \(\gamma \) は、鋼構造限界状態設計指針及び鋼構造設計規準で規定されている \(\lambda = 40 \sim 120 \) の必要補剛力を示している。各プロットは \(\lambda = 40, 80, 120 \) のときの必要補剛剛性を必要補剛力の関係を図中に示したものです。\(\lambda = 40, 80, 120 \) ではそれぞれ鋼構造限界状態設計指針で 2.6, 3.0\%程度、鋼構造設計規準で 2.0\%程度の補剛力となり、細部長が小さいほど補剛力は高い。また、このときの必要補剛剛性は鋼構造限界状態設計指針で \(k_0 = 0.15, 0.6, 1.1 \) 倍、鋼構造設計規準で \(k_0 = 0.15, 0.6, 0.8 \) 倍である。\(\lambda = 40, 120 \) の数値解析結果は、鋼構造限界状態設計指針の必要補剛力よりも全体的に若干低くなっている。図 14(b)では補剛剛性比が小さくなるに従い、補剛モーメント比は増加する。そのため、水平補剛力比と補剛モーメント比の和である

図 14(c)で \(\lambda = 40, 80 \) については、補剛剛性比が小さくなると、水平補剛力比と補剛モーメント比の和が増加し、補剛モーメント比の上昇が小さい \(\lambda = 120 \) については、低下していく。

図 15 に補剛形式の異なる H 形鋼梁に作用する補剛力の関係を示す。図 15 で用いた変断面は、図 5 と同様で、細幅 H 形鋼及び中幅 H 形鋼の 4 断面である。横軸は圧縮側フランジ補剛の場合の水平補剛力比、縦軸は図 15(a)で圧縮側フランジ補剛の場合の水平補剛力比、図 15(b)が補剛モーメント比、図 15(c)が水平補剛力比と補剛モーメント比の和である。図 15(a)で、圧縮側フランジ補剛で水平補剛力比、
が1%～3%のとき，引張側フランジ補強の水準補剛力比は1%程度に
分布している。図15(b)で補剛モーメント比は\(\theta_2/1000\)の場合1～2%程度，\(\theta_1/1000\)の場合2～3%程度となり，圧縮側フランジ補剛し
た場合の補剛力比の値とはほぼ等しい。そのため，図15(c)で引張側フ
ランジ補剛の場合の水平補剛力比と補剛モーメント比の和は，圧縮
側フランジ補剛の水平補剛力比に比べて，常に1%程度高い値とな
っている。

図16に補剛モーメントと補剛剛性\(K\)の関係を示す。図16で用い
た梁は，図15と同様である。図16は図15(b)と同様に，横軸の\(K\)
は梁の細長比，縦軸に関する項を含めた次式である。

\[
K = \frac{\lambda^2}{X} \quad \therefore X = \frac{GK}{\pi^2EI}
\] (17)

(17)式の\(X\)は文献1)で用いられている振れ項である。図中の黑
灰色実線は(18)，(19)の初期不整の最大値\(1/1000\)と1.5/1000の場
合の補剛モーメントの近似線である。初期不整1/1000の場合につい
て，数値解析結果（白プロット）を元に，できる限り簡易でかつ補
剛モーメントの上限となる近似式として次式とした。

\[
M/(P, d) = 1 + \frac{\theta_1}{9} \sqrt{D}
\] (18)

また，初期不整1.5/1000の場合，(18)式を1.5倍することで求めら
れる。

\[
M/(P, d) = 1.5(1 + \frac{\theta_1}{9} \sqrt{D})
\] (19)

その結果，(18)式，(19)式はそれぞれ白プロット，黒プロットの上
限となっており，補剛モーメントを評価できることが示された。

5. 結

本論文では，上フランジ補剛されたH形鋼梁において，上フラン
ジに作用する荷重が圧縮力もしくは引張り力になる場合に，等モーメ
ント荷重を受けるH形鋼梁の横断面荷重と補剛剛性との関係を把握
した。さらに，補剛剛性と補剛材に作用する水平補剛力，補剛モーメ
ントの関係を明らかにした。以下に得られた結論を示す。

1) 等モーメント荷重を受ける圧縮側フランジ及び引張側フラン
ジ補剛されたH形鋼梁を対象にして，エネルギー法により弾性横断
面荷重式を導出した。弾性横断面荷重は(9)～(11)式で精度よく
表すことができる。

2) 必要補剛剛性は(9)，(10)式と(11)式を等しいとすることで求めら
れる。圧縮側フランジ補剛の場合，水平補剛剛性が大きくなら
れば，座屈荷重は上昇し，高次モードに移行する。しかし，引張
側フランジ補剛の場合，圧縮側のみで座屈荷重はほとんど
上昇しないため，高次モードに移行しない場合がある。高次モー
ードに移行し，必要補剛剛性を確保するためには回転補剛も必要
となる。

3) 等モーメント荷重を受け，梁中央で補剛されたH形鋼梁の弾塑
性横断面荷重は，(14)式の修正一般化線形比を用いることで，
鋼構造設計規準，鋼構造荷重設計指針の座屈曲線で安全側
に評価できる。

4) 引張側フランジ補剛されたH形鋼梁の水平補剛力は細長比によ
らず最大荷重の1%程度とほぼ一定の値となり，補剛モーメン
トは(18)式，(19)式で評価できる。

本論文で得られた知見の適用範囲は，通常，梁で用いられる中幅，
細幅H形断面，及び弱軸回りの細長比80～160である。

謝辞

本研究は科学研究費補助金基盤研究(C)（課題番号22560565）によるものである。また，数値解析は小川杉子さん現長崎大学大学院生の卒
業論文の成果である。深く感謝の意を表す。

参考文献
1) 鈴木敏郎：H形鋼部材の屋根用接合方法について、日本建築学会論文報告
集、第229号、pp.43-51, 1975.3
2) 日本建築学会：鋼構造設計規準・同解説。2005.9
3) 日本建築学会：鋼構造荷重設計指針・同解説。1998.10
4) 大西浩，鈴木敏郎，五十嵐徹夫，鈴木敏：引張側フランジに補剛材を
設けるH形鋼梁の横断面形状に関する研究，日本建築学会大会学術講
演論文集 C-1, pp.423-424, 1999.7
5) 鈴木敏郎，木村裕之：フレーム架構におけるH形鋼梁の横断面形状
日本建築学会構造学論文集 第52号、pp.127-132, 1999.7
6) 木村裕之，小沢利行：偏心補剛されたH形鋼圧縮断面材の座屈荷重と必
要補剛剛性，日本建築学会構造学論文集 第57号、pp.213-218, 2003.12
7) ABAQUS/Standard User’s Manual version 6.9.2
8) 鈴木敏郎，木村裕之：H形鋼梁の横断面に対する柱梁接合部による反り
拘束の影響，日本建築学会構造学論文集 第57号、pp.115-120, 2000.11
9) 日本建築学会：建築工事標準仕様書 JASS 6 鉄骨工事。2007.2
10) 木村裕之，小沢利行：ウェブ変形の影響を考慮したH形鋼圧縮断面材の
座屈荷重と及び偏心補剛材の水平及反回拘束効果，日本建築学会構
造学論文集 第74巻第637号、pp.583-891, 2009.3
11) 日本建築学会：鋼構造座屈設計指針、2009.11

Appendix I

付図1は必要最小補剛剛性と細長比の関係を示している。横軸は相対曲げ
比\(\lambda_i\)および鋼構造荷重設計指針によって求めた一般化細長比を示す。本
論文で用いる一般化細長比は鋼構造荷重設計指針で示されている一般
化細長比を修正した修正一般化細長比として(14)式で示すとおりである。

図中の曲線は図5と同様に圧縮断面形状における必要補剛剛性を示す。また，
付図1(a)のプロット付き点線は鋼構造荷重設計指針で示されている必
要補剛剛性であり，次式のときである。

\[
K = \frac{5M}{H^2} \quad \left(\lambda_i \leq \lambda_{cr} \right) \quad \text{(付1)}
\]

限界状態設計指針(付12) 鋼構造設計指針(付12)
ここで、本論文では等モーメント荷重で、荷重をM=1である。本論文で求めた最大最小値は、文献1の換算荷重比、(14)式の修正一般化計算を用いることで、面積関数で変換することより、結果的に逆に変換することが可能である。また、本論文で求めた補剛係数は、(付1)式の範囲では鋼構造限界状態設計指針で提示された必要補剛係数より小さい値となっている。一方、必要最小補剛係数は面積形状によりばらつきがある。

付図2は文献8の等モーメント荷重を受けるH形鋼梁の横断面実験と数値解析結果を比較している。数値解析モデルは図2に示すところであり、補剛剛性は文献8に示すところである。実験結果と数値解析結果は良好に対応しており、数値解析モデルの妥当性が示されている。

付図3に座屈応力と鋼梁長さの関係を示す。パラメータは梁断面 H-500×250×9×16，H-390×300×10×16，で200である。検討した回転補剛剛性を表1に示す。

付図4(a,b)では回転補剛剛性をSt.Venant とSt.Venant でM作図 또는で示している。付図3では(a,b)に前表の違いにより、細長い長さが異なる領域で座屈曲線は異なる。しかし、付図4(a,b)では断面の違いによりばらつきが大きいものの、(b)では断面によらず一義的に示している。

![実験結果](image-url)