長方形床の有効質量に関する研究

A STUDY OF EFFECTIVE MASS ON RECTANGULAR FLAT SLABS

小嶋 英治

Eiji KOJIMA

The basic measure against a vibration proof design is to take effective steps to vibration proofs and to keep vibrating generators and precision machines apart as far as possible. As one of the effective measures against the vibration proof, a vibrating generator is installed on the underground stories. But it is impossible to install all the vibrating generators there. The author can’t help installing the medium vibrating generators on the flat slabs near the precision instruments. The purpose of this study is limited to solve the effective mass for the slabs with arbitrary thin length ratio. As support conditions the author calculated the 1st: the simply support along edges, the 2nd: the fixed support along edges, the 3rd: two adjacent edges simply supported and the other edges built-in, the 4th: the semi-fixation.

Keywords: Rectangular Slabs, First Natural Frequencies, Restraint Along Edge, Semi-fixation, Effective mass

1. はじめに

工場内の振動障害は、人が振動で不安を感じるだけでなく、製品の不良となって現れる。特に半導体集積回路の焼付け工程等では、振動および制振技術が必要である。これ等の対策を行ったにもかかわらず効果が確認できなければ、更なる対策を取らなければならない。成否の結果が明確な制振設計は、いやむしろ性能施工の受注となる。防振および制振対策の失敗は、信用、コストおよび工期の面からも避けなければならない。

防振対策は、振動発生源を振動障害の生じている場所から離すことおよび振動発生源側で対策を行うことが基本である。しかし、敷地および建物の広さ、あるいは機械配置の問題から、これ等の対策がとれない場合がある。その場合、大きな振動の発生する機械を地下階に配置し、建築物の基礎と切り離し、強固な基礎とする対策が有効である。

全ての振動発生源の機械を地下階に配置することは不可能で、中程度の振動発生源の機械は、配置の関係で振動を嫌う精密機器近辺の床に設置せざるを得ない場合が生じる。本論文は、このような場合に、床を質点系に置換して設計する手法の研究を目的としている。床を一質点系にモデルに置換できれば、振動発生源の機械と合わせて二質点系モデルを構築することが可能である。しかし、不均質な地盤のモデル化の研究は行われているが、それより容易と思われる床のモデル化の研究は進んでいない。

一般的な床の静的設計では、支持条件を周辺単純支持（以下、周辺支持と称す）および周辺固定で設計すれば、安全と見なされる。ところが防振設計では、実際の支持条件での検討が望ましい。この支持条件は、周辺支持および周辺固定の中間の、いわゆる半固定といわれている。床の質点系の研究の進んでいないため、床の質点系の研究が進んでいるわけではなくて筆者は考える。

床の質点系配位は、床の有効質量と剛性との把握が必要である。ここで有効質量とは、柱および壁に支持された以外の、実際に質点系の質量と評価される質量のことである。一方、床の剛性は、有効質量と一次振動数から算定可能である。小嶋は長方形床の、半固定を含む支持条件での一次振動数の算定式を導いているので、有効質量が把握できれば床の質点系配位が可能である。

山原(1974)は、D. Youngの床の一次振動数とTimoshenko(1959)の床の中央に自重を集中載荷させた時の床重のたわみ量を用いて床の有効質量係数を提案している。ただし、この床の有効質量係数が一次振動数のスパン比を細長比1, 2, 3の設定であったこと、支持条件が周辺支持および周辺固定に限定されていたこと等の理由により、設計に用いるには不充分であった。そこで筆者は研究目的を、任意の細長比の長方形床で、半固定支持の有効質量の算定方法の確立とした。
2. 床の有効質量および有効質量係数

長方形床の一質点系モデルを図1に示す。ここで、床の全質量をm, 一質点系に置換した有効質量をm_{l}, 減衰をc_{l}, 剛性をk_{l}とおく。有効質量、減衰、剛性に支持条件を表す添字を付けたのは、全質量と異なり、支持条件によって値が変化するためである。

剛性k_{l}は、支持条件の床中央に自重を集中載荷させた時の床中央のたわみ量（以下、自重によるたわみ量と称す）をδ_{l}とすれば次式で与えられる。

\[k_{l} = F \delta_{l} = mg \delta_{l} \] \hspace{1cm} (1)

ここで、g=980.665cm/s²は重力加速度である。

![図1 支持条件の一質点系モデル](image1)

図1の一次固有円振動数ω_{l}は次式で与えられる。

\[\omega_{l} = \sqrt{\frac{k_{l}}{m_{l}}} = \frac{2\pi f_{l}}{\delta_{l}} \] \hspace{1cm} (2)

ここでf_{l}は一次固有振動数である。また剛性k_{l}は次式で表される。

\[k_{l} = m_{l} \omega_{l}^{2} \] \hspace{1cm} (3)

減衰定数b_{l}は床面減衰c_{l}を用いて、次式で与えられる。

\[b_{l} = c_{l} = \frac{d}{2} \] \hspace{1cm} (4)

なお、減衰定数b_{l}は同一構造の床の振動調査の結果、例えば、参考文献9,10を参照して求める。建築物の振動に関する性能評価指針・解説11によれば、事務所の床の調査では、減衰定数は3〜4%を中心に、2〜6%程度の範囲に分布していると記述がある。

ここで、有効質量係数α_{z}を次式で定義する。

\[\alpha_{z} = \frac{m_{l}}{m} \] \hspace{1cm} (5)

床を質点系に置換した時の一次固有振動数は式(1), (2), (5)より、次式で与えられる。

\[f_{z} = \frac{1}{2\pi} \sqrt{\frac{k_{z}}{m_{z}}} = \frac{1}{2\pi} \sqrt{\frac{k_{z}}{m_{z}} \frac{1}{\alpha_{z}}} = \frac{\sqrt{g}}{2\pi} \frac{2\pi}{\sqrt{\delta_{z}}} \] \hspace{1cm} (6)

したがって、式(6)より有効質量係数α_{z}は次式で与えられる。

\[\alpha_{z} = \frac{g}{4\pi^{2} \delta_{z}} f_{z} = \frac{g}{4\pi^{2} \delta_{z} \alpha_{z}} \] \hspace{1cm} (7)

以上より、床を質点系に置換するためには、床の一次固有振動数および有効質量係数の把握の重要性が確認された。なお、式(7)の有効質量係数α_{z}が静的解析の自重によるたわみ量δ_{z}と動的解析の一次固有円振動数ω_{z}を用いて定義されることに注意して頂きたい。

3. 長方形床の一般化した一次固有振動数

式(7)より、有効質量係数α_{z}の算定には、長方形床の一次固有振動数f_{z}の必要がある。従来、任意の細長比における床の一次固有振動数の算定式は、(A)周辺支持および(B)周面固定の算定式が採用されている。小鳥\(^{12}\)は、支持条件を満足するたわみ曲線を仮定し、変分法の一種の、最小ポテンシャルエネルギーの原理に基づく近似解法であるRayleighの方法\(^{13}\)を用いて、任意の細長比における長方形床の一次固有振動数の一般化した算定式\(^{14}\)を示した。

\[f_{z} = \frac{1}{2\pi} \sqrt{\frac{D}{I_{z}}} \left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \right)^{1/2} \] \hspace{1cm} (8)

ここで、式(8)のDは床の剛性で、次式で表される。

\[D = \frac{Eh^{3}}{12(1-v^{2})} \] \hspace{1cm} (9)

ここに、E, ρ, vおよびtは床のヤング係数、密度、ポアソノ比および厚さとし、l_{1}, l_{2}はx, y方向のスパン長である。また、式(8)の算定式Rの係数a, b, cは、支持条件が床における一次固有振動数f_{z}の係数で、表1に示す通りである。なお、f_{z}で具体的に支持条件を表す場合には、周辺支持をf_{K}, 周面固定をf_{F}などに表記することにする。ただし、(C)〜(E)は支持条件に方向性があるので、注意して頂きたい。

算定式Rの対象とする支持条件は、図2に細線で単純支持、太線で固定支持として示す、(A)周辺支持、(B)周面固定、(C)対辺支持・周面固定、(D)一辺支持・三辺固定、(E)三辺支持・辺面固定、(F)辺面支持・周面固定である。本研究の支持条件は、以上の支持条件の他、(A)と(B)の間の半固定をイメージした、一辺を固定とし、他を等分割した(G)支持条件を追加した。ただし、支持条件が複雑なため、Rayleighの方法は適用できない。

![図2 長方形床の支持条件](image2)

長方形床の一次固有振動数の解析には、精密解と位置付けられているIguti解\(^{16}\)がある。求められているIguti解の支持条件は図2の(A)〜(C)および(E,F)で、次式で与えられている。

\[l_{z} \leq l_{1}, \quad f_{z} = \frac{1}{2\pi} \frac{k(\delta)}{l_{1}} \frac{D}{\rho t} \] \hspace{1cm} (10)

\[l_{z} \geq l_{1}, \quad f_{z} = \frac{1}{2\pi} \frac{k'(\delta)}{l_{1}} \frac{D}{\rho t} \]

ここで、k(\delta)およびk'(\delta)は、細長比εにおける支持条件の係数で、表2に示す細長比1, 1.5, 2, 2.5, 3, ∞およびこれ等の逆数の係数が求められている。

Iguti解は、表2に示す通り、限定された細長比の一次固有振動数しか求められていない。一方、式(8)の長方形床における一次固有振動数の一般解を考察すれば、種々の支持条件における算定式を導くことができる。
表2 Igni 解(1938)の$k(\lambda)$および$k'(1/\lambda)$の係数^2)

<table>
<thead>
<tr>
<th>錶紡比(λ=1/10)</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>\infty</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)周辺支持</td>
<td>$k(\lambda)$</td>
<td>19.74</td>
<td>14.26</td>
<td>12.34</td>
<td>11.45</td>
<td>10.97</td>
</tr>
<tr>
<td>(B)周辺固定</td>
<td>$k(\lambda)$</td>
<td>35.98</td>
<td>27.09</td>
<td>24.57</td>
<td>23.77</td>
<td>23.16</td>
</tr>
<tr>
<td>(C)対辺支持</td>
<td>$k(\lambda)$</td>
<td>28.95</td>
<td>25.05</td>
<td>23.22</td>
<td>22.27</td>
<td>21.99</td>
</tr>
<tr>
<td>対辺固定</td>
<td>$k(\lambda)$</td>
<td>28.95</td>
<td>25.05</td>
<td>23.22</td>
<td>22.27</td>
<td>21.99</td>
</tr>
<tr>
<td>(D)二辺支持</td>
<td>$k(\lambda)$</td>
<td>23.65</td>
<td>18.90</td>
<td>17.33</td>
<td>16.63</td>
<td>16.26</td>
</tr>
<tr>
<td>二辺固定</td>
<td>$k(\lambda)$</td>
<td>23.65</td>
<td>18.90</td>
<td>17.33</td>
<td>16.63</td>
<td>16.26</td>
</tr>
</tbody>
</table>

注1. A, Bは$k(\lambda)=\alpha(1/\lambda)$

くことは、式(8)の係数a,b,cを求めることに帰着する。すなわち、
同一支持条件の細長比3種類で支持条件に方向性がないと2種類)の
一次固有振動数f_{z}を求めれば、係数a,b,cを算定することが
できる。小崎^6は、細長比\(\infty, 1, 1/\infty\)のIguti 解の係数$k(\infty), k(1), k'(1/\infty)$から、(8)式の算定式Iの係数$a,b,c$との関連式を導いた。

\[
\begin{align*}
 a &= k(\infty) \varphi \lambda^2 \\
 c &= k'(1/\infty) \varphi \lambda^2 \\
 b &= \left[k(\infty) \varphi \lambda^2 \right] - a - c
\end{align*}
\]

(11)

表3に(11)から求めたIguti 解の係数a,b,cを算定式Iとして記載
した。

表3 算定式IおよびFの一次固有振動数の係数a,b,c

<table>
<thead>
<tr>
<th>支 持 条 件</th>
<th>解析法</th>
<th>係 数</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)周辺支持</td>
<td>算定式</td>
<td>1.000</td>
</tr>
<tr>
<td>(B)周辺固定</td>
<td>算定式</td>
<td>3.137</td>
</tr>
<tr>
<td>(C)対辺支持対辺固定</td>
<td>算定式</td>
<td>5.137</td>
</tr>
<tr>
<td>(D)対辺支持対辺固定</td>
<td>算定式</td>
<td>5.198</td>
</tr>
<tr>
<td>(E)対辺支持対辺固定</td>
<td>算定式</td>
<td>2.444</td>
</tr>
<tr>
<td>(F)対辺支持</td>
<td>算定式</td>
<td>2.444</td>
</tr>
<tr>
<td>(G)対辺支持</td>
<td>算定式</td>
<td>2.474</td>
</tr>
</tbody>
</table>

小崎^6は、表4の床の諸元を用い、(A)～(G)の支持条件で、細長比を10, 1, 0.1の3種類とし、有限要素法解析(以下、FEM解析
と称す)を行い、表5に示す一次固有振動数f_{z}を求めた。この

表4 FEM解析に用いた床の諸元

<table>
<thead>
<tr>
<th>諸 元</th>
<th>部材の大きさ、係數</th>
</tr>
</thead>
<tbody>
<tr>
<td>床のスパン</td>
<td>$l_{x}=6.000\text{mm}$, $l_{y}=\lambda\cdot l_{x}$</td>
</tr>
<tr>
<td>床厚</td>
<td>$t=100\text{mm}$</td>
</tr>
<tr>
<td>ヤング係数</td>
<td>$E=2.06\times10^6\text{MPa}$</td>
</tr>
<tr>
<td>密度</td>
<td>$\rho=2.40\times10^3\text{kg/m}^3$</td>
</tr>
<tr>
<td>ポアソン比</td>
<td>$\nu=1/6$</td>
</tr>
</tbody>
</table>

表5 FEM解析で求めた一次固有振動数f_{z} (Hz)

<table>
<thead>
<tr>
<th>支 持 条 件</th>
<th>細長比($\lambda=l/l_{x}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)周辺支持</td>
<td>1/10, 1, 10</td>
</tr>
<tr>
<td>(B)対辺支持</td>
<td>2.10, 9.27, 12.97</td>
</tr>
<tr>
<td>(C)対辺支持対辺固定</td>
<td>2.10, 9.27, 12.97</td>
</tr>
<tr>
<td>(D)対辺支持対辺固定</td>
<td>2.10, 9.27, 12.97</td>
</tr>
<tr>
<td>(E)対辺支持対辺固定</td>
<td>2.10, 9.27, 12.97</td>
</tr>
<tr>
<td>(F)対辺支持対辺固定</td>
<td>2.10, 9.27, 12.97</td>
</tr>
<tr>
<td>(G)対辺支持対辺固定</td>
<td>2.10, 9.27, 12.97</td>
</tr>
</tbody>
</table>

5. 長方形床のたわみ量

式(7)より、有効質量係数a_{c}の算定には、支持条件zの自重によ
るたわみ量d_{z}の把握が必要であることが分かれる。Timoshchenko(1959)^6は
集中荷重によるたわみ量を床のたわみ変曲線の偏微分方程式を解
くことで求めていたが、この方法では任意の細長比における半固定支
持の解を求めることが困難である。そこで筆者は、たわみ量の把握
にFEM解析を用いることにした。

図4にFEM解析を用いた、(A)周辺支持および(B)周辺固定の長
方形床のたわみ変曲線を示す。用いた諸元は表4に示す、$l_{x}=6.000\text{mm}$。
6. 長方形床の有効質量係数

自重によるたわみ量が細長比αの関数である場合、有効質量係数も細長比αの関数と仮定する。この有効質量係数α(λ)をα(λ)で基準化して基準化有効質量係数β(λ)を次式で定義する。

\[\beta(λ) = \frac{α(λ)}{α(0)} \] (14)

自重によるたわみ量δtには、図4の床の諸元を用い、細長比の範囲を1/4 ≤ λ ≤ 4として細かく設定し、FEM解析を用いて算出した。式(7)に一般化した床の一次固有振動数f(λ)とEM解析を用いた長方形床の自重によるたわみ量δtを代入し有効質量係数α(λ)を求め、次に基準化有効質量係数β(λ)を算出した。図5に、求めた基準化有効質量係数を横軸にlogλを用いて整理し、β(λ)をX(=logλ)の4次式で近似し、最小自乗法を用いた解析を行った。

\[β(λ) = p + qX + rX^2 + sX^3, \quad X = \logλ \] (15)

以上より、有効質量係数α(λ)は次式で与えられる。

\[α(λ) = α0(1 + p\logλ + q\logλ^2 + r\logλ^3) \] (16)

表6にα(0)および最小自乗法で求めたp, q, rを記載した。

β(λ)は横軸の対数軸上で線形と非線形が生じ、次式が成立することを示す。

\[α(1/λ) = α(λ) \] (17)

\[β(1/λ) = β(λ) \] (18)

式(18)は図5でβ(λ)logλが、log1を中心に左右対称になっていることを意味している。

表6 有効質量係数α(λ), \(β(λ) = \frac{p}{q}X^2 + rX^3, \quad X = \logλ \)

A: 周辺支持	0.2201	1.00	-1.22	0.271
B: 周辺固定	0.1364	0.999	-2.13	1.87
F: 周辺支持・側面固定	0.1807	1.01	-1.80	1.28
G: 切断支持1（半固定）	0.1514	1.01	-1.50	0.468

有効質量係数α(λ)はλの関数であるが、細長比λが0.5~2の範囲であれば、有効質量係数α(λ)は支持条件(A), (B), (F)および(G)でそれぞれ0.892, 0.821, 0.857および0.875以内であり、細長比1の有効質量係数α(λ)の値を用いても工学的に問題ないか判断する。また、図5から、基準化有効質量係数は(B)<(F)<(G)<(A)であることが確認できる。

なお、FEM解析の分割数は、床の大きさにかかわらず、16×16とした。(A)および(B)は床の支持条件が連続であるが、(F)および(G)では、支持条件に支持および固定の２種類が混在する。そこで、(F), (G)では、一边の分割数を隣接する不連続部で同様に細分化するなどの処理が必要と思われるが、16×16分割で工学的に充分に精度の高かった。

図5で、基準化有効質量係数がβ(1/λ) = β(λ)となっていることを考察する。支持条件および床厚で同じ、細長比1(λ = 1)と1/λのβ, δ, f, α, βの関係は次の通りである。図6の左図は細長比(1/λ = 1)の、右図は細長比(1: λ)の長方形のイメージで、両者の剛性k1には次の関係が成立する。

\[k1k1(λ) = k (λ) \] (19)

一方、床の質量はλ=aとすり、したがって両者の床の自重によるたわみ量δtに次の関係がある。

\[\lambda^2\delta t(1/λ) = \delta t(λ) \] (20)

細長比(1/λ = 1)と細長比(1: λ)の長方形との床の形状は1: λの相似形であるため、両者の床の一次固有振動数f(λ)の関係が成り立つ。

\[\lambda^2f(1/λ) = f(λ) \] (21)

式(7), (14), (20), (21)からα(1/λ), β(1/λ)の式(17), (18)が導かれる。
提案した有効質量係数が山原(1974)の有効質量係数を包含していることが確認される。

表7 有効質量係数の比較

<table>
<thead>
<tr>
<th></th>
<th>有効質量係数(測定)</th>
<th>有効質量係数(推定)</th>
</tr>
</thead>
<tbody>
<tr>
<td>周辺支持</td>
<td>周辺固定</td>
<td>周辺支持</td>
</tr>
<tr>
<td>1.0</td>
<td>0.220</td>
<td>0.136</td>
</tr>
<tr>
<td>2.0</td>
<td>0.196</td>
<td>0.112</td>
</tr>
<tr>
<td>3.0</td>
<td>0.162</td>
<td>0.0833</td>
</tr>
</tbody>
</table>

8. 質点系モデルの構築

機械の設置された床を質点に置換する。前記したように、四隅に柱のある通常の床をモデル化したい場合は、半固定床Gを推奨する。

図7で、床の質量m1 (= m2)と床に設置した機械基礎の質量m3を加算した質量をM1 (= m1 + m3 = m1 + m4),床の剛性k1および減衰をc1とする。ここので、床の剛性k1および床の質量m1は、式(22), (23), (25)および式(16)により次式で与えられる。

\[k_1 = k_c = m_c \omega_c^2 = 4\pi^2 f_c^2 \alpha_m \]

\[m_1 = m_1 \alpha_1 \beta_1 m = \alpha_1 (\log q) \beta_1 m = \alpha_1 (\log q) \beta_1 m \]

図7 床のモデル化

図7の模型の質量はm2と床の重さの質量をm3で、これ等を加えた質量をM1 (= m1 + m3)、機械設置用の振動ギムの剛性をk2、減衰をc2とし、機械が回転系（円振動数ωa、振動数f）であるとして振動をF0をF0が示すとする。

\[M_1 = m_1 + m_3 = m_1 + m_4 \]

図8 機械のモデル化

図9 機械の力を伝達力は次式で与えられる。

\[\tau = \frac{1}{\sqrt{1 + 4h^2 (\alpha \omega_c^2)^2}} \] (24)

式(24)の力の伝達係数のピーク値は τ = 1/√(1+4h2) である。機械の力の伝達率を図9に示すが、防振設計のポイントは、防振装置の剛性の一次固有振動数fと機械の振動数fが共振すれば非常に危険であること、機械の振動数fと防振装置の一次固有振動数fをf/f2を12と設定されることである。図7と図8を組み合わせ、床と機械を二次質点モデルとすれば、図10のようになる。
生する力は、柱、壁、壁に伝達し、床の応答の振動振幅は抑えられと評価することにする。

式(25)で、\(x_1 = x_{21} \text{sin} \omega t \), \(x_2 = x_{22} \text{sin} \omega t \), \(F = F_0 \text{sin} \omega t \) とおけば、\(x_1 \) および \(x_2 \) は次式で与えられる。

\[
\begin{align*}
\dot{x}_1 &= \frac{\dot{x}_{12}}{\xi_2} F_0, \\
\dot{x}_2 &= \frac{\dot{x}_{22}}{\xi_2} + \frac{\dot{x}_{12}}{\xi_2} F_0
\end{align*}
\]

(28)

\(\xi_1 = (k_1 - \alpha^2 M_1) (k_1 - \alpha^2 M_2) - \alpha^2 (k_1 M_2 + c_1 c_2) \)

\(\xi_2 = \sigma c_2 (k_1 - \alpha^2 M_1) + \sigma c_1 (k_2 - \alpha^2 M_2) - \alpha^2 (k_2 M_2 + c_1 c_2) \)

\(\xi_3 = k_1 + k_2 - \alpha^2 M_1, \quad \xi_4 = 0 (c_1 + c_2) \)

ここで、\(k_1 / M_1 = \omega_1^2, \quad k_2 / M_2 = \omega_2^2, \quad \sigma = \omega_1 \omega_2 = \zeta, \quad \sigma = \omega_1 / \omega_2 = \sigma, \quad M_1 / M_2 = \mu \), \(c_1 / \sqrt{M_1 k_1} = h_1, \quad c_2 / \sqrt{M_2 k_2} = h_2, \quad F_0 / k_1 = U_1, \quad F_0 / k_2 = U_2 \) とおけば、式(28)は次式で与えられる。

\[
\begin{align*}
\dot{x}_1 &= \frac{\dot{x}_{12}}{\xi_2} U_1, \\
\dot{x}_2 &= \frac{\dot{x}_{22}}{\xi_2} + \frac{\dot{x}_{12}}{\xi_2} U_2
\end{align*}
\]

(29)

\(\xi_3 = \frac{1 - \zeta^2}{2} \left(\alpha^2 - \zeta^2 + \mu \right) - \frac{1}{4} h_2 b_2 \alpha \xi_2 \)

\(\xi_4 = \frac{\alpha}{\xi_2} \left(\mu - \frac{1}{2} b_2 \alpha \right) \)

\(\xi_5 = \frac{2}{\xi_2} \left(b_1 \alpha - \zeta^2 + \mu b_2 \alpha \right) \)

\(\xi_6 = \frac{\mu}{\xi_2} + \frac{2}{\xi_2} \left(\mu b_2 \alpha \right) \)

式(28)、(29)の誘導については、参考文献2などがあるので、詳細

は別稿とした。これ等の等式は数値解になっているので、幅射は等

対称で評価し終了。

以上、一般的な鉄筋コンクリート構造物の床を対象とした、直交異方性的床、例えば、リブ付スラブ・中空スラブ・ディッピブレートスラブ・ツイルスラブなど、振動数の評価方法、参考文献13～17を参照して頂きたい。

9. まとめ

本研究の目的は、床上に設置した機械振動の防振設計のために、床を質点系に置換する技術の確立である。山原(1974)は、(A)周辺支

持および(B)周辺固定における細長比\(\xi_2 \)、および\(\zeta \)の有効質量を求め

ているが、支持条件が長方形床の四隅を柱に囲まれた一般的な長

方形床といわれる床の半固定算定法であることに、細長比が限

定されていることから設計に用いることは充分であった。新たに有

効質量の算定式を求めることは、同技術が応用で用いられるよ

うにするために、細長比は任意でかつ支持条件は半固定とした。

長方形床の有効質量算定式の算定式を求めるには、床の一次固有振動数と自重によるたわみ量の把握が必要である。その筆者は、FEM

解析を用いた長方形床の自重によるたわみ量を細長比\(\xi_2 \)の一般化した長方形床の一次固有振動数を算定式として用いて、細長比の関数の有

効質量算定式を提案した。なお、FEM

解析に用いた長方形床には種々の細長比を設定し、支持条件は(A)周辺支持、(B)周辺固定、(F)周辺支持・長辺固定および(G)半固定とした。

筆者の算定した有効質量係数は細長比の関数になっているが、細長比が0.5～2の範囲であれば、有効質量は有効質量係数の補正なしで0.8～0.99の精度があり、工学的には補正をしなくても問題な

いと考える。

提案した有効質量の算定式の検証のために、山原(1974)の細長比

1, 2, 3 の有効質量係数と筆者の提案した任意の細長比の有効質量

係数を周辺支持と周辺固定で比較した。その結果、筆者の提案が山

原(1974)の有効質量係数を包含していることが確認された。この結

果から、本方法の有効質量係数の評価方法の検証ができたと考える。

以上の成績により、任意の細長比における半固定の支持条件の一

質点系置換が可能で、振動の発生源の機械を含めた二質点系置換の

モデル化が構築でき、電卓のみで防振設計をすることが可能になっ

たと考える。

謝辞

本論文をまとめるに当たり、早稲田大学理工学部総合研究室(理

工学研究室)山田厚教授には、非常に貴重なご意見を頂きました。

末尾ながら、ここに感謝の意を表します。

参考文献

1) 駒場: 通商産業省立庁告局: 公害防止の技術と法規 振動編 共同出版公害防止協会 1978 5

2) 山本: 環境保全のための防振設計 朝日社 pp.327-332 1974 9

3) 小岡 optic: 全国スラブの防振実験(その6 長方形スラブの略式算定法と固定度) 日本建築学会大会講演論集 第3 3pp.571-572 1991 9

4) 小松 optic: 長方形床の半固定で振動数の算定法に関する研究 東京建設研究所技術研究所報告 1999 1-2 239-244 1997

5) 小松 optic: 振動障害対策を目的とした床のモーメンタム力学性に関するシミュレーション 日本建築学会会報(二) 1977 pp.577-578 1927 2

8) Timoshenko.S: Theory of Plates and Shells, Me Graw-Ull, 1959

9) 谷野信・椎名裕: 建築物の構造解析シリーズIV 構造の動的解析 pp.147-177 1978 2

10) 建築物の振動に関する居住性能評価指針改訂版4 1991 11) 建築学会 大阪市建築学会 1991 4

11) ダミコンクリート構造計算基準・同解説 日本建築学会 1982 2 1988年改訂

12) Igiuti: Die Eigenwertprobleme für die elastische rechteckige Platte, Memoir of the Faculty of Eng. Hokkaido Univ.,(4)1983 305

13) 川口健次 等: 小松 optic: 川口健次 ジュール保養・枝条保養・各種スラブの振動実験(大

型ハンマー加振によるモーメント法とスラブ振動数の略式算) 日本建築学会

大会講演論集 第69 9 961-962 1983 9

14) 小松 optic: 林田健次・川口健次: 各種スラブの振動実験(その2) ドラフト

の振動実験法の比較、人の歩行による振動変換、デクシートスラブの

有固有振動数の略式算) 日本建築学会学術講演曽集 pp.997-998 1984 10

15) 小松 optic: 林田健次・川口健次: 有固有振動数の略式算定法(その3) ツイル

スラブ スラブの振動実数の略算) 日本建築学会学術講演曽集 pp.97-98 1984 10

16) 小松 optic: 林田健次・川口健次: 各種スラブの振動実験その4 大スペーサスラブの

補強例 日本建築学会学術講演論集 第69 9 917-918 1986 8

17) 小松 optic: 林田健次・川口健次: 各種スラブの振動実験その5 有

無によるスラブの固定度の実験) 日本建築学会学術講演曽集 第69 9 943-944 1987 10

(2012年8月27日原稿受理 2012年12月17日採用決定)