In this study, experimental investigations were conducted regarding the following three items: 1) effect of clad reinforcement of carbon fiber reinforced mortar (CFRM) on flexural performance of reinforced concrete (RC) beams; 2) electromagnetic shielding effect of the CFRM; and 3) the state of electrolytic corrosion of rebars placed in the CFRM after long-term (15 years) exposure. Our results showed that the CFRM was effective in improving both flexural and electromagnetic shielding performances of RC members, without accelerating electrolytic corrosion of rebars placed in the CFRM. However, more investigations are needed to evaluate electromagnetic shielding effect of CFRM in full-scale RC members and electrolytic corrosion of rebars under more long-term exposure.

Keywords: Carbon fiber reinforced mortar, Electromagnetic shielding, Electrolytic corrosion, Long-term exposure, Reinforced concrete, Clad reinforcement

1.はじめに

炭素繊維は、①軽量かつ高強度・高弾性率である、②耐火性・
耐熱性が大きく、2000℃を超えるまで強度が低下しない、③導電性、
電磁透過性に優れる（但し、電流により鉄筋を腐食させる恐れがあ
る）、④熱膨張係数が極めて低く、寸法安定性に優れる、⑤化学的に
安定であり、ほとんどの酸・アルカリに侵されない、⑥生物学的劣
化がない、⑦耐摩耗・耐摩耗性に優れる、⑧生体親和性に優れる
等の長所を活かし、昨今より、建築・土木分野において盛んに活用
されている。

炭素繊維の主な活用形態は、連続繊維としてはコンクリート系部
材における補強材やシート・プレート接着補強材、短繊維としては
高強度セメント複合材料などが挙げられるが、いずれも部材および
材料の引張・曲げ強度および弾性（エネルギー吸収能力）を改善す
ることを主目的としている。セメント系材料に対する補強材として
の炭素繊維の歴史を概観すると、1972年にAli, Walkerらが、高強
なPAN（ポリアクリルニトリル）系の炭素連続繊維をハンドレイア
ップ法によりセメントマトリックスと相互に積層した複合材料の物
性について研究を行ったことが最初であるとされる。以降、1980年
代にあたり、石油や石炭のピッチから製造される安価な炭素繊維が供
給されるようになると、秋沢らにより、ビッチ系炭素繊維を
利用し、これをマトリックス中にランダムに分散させた炭素繊維補
強モルタル（以下、CFRMと称する）が開発され、カーテンウォール
等への実用化が図られた。特に、1990年代になると、坂井らが、
高強度・高弾性率のビッチ系炭素繊維を用い、かつ特殊な水
溶性化粧品を施すことにより、汎用の強制繊維型ミキサーでも
混練可能なCFRMの製造法を開発するとともに、その調合、力学的
特性、耐久性および耐火性等に関して実験的検討を行い、建築用大
型カーテンウォールへの実用化を図っている。著者らも、CFRM
の打ち込み型枠材やハーフプレキャスト部材への適用を想定し、曲げ引張側を CFRM により積層補強した鉄筋コンクリート（以下、RC と称する）梁の曲げ耐荷試験を実施し、その有効性を明らかにした。ところが、昨今より、エレクトロニクス技術の発展を相まって、生活のあらゆる分野において電波が使用されるようになっているが、不要電磁波による電波障害等、複雑化してきた電波環境により様々な弊害が生じている。こうした障害を未然に防止するための対策のひとつとして、不要電磁波の遮蔽（或いは室内への侵入および外部への漏洩を防ぐため）に、電磁シールド材を用いることが考えられる 15）。現在、建築分野において使用されている電磁シールド材としては、塗装型、金属型およびプラスチック複合型等が挙げられるが、それぞれ耐久性、軽量化および耐熱性等の面で固有の欠点を有している 15）。また、これらの電磁シールド材は、主に壁面等の材_surfaceへの用途を想定したものであり、構造要素への電磁シールド性能付与を目的としたものではない。特に、RC 構造物への電磁シールド性能付与を考慮する場合、機械の構造と同時に電磁シールド空間を構築できることを望まれている。この点で、上述の CFRM ハーフプレキャスト部材に電磁シールド効果を期待することができれば 21)、22)、更に述べるような RC 部材のひび割れ発生耐力、引張鉄筋降伏耐力および耐性を改善しながら、構造体に良好な電磁シールド性能を付与できる可能性があると考えられる。ただし、その際、CFRM 中の炭素繊維の導電性に起因する内部鉄筋の電荷の問題が懸念される。

そこで、本研究では、CFRM の打ち込み型枠材やハーフプレキャスト部材への適用を想定し、CFRM の積層補強による RC 梁の曲げ性能の向上、CFRM の電磁シールド効果および CFRM 積層補強が内部鉄筋の電荷に及ぼす影響について調べることを目的に、以下に示す 3 項目について実験的検討を行った。

① 実験 1「CFRM を用いて積層補強した RC 梁の曲げ性能」
曲げ引張側を CFRM により積層補強した RC 梁の曲げ性能について実験的検討を行った。なお、本実験データは参考文献1)において既に公表しているが、実験 3 と直接的に関係するため、論旨を損なわない程度にここでその概要を示すこととする。

② 実験 2「CFRM の電磁シールド効果」
汎用のアドバンストテープを CFRM 板および CFRM 板における電波の通過減衰量を測定することにより、CFRM の電磁シールド性能を有効化を検証した。また、比較としてマイクロ波フィードバック、アモルファス金属フレーク、耐アルカリ性ガラス繊維および木炭粒子を混入したモルタルについても同様の検討を実施し、混和材料の違いが電磁シールド効果に及ぼす影響について考察した。

③ 実験 3「長期暴露による CFRM 内部鉄筋の耐荷状況」
CFRM を用いた積層補強がその内部鉄筋の電荷に及ぼす影響について調べることを目的に、実際に 1 で曲げ荷重試験に供した CFRM 積層補強 RC 樓梁試験体を屋内および屋外に自然暴露し、試験開始後 15 年後暴露状態における CFRM 中の鉄筋の腐食状況の調査を行った。

2. 実験 1「CFRM を用いて積層補強した RC 梁の曲げ性能」
2.1 実験方法
2.1.1 使用材料および調査
表 1 に CFRM および普通コンクリートの使用材料を示す。CFRM に関して使用した炭素繊維は、高強度・高弾性率のピッチ系で、特殊サイジングを施した長繊維（繊維径：18μm を長さ 18mm にカットしたものである。セメントに白ビニルプレートセメント、骨材に砂石 8 号、分散剤としてメチルセルロースをそれぞれ用いた。

表 2 に CFRM および普通コンクリートの使用調合を示す。CFRM の調合は、繊維体積率、砂セメント比および分散剤混入率がそれぞれ一定の条件下で水セメント比（W/C）を変化させ、プレート 10 以上を目標に、その中で最も高い曲げ強度（JIS R 5201 に準拠、但し材齢 1 週）を示した調合を選定した。また、普通コンクリートの調合は、W/C=50%一定とし、スランプ 18cm を目標に試験結果により定めた。

CFRM の混練には容量 30L のオムニミキサーを使用し、最初にセメント、骨材、繊維および分散剤を 3 分間空練りした後、水を加えて 6 分間練り混ぜた。また、普通コンクリートの混練は、容量 50L の可変式ミキサーにより行った。

2.2.1 素材特性
素材試験供試体として、圧縮および割裂引張試験用円 φ100×200mm 円柱供試体を 3 体作製し、材齢 5 週までに現場シート散水養生後、試験時まで気中養生とした。素材試験方法に関して、圧縮試験では圧縮試験荷重を一定曲線を測定し、圧縮強度をヤング係数を求めた。また、主筋の引張試験では、引張応力ひずみ曲線を求める。
以上のようにして得られた CFRM、普通コンクリートおよび鉄筋の素材試験結果を表 3 に示す。CFRM の力学的特性に関して、普通コンクリートと比較した場合、ヤング係数は約 1/3 とかなり小さく、圧縮強度もやや小さいが割裂引張強度は逆に大きくなっている。

2.3.1 設計試験条件および曲げ耐荷試験方法
図 1 に RC 樓梁試験体の形状・寸法および配筋を、載荷点および支点位置とともに示す。主筋には SD345 を用い、圧縮鉄筋 2-D10、引張鉄筋 3-D10 とした。あらば筋には SR235, φ6 を用い、あらば筋間

表 1 使用材料（実験 1）

<table>
<thead>
<tr>
<th>a) CFRM</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>セメント</td>
<td>軽 Cokeボルトランドセメント</td>
<td></td>
<td></td>
</tr>
<tr>
<td>柔軟材</td>
<td>砂 8 号</td>
<td>絶縁密度:27g/cm³</td>
<td></td>
</tr>
<tr>
<td>分散剤</td>
<td>メチルセルローズ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>短纖維</td>
<td>ビッチ系炭素繊維</td>
<td></td>
<td></td>
</tr>
<tr>
<td>密度:2.06g/cm³,寸法:φ18mm×18mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>引張強度:1723N/mm², 引張強性:206kN/mm²</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b) 普通コンクリート</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>セメント</td>
<td>普通ボルトランドセメント</td>
<td></td>
<td></td>
</tr>
<tr>
<td>柔軟材</td>
<td>砂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>表面密度:2.58g/cm³, 汎水率:3.40%, 最大寸法:5mm, 程度:450, 実録:66.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>骨材</td>
<td>砂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>表面密度:2.66g/cm³, �uell水率:2.42%, 最大寸法:15mm, 程度:63, 実録:66.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 2 使用調合（実験 1）

<table>
<thead>
<tr>
<th>Vc (%)</th>
<th>W/C (%)</th>
<th>S/C (%)</th>
<th>M/C (%)</th>
<th>単位量(kg/m³)</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td>0.25</td>
<td>916</td>
<td>504</td>
</tr>
</tbody>
</table>

| 40 | 22.9 | 40 | 151 |

<table>
<thead>
<tr>
<th>W/C (%)</th>
<th>s/a (%)</th>
<th>単位量(kg/m³)</th>
<th>Slump(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>40</td>
<td>200, 699</td>
<td>1056</td>
</tr>
<tr>
<td>40</td>
<td>200</td>
<td>699</td>
<td>1056</td>
</tr>
<tr>
<td>20.5</td>
<td>699</td>
<td>1056</td>
<td>20.5</td>
</tr>
</tbody>
</table>

1)：繊維体積率、W/C：水セメント比、S/C：砂セメント比、M/C：メチルセルロース（分散剤）混入率、C：セメント、W：水、S：骨材、M：メチルセルロース、CF：炭素繊維、s/a：細骨材率、G：粗骨材
表3 素材試験結果（実験1）

<table>
<thead>
<tr>
<th></th>
<th>CFRM</th>
<th>普通コンクリート</th>
</tr>
</thead>
<tbody>
<tr>
<td>圧縮強度 (N/mm²)</td>
<td>51.4</td>
<td>45.3</td>
</tr>
<tr>
<td>ヤング係数 (kN/mm²)</td>
<td>7.5</td>
<td>6.4</td>
</tr>
<tr>
<td>裂雪引張強度 (N/mm²)</td>
<td>4.14</td>
<td>3.71</td>
</tr>
</tbody>
</table>

b) 主筋

<table>
<thead>
<tr>
<th></th>
<th>上降伏点 (N/mm²)</th>
<th>下降伏点 (N/mm²)</th>
<th>引張強度 (N/mm²)</th>
<th>許容引張 (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD345 D10</td>
<td>405</td>
<td>394</td>
<td>588</td>
<td>23.5</td>
</tr>
</tbody>
</table>

図1 RC梁試験体の形状・寸法および配置（実験1）

隔は100mmとした。CFRM積層補強に関して、梁せいを250mm一定とし、引張側厚さa=0（無補強）、60, 120, 180, 250（全体補強）mmでCFRMを積層した。その方法は、所定の高さまでCFRMを打ち、型枠側面中央に取り付けた高周波パイプレスタリ振動線図を行った後、翌日のレンガコンクリートを被えるリントを除した上で普通コンクリートを打ち設けた。なお、養生条件は上述の素材試験用供試体と同様とした。

曲げ載荷方法に関しては、図1中に示す通り、載荷点間隔300mm、スパン長2000mmの4点曲げ載荷とした。

2.2 実験結果および考察

図2にRC梁試験体の最終ひび割れ状況を示す。無補強試験体と比較して、CFRM積層補強試験体ではひび割れの発生数が少なく、曲げ区間の生じたひび割れが主ひび割れとなり、拡大・進展する性状を示した。なお、積層補強厚の違いによるひび割れ性状の顕著な差異は認められない。

図3および図4に荷重－載荷点変位関係および曲げモーメント－曲率関係の測定値をそれぞれ示す。図3より、荷重－変位曲線の初期勾配は積層補強厚が増加するほど小さくなる傾向にあり、これは、CFRMのヤング係数が普通コンクリートの約1/2と小さいためである（表3参照）。これに対して、CFRM積層補強試験体のひび割れ発生荷重P₀は、無補強試験体に比べて2.3～2.7倍程度で増加しており、P₀に対するCFRM積層補強効果が顕著である。引張筋降伏荷重Pᵢに対しては、CFRM積層補強厚に応じて差異が認められる。

積層補強厚a=60, 120mmの場合、Pᵢに対する強調補強効果は見られず、無補強試験体と同程度の値を示しているのに対し、a=180, 250mmの場合にはPᵢが無補強試験体に比べて約20%上昇している。

以上の結果より、CFRM積層補強はRC梁のひび割れ発生荷重、引張筋降伏荷重および剛性の向上に有効であり、積層補強厚を増
加するほど総合的な補強効果は大きくなっている。なお、本論では紙面の都合で割り断したが、既報17）では、CFRM積層部に引張鉄筋が含まれない場合（スキン補強）にはひび割れ発生荷重は向上するものの引張鉄筋降伏荷重はほとんど改善されないことから、CFRMと鉄筋との共働効果が梁の曲げ性能に大きく寄与することを示している。

3. 実験2「CFRMの電磁シールド効果」

本章では、汎用のアドバンテスト法16・17を用いてCFRM 板における電磁波の透過減衰量を測定することにより、CFRMの電磁シールード材としての有用性を検証した。また、比較のため、他の混和材を混入したモルタルについても同様の検討を行った。なお、本実験では、アドバンテスト法の適用周波数の制限および実験結果から得られた各種モルタル試験体のシールド周波数特性に基づき、消防無線、列車無線、警察無線および航空機無線等に用いられている。

VHF周波数帯に属する50〜250MHz帯域の電波に対するシールド効果について検討を行ったとしました。

ここで、電磁シールド効果Sは、図5に示す電磁シールド直に対して入射側の電波電磁強度E1と、電磁シールド層の透過側における電波電磁強度E2との比、すなわち透過減衰量で定義され、E1およびE2をμV/m単位で表示した場合、下式で表される。

\[S(dB) = 20 \log_{10} \frac{E_1}{E_2} \]

（1）

上式より、例えば電磁シールド効果20dB とは、入射電波の電磁強度が1/10に減衰していることを示す。また、電磁シールド効果Sは、シールド材内部における電磁波の透過損失を\(A \) (dB)、反射損失 \(R \) (dB)および多重反射後の透過波に関する補正係数 \(B \) を用いて、下式のよう表すこともできる。

\[S(dB) = A + R + B \]

（2）

上式は、電磁シールド効果 S が、吸収損失と反射損失を含む包絡するトータルの遮蔽効果を表すものであることを示している。

3.1 実験方法

3.1.1 使用材料および調合

表4に使用材料を示す。混和材料として、ピッチ系炭素繊維（繊維長 \(l=6 \), \(10 \), \(18 \)mm の3種類）の他に、比較のためにマイクロチャネルファイバー（\(l=5 \)mm）、アローヤファイバー（長さ \(20 \)mm以下）、耐アルカリ性ガラス繊維（\(l=25 \)mm）、木炭粒子（粒径 \(2.5 \)mm以下）を用いた。なお、マトリックスには実験1と同様に、セメント
表5に使用調査を示す。混和材料混入率（対セメント質量比）Ad/Cは、混和材料の種類に応じて、混練が可能な範囲内で定めた。また、電磁シールドにおける異種混料材料の複合効果を調べるため、ピッチ系炭素繊維とアモルファス金属フィーレイ、ピッチ系炭素繊維と木炭粒子をそれぞれ混合したものについても同様の検討を行っている。マトリックスは、砂セメント比 S/C=60%およびメチルセルロース混入率 M/C=0.25%のマルチマトリックスを基本とした。ここで、単位重量水かセメント比が電磁シールド効果に与える影響は小さいと考えられたため、ここでは、成形可能なブロアの範囲内（140 〜200）で、混練状態を考察しながら流量を決定した。その方法としては、マルチマトリックスを用い、最初にセメント、細骨材、混和材料および分散剤を十分に空練りした後、混練状態を目視で確認しながら加水し練り混ぜた。なお、参考までに、強度試験（JIS R 5201に準拠）を実施したものについては、その結果も表5中に併記している。

3.1.2 試験条件および電磁シールド試験方法
電磁シールド試験に供した試験体の形状・寸法は、後述する電波暗室の寸法に合わせて、200×200×4mmの平板とした。試験体は、打設後日に脱型し、標準養生材齢7日後、20℃恒温室内にて7日間気中養生を行った上で試験に供した。
電磁シールド試験には、汎用のA社製シールド材料特性評価装置[9,12,23]を用いた。本装置は、電磁シールドを近傍電磁界における電界波および磁界波に対する遮蔽効果として評価するものであり、その測定可能な周波数範囲は10〜1000MHzである。測定方法としては、電磁暗室内（外部からの電磁ノイズをほぼ完全に遮蔽した電磁空間）内の送信および受信アンテナの間に試験体を設置し、電波の透過減衰量を測定した。

3.2 実験結果および考察
図6に、透過減衰量－周波数関係の一例として、CFRM（L=18mm）に関する測定値を示している。なお、図中には参考のため、鋼板（厚さ1.0mm）に関する測定データも併記している。
CFRMの場合、繊維混入量に応じて若干の差異はあるものの、いずれも周波数200MHz帯域で透過減衰量はピークを示し、その後200〜550MHz帯域にて一旦低下した後再び上昇する特性を示した。なお、紙面の都合でここでは掲載していないが、検討対象としたほぼ全てのモルタルが50〜250MHzの周波数帯域において最大の透過減衰量を示していることが確認された。
ところで、鋼板（厚さ1.0mm）に関しては、周波数300MHz付近および250MHz付近ではCFRMとほぼ同様の性状を示しているものの、それ以外でも1GHzに至るまで透過減衰量が増大している点でCFRMとは異なっている。また、厚さ2.0mmの鋼板やアルミニウム板についても同様の検討を行ったが、材質や厚さの違いによる金属板の電磁シールド効果の差異はほとんど認められなかった。これは、金属のような良導体ではそのシールド効果が電波の反射損失によってほぼ決定され、尚且つ10〜1000MHz帯域であればこれら金属板の反射損失にはほとんど差異がないためである[9,12,23]。これに対して、炭素繊維等の導電性材料を混入したモルタル・コンクリートのシールド効果は、その内部において電磁波エネルギーが熱エネルギーに変換される、いわゆる吸収損失が支配的となることが知られている[9,12,13,22,24,25]。

図6 透過減衰量－周波数関係の測定値の一例（実験2）

図7 平均透過減衰量の算出方法（実験2）

図8 各種混和材料を混入したモルタルの平均透過減衰量（実験2）
しやすいと説明すると、以下のようになる。

1. ピッチ系炭素纖維：他の混和材料に比べて、混入率が低い場合においても電磁シールド効果が非常に大きいことが挙げられる。また、$l=10\text{mm}$ のピッチ系炭素纖維を用いた場合、混入率 1, 2%において他よりもやや平均透過減衰率が低下する傾向が見られたが、纖維径に関わらずいずれも混入率 2～3%程度で電磁シールド効果が最大となっており、また、平均透過減衰率の最大値も、纖維径に関わらずほぼ一定であることが判る。

2. アモルファス金属フレーク：混入率 3%と 10%との間で顕著な差異は見られないが、ピッチ系炭素纖維を除く他の混和材料に比べて良好な電磁シールド効果を示している。なお、アモルファス金属は、適磁率の大きい軟磁性材料である。

3. マイクロスチールファイバー：混入率の増加に伴い平均透過減衰率を増大しており、混入率 12%で最大値を示した。その最大値は、アモルファス金属フレークのそれよりもやや小さくなっている。

4. 木炭粒子：混入率を増加するほど平均透過減衰率は大きくなる傾向を示しているが、他の電磁シールド効果は他の混和材料に比べて小さく、特に混入率 5, 10%においてはブレーンモルタルと同程度となっていることが判る。

5. 耐アルカリ性ガラス繊維：混入率を増加するほど逆電磁シールド効果が低下する傾向を示しており、また、その効果はブレーンモルタルと同程度であることから、電磁シールド効果を有しているとは言い難い。

なお、ピッチ系炭素繊維とマイクロスチールファイバー、ピッチ系炭素繊維と木炭粒子の複合材料についてもそれぞれ検討を行ったが、いずれの場合もピッチ系炭素繊維単味の場合よりも大きな透過減衰率が示しておらず、電磁シールドにおける異種混和材料の複合による相乗効果は認められなかった。また、測定時の各試験体の含水率は不同であるが、全ての試験体に関して、測定後 3 日間の水中浸漬を経て湿潤状態で再び同様の試験を実施したところ、含水による電磁シールド効果の変化はほとんど認められなかった。

以上の結果を総合すると、本実験で使用した混和材料の内、ピッチ系炭素繊維、マイクロスチールファイバー、アモルファス金属フレークおよび木炭粒子は、混入率を増やすに従って、ブレーンモルタルと比較した場合、50～250MHz 帯域の電波に対する一定量のシールド効果を有しているものと考えられる。ただし、その中でも特にピッチ系炭素繊維の電磁シールド効果は、3%程度と比較的低混入率であっても非常に大きいことが実験的に明らかとなった。

なお、CFRM のように空洞内での電波の吸収損失によってシールド効果を発現する材料 [11, 12, 24, 27] を建築物の外観に用いることは、金属板著と比較した場合、反射波低減の観点から、建築物内外に良好な電磁波環境を構築上で有効となるものと考えられる。但し、実用規模での、より広範囲の周辺等の電波に対する CFRM のシールド効果の検証が今後の課題である。

4. 実験 3「長期暴露による CFRM 内部鋼筋の電食状況」

CPRM の電磁シールド効果は、CFRM 内部の炭素繊維の導電性によってもたらされると考えられることから、それに伴う CFRM 内部鋼筋の電食の問題が懸念される。そこで、実験 3 では、CFRM がその内部鉄筋の電食に及ぼす影響について調べることを目的に、実験 1 で曲げ載荷試験に供した CFRM 混合強度 RC 梁試験体を屋内および屋外に自然暴露し、試験開始から 15 年経過時点における CFRM 中の鋼筋の腐食状況の調査を行った。また、これに関連して、同材質における CFRM の中性化進行状況についても併せて調査した。

4.1 調査対象とした試験体およびその自然暴露条件

調査対象とした試験体は、実験 1 で示した CFRM 混合強度 RC 梁試験体（以下、それぞれ無補強試験体、部分補強試験体、全体補強試験体と称する）である。無補強および全体補強試験体は屋外、部分補強試験体は屋内にそれぞれ 15 年間自然暴露した。

写真 1 に、自然暴露後の RC 梁試験体の外観を示す。各試験体の外観の目視観察結果を説明すると、以下のようになる。

1. 無補強試験体（屋外暴露）：暴露前と比較して、屋梁部に微細なひび割れの発生が若干ではあるが増加しており、これは、乾燥収縮や日射による熱膨張に起因するものであると推察される。また、全面的に欠や汚れが付着している様相が観察され、その傾向は特にひび割れ近傍で顕著であった。

2. 全体補強試験体（屋外暴露）：全体的傾向は無補強試験体と類似しているが、それよりも屋梁部におけるひび割れの発生が若干増加しているように見受けられた。これは、CFRM の場合、粗骨材の欠けやセメントリッチの剝落に起因して、普通コンクリートよりも乾燥収縮や熱膨張の影響を受け易いためであると考えられる。

3. 部分補強試験体（屋内暴露）：暴露前と比較した場合のひび割れの増加は、屋外暴露試験体よりもやや少ないが、普通コンクリート層と CFRM 層との界面近傍において微細なひび割れの発生が認められた。なお、欠や汚れの付着はほとんど観察されなかった。

4.2 中性化進行状況

CFRM および普通コンクリートにおける中性化進行状況は、試験体から採取したコア側面の中性化深さを測定することにより調べた。その手順としては、試験体側面のひび割れが発生していない箇所から直径 50mm のコアをコアドリルにより採取し、コアを洗浄した後、フェノールフタレイン溶液を吹付けて中性化深さを測定した。なお、採取するコアの数量は各試験体から 4 体ずつとし、部分補強試験体の場合には普通コンクリート層からコアを採取した。また、
中性化深さは、JIS A 1152（コンクリートの中性化深さの測定方法）に準拠して、コアの一端につき 8箇所測定し、その平均値とした。

写真2に中性化深さの測定結果を、フェノールフタレイン溶液の呈色状況とともに示す。屋外暴露した無補強および全体補強試験体の場合には中性化の進行は全く認められなかったのに対し、室内暴露した部分補強試験体の中性化深さは平均で 6.5mm となった。これは、屋外よりも屋内の方が二酸化炭素濃度が高く、中性化が促進されるやすい環境下にあったためであると考えられる。

そこで、中性化フロントにおける塩化物イオンや酸化イオンの濃縮に起因して、中性化深さがふくら厚さに及ぼす影響について検討を加える。鉄筋が腐食し始めることを知られており、塩化物含有量が少なくてコンクリートの場合、その際の中性化深さの目安は 8mm 程度とされている

4.3 内部鉄筋腐食状況

鉄筋腐食状態調査、図9に網掛けで示す箇所を試験体からコンクリートカッターにより鉄筋ごと切断し、の切断面からつぶし出した鉄筋を対象に実施した。鉄筋の腐食状況は、以下に示す同図A～Dで評価した

A：腐食が全く認められない
B：部分的に点錆がある
C：全面的に発錆している
D：鉄のため鋼材の断面が減少している

なお、区分 E は、ひずみゲージ貼付により腐食状況が評価不可能な箇所である。

表6にスパン中央の鉄筋の腐食状況を、同箇所におけるひび割れ発生状況と併せて示す。部分補強試験体の圧縮鉄筋（母材は普通コンクリート）の 1 处において、ひび割れ発生箇所から 20cm 程度離れた箇所に区分 B の状態が観察されたが、それを除けば、3 試験体全てにおいて、ひび割れ発生箇所近傍における他の区分 B または C の状態が存在していることが判る。なお、試験体端部（同図参照）の鉄筋の腐食状況はここでは掲載していないが、その全体で区分 A の状態にあり、腐食の発生は認められなかった。また、本調査の範囲内では、いずれの試験体および部位においても、区分 D の状態は観察されなかった。

ここで、表6に示す普通コンクリート中の鉄筋と CFRM 中の鉄筋とで腐食状況を比較した場合、いずれの場合もひび割れ発生箇所近傍で腐食の発生が確認されるが、その程度および範囲に顕著な差異は認められなかった。このことは、今回適用した暴露条件（15年間の屋外または屋内自然暴露）であれば、CFRM を用いた積層補強がその内部鉄筋の腐食に及ぼす影響は小さいことを示唆しているものと考えられる。

5. まとめ

本研究の範囲内で得られた知見を要約すると、以下のようになる。

1）実験1では、曲げ引張側を CFRM により積層補強した RC 柱の曲げ荷重耐性について実験の検討を行った。その結果として、CFRM 積層補強は RC 柱のひび割れ発生荷重、引張鉄筋降伏荷重および弾性の改善に有効であり、積層補強厚を増加するほど総合的な補強効果は大きくなることが示された。

2）実験2では、汎用のアドバンテスト法を用いて、CFRM の電磁シールド効果としての有用性を検証した。また、比較のため、他の混和材を混入したモルタルについても同様の検討を行った。50～250MHz の周波数帯における平均通過減衰量を比較・検討した結果、他の混和材料（マイクロスチールファイバー、アモルファス金属フレークおよび木炭こう）を混入したモルタルも一定量の電磁シールド効果を有するものの、CFRM の電磁シールド効果は、比較的低減衰率（対増幅器質量比で 3.0% 程度）であってもそれらに比べて大きいことが明らかとなった。

3）実験3では、CFRM 積層補強がその内部鉄筋の電流に及ぼす影響について調べることを目的に、実験1で曲げ曲げ荷重試験に供した CFRM 積層補強 RC 柱試験体を屋内および屋内に自然暴露し、試験計15年経過後に CFRM 中の鉄筋の腐食状況の調査を行った。その結果として、CFRM の一般圧縮コンクリート中に埋設された鉄筋には、いずれもひび割れ発生箇所近傍で腐食の発生が確認されたものの、その程度および範囲に顕著
表6 スパン中央の鉄筋の腐食状況（実験3）

<table>
<thead>
<tr>
<th>無補強試験体</th>
<th>引張鉄筋</th>
<th>圧縮鉄筋</th>
</tr>
</thead>
<tbody>
<tr>
<td>（屋外暴露）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>全体補強試験体</td>
<td></td>
<td></td>
</tr>
<tr>
<td>（屋外暴露）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>部分補強試験体</td>
<td></td>
<td></td>
</tr>
<tr>
<td>（屋内暴露）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 上段は鉄筋腐食状況、中段は図形面（引張側底部および圧縮側上部）のコンクリートまたはCFRMにおけるひび割れ発生状況を示す。

差異は認められなかったことから、CFRM 積層補強がその内部鉄筋の電食に及ぼす影響は小さいと考えられた。

以上の知見を総合すると、CFRM を打ち込み型枠材やハーフプレキャスト部材へ適用することにより、RC 部材の力学的性能を向上させるとともに、その内部鉄筋の電食を生じさせることなく当該部材に良好な電磁シールド性能を付与できる可能性が示されたと言える。

但し、実用材規格での、より広範囲の周波数帯域の電波に対するCFRMの電磁シールド効果および更に長期的な内部鉄筋の電食の検討が今
参考文献
1) 真元忠宏ほか3名：鉄筋コンクリートにおける炭素繊維補強コンクリートの性能評価方法−短炭素繊維補強コンクリートの曲げ強度に関する実験的検討 その1、日本建築学会構造系論文報告集、第419号、pp.47-56、1991.1
2) 大西貞之ほか3名：各種樹脂材料によるコンクリートの電波シールド効果、日本建築学会大会講演論文集（北海道）、A-1分冊、pp.155-156、1995.8
3) 村上正ほか4名：15年間自然暴露後の炭素繊維補強コンクリート中の鉄筋腐食状況調査、日本建築学会大会講演論文集（関東）、A-1分冊、pp.503-504、2006.9
5) J. A. Waller: Carbon Fiber Cement Composites, Fiber Reinforced Concrete, ACI, SP-44, pp.143-161, 1974
6) 秋尾繁幸ほか2名：炭素繊維補強コンクリート（CFRC）の実験的評価（その1）−CFRCが引張応力を受ける場合の挙動について一、鹿島建設技術研究所年報、第29号、pp.81-88、1981.6
7) 秋尾繁幸ほか2名：炭素繊維補強コンクリート（CFRC）の実験的評価（その2）−ー短繊維補強したCFRCの強度特性について、鹿島建設技術研究所年報、第30号、pp.57-68、1982.7
8) 秋尾繁幸ほか2名：炭素繊維補強コンクリート（CFRC）の建築構造物への適用（その1）ーー大型ドーム用外装タイルパネルの開発と実用化ー、鹿島建設技術研究所年報、第31号、pp.57-66、1983.6
9) 秋尾繁幸ほか2名：炭素繊維補強コンクリート（CFRC）の実験的評価（その3）ーー繊維回収システムの特性を用いたCFRC供試体の曲げ強度特性について、鹿島建設技術研究所年報、第31号、pp.67-74、1983.6
10) 秋尾繁幸ほか4名：炭素繊維補強コンクリート（CFRC）の実験的評価（その4）ーーCFRC供試体の強度・変形特性の関係について、鹿島建設技術研究所年報、第32号、pp.71-84、1984.6
11) 秋尾繁幸ほか3名：炭素繊維補強コンクリート（CFRC）の実験的評価（その5）ーーCFRCの強度特性及び素材強度及び樹脂含有量の効果についてー、鹿島建設技術研究所年報、第33号、pp.57-62、1985.6
12) HeaderText:

1972年
13) 坂井道造ほか4名：炭素繊維補強コンクリートと高性能鋼の合成パネルの曲げ強度特性に関する実験的研究、構造工学論文集、Vol.36B、pp.233-244、1990.3
14) 三井宣之ほか5名：調和因子がCFRCのフレッシュ時及び硬めじ時の特性に及ぼす影響ーー耐久性炭素繊維補強コンクリート（CFRC）の調和と基礎特性に関する実験的研究（その1）、日本建築学会構造系論文集、第482号、pp.17-26、1996.4
15) 三井宣之ほか5名：耐久性CFRCの基礎特性に関する各種力学的特性ーー耐久性炭素繊維補強コンクリート（CFRC）の調和と基礎特性に関する実験的研究（その2）、日本建築学会構造系論文集、第487号、pp.39-46、1996.9
16) 日本建築学会編：建築における電波シールド材料と施工、丸善、2005
17) 同川篤弘ほか1名：耐久性耐候性複合素材を用いた電波シールド材の開発、青森県工業試験場報告、1992
18) 坂本新ほか3名：炭素繊維混入PCa版の電波シールド性能ーーその1 炭素繊維混入モルタルの電波吸収特性、日本建築学会大会講演論文集（関東）、D-1分冊、pp.1049-1050、1997.9
19) 吉田克雄ほか3名：炭素繊維混入PCa版の電波シールド性能ーーその2 PCa版のシールド性能と工法の検討ー、日本建築学会大会講演論文集（関東）、D-1分冊、pp.1051-1052、1997.9
20) 立藤泰文ほか3名：炭素繊維混入PCa版を用いた電波シールドビールの計画、日本建築学会大会講演論文集（九州）、D-1分冊、pp.1053-1054、1998.9
21) 立藤泰文ほか3名：炭素繊維混入PCa版を用いた電波シールドビールの計画ーその2 改良型の電波シールド性能評価ー、日本建築学会大会講演論文集（九州）、D-1分冊、pp.1141-1142、1999.9
22) 河村健二ほか3名：標準マイクロ波帯におけるカーボン混入セメントモルタルの電波吸収特性、セメント・コンクリート論文集、No.53、pp.744-750、2000.2
23) 河村健二ほか2名：フェライトおよびカーボン混入セメントモルタルの標準マイクロ波吸収特性に関する研究、日本建築学会構造系論文集、第57号、pp.1-5、2003.5
24) 平井幸一ほか3名：炭素繊維を利用した電波シールドコンクリート、鹿島技術研究所年報、第57号、pp.67-72、2009.9
25) 上原健一ほか7名：導電性ゴムの電波シールド効果についてー導電性ゴムの電波シールド性能（第1報告）、鹿岡県工業技術センター研究報告、第36号、pp.81-87、1998.9
26) 遠藤信次ほか3名著：電磁波障害、産業図書、1991
27) 日本建築学会編：建築における電磁波吸収体の応用、丸善、2007
28) 日本コンクリート工学会：コンクリート診断技術11、2011
29) 日本建築防災協会：既存建築物コンクリート造建築物の耐震診断基準 判解説、2001

注 (1) モルタルをマトリックスとした場合においても炭素繊維補強コンクリート（CFRC）と称される場合があり、参考文献1、6-15号でそのように表されているが、本文献ではHIS A 0203（コンクリート用語）におけるコンクリートおよびモルタルの定義に準拠し、炭素繊維補強モルタル（CFRM）と統一して表記した。

(2011年7月5日基準受理、2011年10月19日採用決定)