変形制御機構を組込んだ柔剛混合構造における
エネルギーの釣合に基づく応答予測法

ENERGY BALANCE-BASED SEISMIC RESPONSE PREDICTION METHOD
OF FLEXIBLE-STIFF MIXED STRUCTURE WITH DISPLACEMENT CONTROLLER

野村 尚史*1, 佐藤 大樹*2, 北村 春幸*3, 植木 卓也*4, 宮川 和明*5

Naoshi NOMURA, Daiki SATO, Haruyuki KITAMURA,
Takuya UEKI and Kazuaki MIYAGAWA

It has been proven that the displacement controller which has hardening type hysteresis can reduce the displacement of frame or isolation layer against the huge earthquake from many experimental or analytical results. However, it is difficult to evaluate the changes in response characteristics with various qualitative parameters. The purpose of this paper is to evaluate the response characteristics of the flexible-stiff mixed structure with displacement controller quantitatively and simply. Energy balance-based seismic response prediction method proposed by Prof. Akiyama is extended to the structure with displacement controller, and this method is validated through many time history response analyses using the single-degree-of-freedom model. In addition, the estimation method for the passive controlled structure and the isolated structure with displacement controller is shown respectively, and the effectiveness of this method is demonstrated by analyzing time history analysis results and estimation results.

Keywords : Displacement Controller, Huge Earthquake, Flexible-Stiff Mixed Structure, SDOF Model, Energy Balance, Response Prediction Method

変形制御機構, 極大地震, 柔剛混合構造, 1質点系モデル, エネルギーの釣合, 応答予測法

1. はじめに
従来の耐震設計は、主構造の塑性化により地震エネルギーを吸収させることで建物の倒壊を回避し、人命を保護するという理念に基づいていた。しかし、主構架が塑性化することで建物機能が失われることや、一部の部材をもっても大きなエネルギー吸収能力によって建物の耐震性が支持される等の問題点がある。これらの問題点は、大震災と弾性挙動を有する柔軟部材と大震災と弾性挙動を有して地震エネルギーを吸収する剛要因を用いて構成する柔剛混合構造11)~14)の採用により解決される。柔剛混合構造の採用により合理的な耐震設計が可能となるだけでなく、主構架の損傷が抑制されるため耐震後の改修が容易となる。また、強度を確保する部材と地震エネルギーを吸収する部材に明確に分離されるため、柔要因として高強度鋼を用いることにより、エネルギー吸収能力の高い低鍵付点構を用いるというように、材料の特性を生かした設計が可能となる。

1995年の兵庫県南部地震では、震度7クラスの地震動を起こす極大地震（従来の想定を上回る大地震または地震動を起こす地震を極大地震と定義している）により甚大な建物被害が発生した15)。これを機に、柔剛混合構造の発想は損傷制御構造4として広く認知され、地震時におけるエネルギーを効率的に吸収することが可能な制
図３に変形制御機構におけるエネルギーの時刻応答の模式図を示す。横軸は地震の開始時刻から、時刻を表し、時刻t_aは建物の最大応答値発生時刻、時刻t_bは地震の継続時間を見た。$\mathcal{W}(t)$は変形量の弾性振動エネルギー及び減衰による消費エネルギー、$\mathcal{W}(t)$、$\mathcal{W}(t)$、$\mathcal{W}(t)$、$\mathcal{W}(t)$は剛要素の弾性振動エネルギー及び塑性残留エネルギーを示す。図3より、$\mathcal{W}(t)$、$\mathcal{W}(t)$、$\mathcal{W}(t)$、$\mathcal{W}(t)$はいずれが最大値となり、$t=t_b$でほとんど消滅する。$E(t)$を入力エネルギーを表し、$E(t)-\mathcal{W}(t)$を損傷に寄与するエネルギー$E_0(t)$を定義する。

変形制御機構の目的は、極大地震に対して適切な変形が生じるのを制御することであるため、本論文では最大応答値発生時刻t_aに着目してエネルギーの約合を考える。観察や制御破壊では、変形・制御部材の塑性残留エネルギー及び減衰エネルギーが入力エネルギーに占める割合は高く、一般に$E(t)=E(t)$となる。入力エネルギーを大きく評価することは応答の安全側の評価に繋がることから、変形制御機構においても$E(t)$を$E(t)$に置き換えると、$t=t_a$におけるエネルギーの約合式は下式のように表せる。

\[
\mathcal{W}(t)+\mathcal{W}(t)= E(t) \quad (\text{δ}\text{max}<\text{δ}\text{max})
\]

\[
\mathcal{W}(t)+\mathcal{W}(t)+\mathcal{W}(t)+\mathcal{W}(t)= E(t) \quad (\text{δ}\text{max}<\text{δ}\text{max})
\]

\[
\mathcal{W}(t)+\mathcal{W}(t)\quad E(t)= E(t) \quad (\text{δ}\text{max}<\text{δ}\text{max})
\]

\[
\mathcal{W}(t)+\mathcal{W}(t)\quad E(t)-\mathcal{W}(t)
\]

損傷に寄与するエネルギー$E_0(t)$は下式で表される。
変形制御機構が作動する場合において、応答予測式を導出す。
式(1b)に式(2), (3), (5), (11)の各要素のエネルギーを代入すると下式が得られる。

\[
\frac{\alpha_{\text{max}}}{\delta_0} = \frac{\alpha_{\text{max}}}{\delta_0} = \frac{\alpha_{\text{max}}}{\delta_0} + K \left(\frac{\alpha_{\text{max}}}{\delta_0} - \frac{\delta_{\text{op}}}{\delta_0} \right)^2 = 1 \tag{12}
\]

\[
\frac{\alpha_{\text{max}}}{\delta_0} = \frac{\alpha_{\text{max}}}{\delta_0} \text{は式}(a)に式(b), (c)を代入し、式(10)で除すことにより下式で表される。}

\[
\frac{\alpha_{\text{max}}}{\delta_0} = \frac{\alpha_{\text{max}}}{\delta_0} = \frac{\alpha_{\text{max}}}{\delta_0} \tag{13}
\]

\[
\frac{\alpha_{\text{max}}}{\delta_0} = \frac{\alpha_{\text{max}}}{\delta_0} = \frac{\alpha_{\text{max}}}{\delta_0} + \frac{\delta_{\text{op}}}{\delta_0} \tag{14}
\]

式(12)より、架構全体の最大せん断力係数 \(\alpha_{\text{max}} / \alpha_0 \) は下式で表される。

\[
\frac{\alpha_{\text{max}}}{\delta_0} = \frac{\alpha_{\text{max}}}{\delta_0} + \frac{\alpha_{\text{max}}}{\delta_0} + \frac{\delta_{\text{op}}}{\delta_0} \tag{15}
\]

\[
\frac{\alpha_{\text{max}}}{\delta_0} = \frac{\alpha_{\text{max}}}{\delta_0} \text{は式}(a), (b)及び \alpha_{\text{max}}/\alpha_0 について解くと、}

各要素のせん断力係数と最大変形の関係式が導出される（出先A参照）。なお、式(12), (14), (15)において \(\delta = 0 \) とすると、変形制御機構が作用しない場合の応答予測式が導出され、これは柔剛混合構造の応答予測式に一致する。

3. 時刻応答解析による応答予測式の検証

3.1 解析モデル及び入力地震動の概要
比例型で設定する。

制振構造モデルは, 主架構の 1 次固有周期, 1T を 1.0, 2.0 s とする。

ここでは, 1 質点系モデルの建物高さ H を 33 m で一定とし, 1T を 0.03H, 0.06H と一般的な鋼構造物及び高強度鋼を用いた剛性の低い鋼構造物 \(27\) を想定する。

\[\alpha = 0.02 \sim 0.15, \quad \delta_{\text{max}} / \delta_{\text{f}} = 0.2, 0.4, \quad \kappa x = 1.0, 4.0 \] を検討に用いる。1 質点系モデルの等価建物高さ \(H_{\text{eq}} = 2/3H \) (= 22 m) と設定し, 主架構は弾性振動をすることとする。

ダンパーは塑性化部に LY225 を用いた座屈拘束プレースを踏高 4 m の 6 m スパンヘの字 (角度 53°) で組込むことを想定し, 降伏変形 \(\delta_s = 6.10 \text{ mm} \) となるため, ダンパーの降伏変形角 \(\theta_s = 1/656 \text{ rad} \) となる。想定しているダンパーは塑性化部と弾性部で構成されるが, 解析上は等価なヤング係数を用いて 1 要素 (一様断面) でモデル化している \(27\)。解析モデルにおける降伏変形 \(\delta_s = H_{\text{eq}} = 22 \text{ m} \) に対し33.5 mm となる。1 次固有周期, 1T = 1.0 s の時の解析モデルにおける主架構の剛性, \(k \) は 3.95 \times 10^5 \text{ kN/m} となり, 変形制御機械の剛性 \(K \) は 3.95 \times 10^5 \text{ kN/m} となり, 装備構造モデルは, 1T = 3.0, 4.0 s を想定し, \(\alpha = 0.01 \sim 0.10, \delta_{\text{max}} / \delta_{\text{f}} = 0.2, 0.4, \kappa x = 20 \) と設定する。ダンパーは鋼材ダンパーを用いることを想定するため, 降伏変形 \(\delta_s = 27.9 \text{ mm} \) である。1 次固有周期, 1T = 3.0 s の時の解析モデルにおける主架構の剛性, \(k \) は 0.439 \times 10^5 \text{ kN/m} となり, 変形制御機械の剛性 \(K \) は 8.78 \times 10^5 \text{ kN/m} となる。

図 4 に地震動の擬似速度応答スペクトル \(S_E \) (\(h = 0.10 \)) を示し, 図 5 に地震動の加速度時刻歴波形を示す。入力地震動には, 告示スペクトルに一致するように作成された模擬波を用い, コーナー周期 \(T = 0.64 \text{ s} \) において \(\nu S \), が一定となるように設定する。位相特性は, 最大応答が大きいことから超前層建物や免震建物の設計で一般的に用いられる JMA KOBE 1995 NS と, K-net 観測点のうち東北地方太平洋沖地震発生時における東京都新宿地区 (TKY007) の観測波とし, ART KOBE 及び ART SHIN を表記している。図 4.5 には, \(\nu S \) が 80 cm/s で一定となる場合を示している。本解析では, ART KOBE において損傷に寄与するエネルギーの速度換算値 \(V_0 = 100 \text{ cm/s} \) を極端に使用する地震動レベルと定義し, \(V_0 = 200, 200, 300 \text{ cm/s} \) をパラメータとする。ART SHIN においては \(V_0 = 250 \text{ cm/s} \) を極端に使用する地震動レベルと定義し, \(V_0 = 250, 500, 750 \text{ cm/s} \) をパラメータとする。表 1 に解析パラメータを示す。各解析ケースにおいて, 損傷に寄与するエネルギーの速度換算値 \(V_0 \) の解析値が表 1 に示した \(V_0 \) と同程度になると入力加速度倍率を調整して解析を行う。

3.2 解析値と予測値の比較及び応答予測式の検証

2.2 節で導出した予測解析による予測値と 1 質点系モデルでの時刻情報解析方法による解析値の比較により, 変形制御機械が作用する場合の応答予測式である式(14), (15)を検証する。表 1 の解析パラメータに変形制御機械を組み込む場合 (no controller) を加え, 最大加速度をレベル 2 地震動に対して 1.0, 2.0, 3.0 倍とした模擬波による解析を行う。等価緩返し数 \(m \) は地震動の継続時間に比例して増加する傾向を示す。図 6.5 に, \(\nu S \) が 80 cm/s 以下下限値として設定されている \(27\)。ここでは, 継続時間の短い ART KOBE と長い ART SHIN を表記していることから, 表 1 の解析パラメータを用いた各地震動による解析結果から \(m \) を求め, その結果に
図7(a)より、式(15)で示される δmax / δy と φα / φα の関係式を示す。右上に単調増加している線実線は φα / φα の場合、下に減少している線実線は φα / φα の場合を示す。実験は φα / φα = 0.2, 0.4 の場合の変形制御機構が作動している場合の φα / φα を示し、それぞれ φα / φα > 0 の範囲について示すことを考えると。

図8(a), (b)に、附屬Aの式(A2)で表される φα / φα と δmax / δy の関係式を同様に解析値をプロットしたものを示す。太破線は変形制御機構を組み込まない場合の φα / φα であり、右上に単調増加している線実線は φα / φα の場合、下に減少している線実線は φα / φα の関係式を示す。

図7, 8(a), (b)より、応答予測は ART KOBE 及び ART SHIN による解析値の傾向に良く一致しており、概ね解析値を上回る安全側の評価になっている。また、変形制御機構を組み込まない場合（no controller）は、最大せん断力 φαmax / φα が最小となる最適値が存在し、それを n = 1.0 の場合の予測値として求める。φα / φα = 0.28, φαmax / φα = 0.38 の場合に φαmax / φα は 0.66 が最小値となる。同様に、n = 10 の場合は、φαmax / φα = 0.11 の時に φαmax / φα = 0.22 が最小値となる。n = 1.0 の場合の予測式及び ART KOBE の解析値では、変形制御機構が作動し始める変形が φδ / φδ = 0.2 の時、最適値となる変形 φmax / φδ = 0.38 に達する前
に変形制御機構が作用し、最大せん断力 τ が激増に増加する。σ_{gap}, $\delta_0 = 0.4$ の時、最適値となる変形をを超えてから変形制御機構が作用し、最大せん断力 τ が激増に増加する。$\eta = 10$ の場合の予測値及び ART SHIN の解析値で、σ_{gap}, $\delta_0 = 0.2, 0.4$ のいずれも最適値と考え変形 $\Delta_\tau, \delta_0 = 0.11$ を超えるから変形制御機構が作用し、最大せん断力 τ が激増に増加する。要素に対する変形制御機構の剛性の割合 κ が大きいほど変形抑制効果が大きいことが応答せん断力 τ が増加する危険性を大する。以降より、同様に最大せん断力に制御する場合でも、変形制御機構の剛性が小さく、変形制御機構を小さく変形させる方法では、主構造に作用する最大せん断力の激増に増加は抑えられるが、制振及び変形が十分に発揮される範囲が狭くなる。一方、変形制御機構の作りし変形が大きく、変形制御機構の剛性を大きくする方法では、制振及び変形が十分に発揮される範囲が広くなるが、変形制御機構が作用すると主構造の最大せん断力が激増に増加することを定量的にわかる。

4.1 質点系変形制御構造モデルの概略設計手法及び検討例

本章では、1 質点系制振・免疫構造モデルに、変形制御機構を組込んだ変形制御構造モデルの概略設計手法及び検討例を示す。

4.1.1 質点系変形制御構造モデルの概略設計手法

制振及び変形を想定した 1 質点系変形制御構造モデルの概略設計手法を以下に示す。

手順① 建物諸元を設定する。
＜建物諸元＞
制振：建物質量 M、建物高さ H、主架橋の 1 回周期 T_H、免疫：上部構造質量 M、免疫振動周期 T_I
手順② レベル 2 地震動に対して最大変形及び最大せん断力が低減する最適なダンバー諸元を選定する。
＜ダンバー諸元＞
制振・免疫：ダンバーの降伏せん断力係数 α。
手順③ レベル 2 の 2 倍の地震動に対する設計クライテリアを設定し、設計クライテリアを満足するような変形制御機構の諸元を決定する。
＜設計クライテリア＞
制振：最大変形角 $R_{\alpha max}$、最大せん断力係数 α_{max}、免疫：最大変形角 δ_{max}、最大せん断力係数 α_{max}、変形制御機構諸元を設定する。
制振：変形制御機構が作用し始める変形角 R_{α}、主架橋の剛性に対する変形制御機構の剛性の割合 κ
免疫：変形制御機構が作用し始める変形角 δ_{α}、積層ゴムの剛性に対する変形制御機構の剛性の割合 κ

4.2 パラメータ概要

最大変形 Δ_τ と剛要素の降伏せん断力係数 α の関係式である式 (14)，構架全体のせん断力係数 α_{max} と剛要素の降伏せん断力係数 α の関係式である式 (15) を用いることで、レベル 2 の 2 倍の地震動に対する応答が設計クライテリアを満足することを変形制御機構の諸元を決定する。また、これらの検討を通じて変形制御機構の変形とせん断力の関係について考察する。概略検討を行うにあたり、前節で示したように R_{α} 及び δ_{α} を決定する必要がある。よって、本節の検討においては、R_{α} 及び δ_{α} を変形制御機構のパラメータとして直接設定することとする。表 2 に、本節で用いる解析パラメータを示す。制振構造モデルにおいては主架橋の 1 回周期 $T_H = 2.0$ s、免疫構造モデルにおいては免疫振動周期 $T_I = 4.0$ s を対象とする。

<table>
<thead>
<tr>
<th>要素</th>
<th>制振構造</th>
<th>免疫構造</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.02, 0.04, 0.06, 0.12, 0.15</td>
<td>0.01, 0.02, 0.04, 0.06, 0.10</td>
</tr>
<tr>
<td>β_{α}</td>
<td>R_{α} (rad)</td>
<td>δ_{α} (cm)</td>
</tr>
<tr>
<td>K_{α}</td>
<td>1/500, 1/200, 1/120, 1/100</td>
<td>10, 20, 30, 40</td>
</tr>
<tr>
<td>δ_{α}</td>
<td>2.0, 4.0</td>
<td>10, 20</td>
</tr>
</tbody>
</table>

【エネルギー損失の速度損失定数 F_{α} (cm/s)】

$F_{\alpha} = \frac{V_D}{1 + 3.5 + 1.2 \sqrt{h}}$

ここで、h：主架橋の減衰定数である。

4.3 1 質点系変形制御構造モデルの概略設計検討例

図 9 に、1 質点系変形制御構造モデルの予測値による概略検討に用いる最大せん断力及び最大変形の関係を示す。図 9(a)に制振構造モデルの場合（最大せん断力係数 α_{max} と最大変形角 R_{α} の関係）、図 9(b)に免疫構造モデルの場合（最大せん断力係数 α_{max} と最大変形角 δ_{max} の関係）を示す。図 9 には、各 α_{max} （表 1 参照）において変形制御機構の諸元を変化させた時の予測値と比較を示す。変形制御機構を組み合わせずに（図中では no controller と表記）は破線で表しており、制振構造モデルでは $\alpha_{\text{max}} = 0.02 \sim 0.30$、免疫構造モデルでは $\alpha_{\text{max}} = 0.01 \sim 0.15$ に、レベル 2 地震動（以降、$V_D = 120$ cm/s と表記）及びレベル 2 の 2 倍の地震動（以降、$V_D = 240$ cm/s と表記）に対する予測値を示している。変形制御機構を組み合わせない場合、各 α_{max} における $V_D = 120$ cm/s 及び $V_D = 240$ cm/s の予測値を点線で繋いでおり、プロットは、α_{max} を表している。変形制御機構を組み合わせた場合は実線で表しており、制振構造モデルでは、$\alpha_{\text{max}} = 0.02 \sim 0.15$、免疫構造モデルでは、$\alpha_{\text{max}} = 0.01 \sim 0.10$ の範囲について、$V_D = 240$ cm/s に対する予測値を示している。α_{max} 及び κ を一定として、R_{α} を変化させた予測値の推移として、R_{α} 及び κ を一定として、R_{α} を変化させた予測値の推移を示しており、プロットは、R_{α} 及び κ を変化させた予測値を示している。α_{max} 及び κ を表している。対象とする κ は、制振構造モデルでは、$\kappa = 2.0, 4.0, 8.0$、免疫構造モデルでは、$\kappa = 10, 20, 40$ であり、プロットで示す R_{α} 及び κ は、それぞれ、$R_{\alpha} = 1/500, 1/200, 1/120, 1/100$ rad、$\delta_{\alpha} = 10, 20, 30, 40$ cm (表 2 参照)である。図 10 に、1 質点系変形制御構造モデルの概略検討結果として、設計クライテリアを満足するケースに着目した予測値及び解析値の結果を示す。図 10(a)に制振構造モデルの場合、図 10(b)に免疫構造モデルの場合を示す。

図 9,10(a)より、制振構造モデルについて述べる。図 9(a)より、レベル 2 地震動に対して最適なダンバー量を選定するため、$V_D = 120$ cm/s に対する結果を考えると、α_{max} は、$\alpha = 0.02 \sim 0.2$ で低減しており、
R_{max} は $\alpha = 0.08$ まで 1/120 rad を満足している。これより、レベル2 地震動に対する最適なダンパー量として、$\alpha = 0.08$ を選定する。レベル2の2倍の地震動に対する設計クライテリアを $R_{\text{max}} = 1/75$ rad, $\alpha_{\text{max}} = 1.0$ とし、$\alpha = 0.08$ の制振構造の $V_F = 240$ cm/sに対する結果を見ると、$R_{\text{max}} = 1/75$ rad を上回る結果となり、過大な変形となっていません。そのため、変形制御機構を組み込むことで R_{max} を低減させ、α_{max} の増大も設計クライテリアを満足する結果となるよう変形制御機構の諸元を決定する。图9(a)より、$\alpha = 0.08$ の制振構造に $\delta_{\text{gap}} = 1/500$ rad, $\kappa = 2.0$ の変形制御機構を組み込むことで設計クライテリアを満足する結果となる。图9(a)より、予測値は解析値の傾向を概ね捉えられていることがわかる。ただし、制振構造の場合、α の増大により変形制御機構を組込んだ周辺構造に応力が集中することも主架構が塑性化してしまいうれがあるため、主架構やダンパー諸元との関係を考慮して、適切な変形制御機構諸元を決定する必要がある。これに関しては専門家やモデルでの検討が必要である。

図9(a)より、変形制御モデルについて述べる。図9(b)より、レベル2 地震動に対して最適なダンパー量を決定するため、$V_F = 120$ cm/sに対する結果を見ると、$\alpha_{\text{max}} = 0.02$ の範囲で低減している。これより、レベル2 地震動に対する最適なダンバー量として、$\alpha = 0.02$ を選定する。レベル2の2倍の地震動に対する設計クライテリアを $\delta_{\text{max}} = 60$ cm, $\alpha_{\text{max}} = 1.0$ とし、$\alpha = 0.02$ の変形構造 $V_F = 240$ cm/sに対する結果を見ると、$\delta_{\text{max}} = 60$ cm を上回る結果となり、過大な変形となってしまいます。そのため、変形制御機構を組込むことで δ_{max} を低減させ、α_{max} の増大も設計クライテリアを満足する結果となるよう変形制御機構の諸元を決定する。図9(b)より、$\alpha = 0.02$ の変形構造に $\kappa = 10$ の変形制御機構の変形制御機構を組込むことで設計クライテリアを満足する結果となる。図9(b)より、予測値は解析値の傾向を概ね捉えられていることがわかる。

以上より、提案した応答予測式を用いることで1質点系変形制御構造モデルの応答特性を定性的かつ簡便に評価可能である。

4.4 1質点系変形制御構造モデルの応答特性に関する考察

図9を用いて、変形制御機構の応答特性について考察する。図9における変形制御機構の結果より、変形制御機構を組込むことで最大変形は低減し、その傾向はダンバー量が小さい範囲において κ が大きく δ_{gap} が小さいほど顕著である。これより、レベル2程度の地震動に対して最適なダンバー量を決定し、そのダンバー量を付与した制振構造及び変形構造に変形制御機構を組むことで、最大変形の低減効果は顕著になることがわかる。また、図10より、変形構造における柔要素（積層ゴム）の剛性は制振構造における柔要素（主架構）の剛性に比較して小さく、変形制御機構の剛性を大きく設定できるため、制振構造より変形構造の方が変形の低減効果が高い。
5. まとめ

本論文では、高度な耐震性能を持った建物として採用される制振構造及び免震構造に、硬化型変形力特性を有する変形制御機構を組込んだ変形制御構造の応答特性を定性的かつ簡便に評価することを目的として、1質点系モデルを対象としたエネルギーの約合いに基づく応答解析法を変形制御機構に拡張し、変形制御機構におけるエネルギーの約合いに基づく応答予測式を提案した。また、時刻変化解析による結果を用いて応答予測式を検証し、さらに、変形制御機構を組込んだ制振構造及び免震構造を対象として、応答予測式を用いた構造検討及び検討例を示し、変形制御機構の応答特性を変形低減に伴うせん断力増大の関係を明らかにした。以下に得られた知見を示す。

(1) 弾性挙動をする柔要素と弾性挙動をする剛要素からなる柔剛混合構造に、剛要素を降伏後に剛性を持続する硬化型変形力特性を示す変形制御機構を組込む変形制御構造を考え、変形の全てがダンバーの変形に寄与することを前提とし、1質点系モデルを対象とした応答予測式を導出した。

(2) 刚要素の1次固有周期、剛要素の降伏せん断力係数、変形制御機構が作用し始めると変形の関数、積分、剛要素の剛性に対する変形制御機構の剛性の割合、エネルギーの自由度換算値をパラメータとした時間変化解析結果と、提案した応答予測式による予測値の比較より、予測価の誤差を概ね捉えられることが確認した。これより、提案した応答予測式を用いることで変形制御構造の応答特性の傾向を捉えることができる。

(3) 变形制御構造において、エネルギーヨ約合いに基づく応答予測式から、変形制御機構の剛性が大きく、変形制御機構が作用しはじめる変形が大きいほど、最大変形が小さい。変形制御機構の剛性が大きいほど、最大せん断力が増大し、傾向が顕著となることを確認することができる。

(4) 制振構造及び免震構造を想定した変形制御構造の1質点系モデルにおける概略検討手法及び検討例を示し、提案した応答予測式による応答値と1質点系モデルによる解析値を用いることで、それぞれの構造において変形制御機構を組込んだ場合の応答特性を評価できることを示した。

(5) レベル2程度の地震動に対して選定したダンバーと変形制御機 構を組合せることでダンバーを増大させることで、极大地震に対して制振構造及び免震構造の変形を低減させることができ、変形制御機構を組込む場合は最大変形を低減させることができる。ダンバーを増大させることは小さなお地震レベルに対するダンバー効率の低下という課題があるため、建物の要求性能に応じて適切な構造を模索することが重要であることを示した。

謝辞

本研究は、JFE スチール株式会社、JFE シール株式会社、東京理科大学北村研究室による共同研究の成果の一部を用いたものです。本論文の作成に当たっては、東京理科大学大学院生の橋本孝行氏の協力を得ました。ここに記して感謝の意を表します。

参考文献

1) 原田幸博、秋山伸: 地震等震性コンクリート構造体の耐震設計、日本建築学会構造系論文集、第472号、pp.57-66、1995.6
2) 秋山伸: 耐震性能の多様化に対応した耐震設計、日本建築学会構造系論文集、第472号、pp.85-90、1995.6
3) 日本建築学会: 1995年兵庫県南部地震災害調査速報、pp.6-26、1995.3
4) 岩田則、黃一豊、川村昭、相田啓: 大震時レバピレベル制御構造【Damage Tolerant Structure】に関する研究、日本建築学会技術報告、第1号、pp.82-87、1995.12
5) 北村幸幸、北村佳久、伊藤優、坂本光雄: 通用共用調査に基づく日本の応答制御構造の分析・評価、日本建築学会技術報告、第18号、pp.55-60、2003.12
6) 日本建築学会: 2011年東北地方太平洋沖地震災害調査速報、pp.16-27、2011.7
7) 日本建築学会: 長周期地震対策に関する公開研究会、pp.39-138、2011.3・p94、2012.3
8) 内閣府、首都圏地震対策、http://www.bousai.go.jp/jishin/syuto/index.html（2013.3.22閲覧）
9) 大阪府内陸水平地震に対する建築物設計用地震動及び設計に関する研究報告書: 大阪府内陸水平地震に対する建築物用地震動及び設計地震動（その1 上層建耐震設計に対する大阪市城域）、pp.II-1 II-68、2011.7
10) 府省連携 革新的構造材料を用いた新構造システム建造研究開発プロジェクト: 新構造システム建造設計・施工案、新都市ハジング協会、日本鉄鋼連盟、日本鋼構協会、pp.1-6、2009.3
11) 小坂幹二、南井良一: 地震による構造物の非線形動揺について(その2 構造物力学特性の入門的非線形変化過程)、日本建築学会論文集、第52号、pp.41-48、1956.3
12) 渡邊由一、田村和夫: ギャップ連続壁架構の地震応答特性、日本建築学会大会学術講演会概要、B-2、構造II、振動、原子力プラント、pp.883-884、1989.8
13) 渡邊由一、田村和夫: ギャップ連続壁架構の基本振動特性、第10回日本地震工学シンポジウム、pp.275-278、1998.8
14) 渡邊由一、田村和夫、中井正一: ギャップ機構を用いたデジタル非線形架構の地震応答解析、日本建築学会学術講演会概要、B-2、構造II、振動、原子力プラント、pp.653-656、2010.7
15) 渡辺啓一，内川正一：硬化型応力特性をもつ構造の最大せん断応力，日本建築学会大会学術講演概要集，B-2，構造Ⅱ，振動，制振設計・性能評価，pp.955-956, 2012.9

16) 本間誠，橋田剛，井上範夫：エネルギー応答に基づいた構造の地震を受ける鉄筋コンクリート建物におけるダンパーと変形制御機構の設計，日本建築学会構造系論文集，第 61 号，pp.49-56, 2007.8

17) 佐藤大樹，船本宣己，川島隆也：硬化型非線形応力特性をもつ制振架構の振動応答，日本建築学会シンポジウム論文集，第 11 号，pp.1649-1654, 2002.11

18) 南博之，松本しゆ子，多賀山宗之，大西英雄，林和裕：パルサス性地震動にに対する変形制御機構の効果に関する研究，日本建築学会技術報告集，第 39 号，pp.471-476, 2012.6

19) 高橋武男，元村一紀，深堀義英：水平変位制御によって変形被覆に発生する衝撃力に関する実験と応答解析，日本建築学会構造系論文集，第 573 号, pp.223-230, 2003.11

20) 佐藤大樹，緑川光正，花井健，皆川隆之：変形制御部材を用いた変形制御建築における変形制御建築の地盤時応答（1、2），日本建築学会大会学術講演概要集，B-2，構造Ⅱ，振動，原子力プラント，pp.425-428, 2004.8

21) 中田正治，花井健，佐藤大樹，小豆雄太，岩川幸成，東田豊彦，森岡之，緑川光正：変形制御部材を有する戸建で変形制御建築の地盤時安全性について（1、2），日本建築学会大会学術講演概要集，B-2，構造Ⅱ，振動，原子力プラント，pp.1001-1004, 2007.8

22) 秋山太：エネルギーの約束に基づく建築物の耐震設計，技報堂出版，1999

23) 藤森尚和，佐藤大樹，北村春幸，小山隆，西本浩次：実験変形を考慮した履歴減衰形制御部材を有する鋼構造建物のエネルギーの約束に基づく応答予測法，日本建築学会構造系論文集，第 76 巻, pp.661, 2013.3

24) 北村春幸：性能設計のための建築振動解析入門，合同社，pp.129-165, 2002

25) 北村春幸，財津和康，馬谷原洋志：主架構の塑性化を考慮した制振構造物のエネルギーの約束に基づく応答評価法，日本建築学会構造系論文集，第 599 号, pp.71-78, 2006.1

26) 野村尚志，佐藤大樹，北村春幸，植木浩，宮川利明：高強度鋼と制振部材を組合わせた耐震性能構造部材のエネルギーに基づく制御のための提案，日本建築学会関東支部研究報告集，2013.3

28) 断面部材標準品リスト 2009, 社団法人 日本建築構造協会, pp.616, 2009.10

附録Ａ エネルギー法における各要素のせん断力係数と最大変形の関係式

附録 B 記号リスト

(E) : 入力エネルギー

(E) - (Wi) : 損傷に寄与するエネルギー（(E) - (Wi)）

(δ) : 重力加速度

(α) : 主架構の減衰定数

(H) : 1 質点系モデルの建物高さ

(H): 1 質点系モデルの等価建物高さ

(k) : 変形制御機構の剛性

(M) : 建物質量

(n) : 剛要素の等価減衰数

(δ) - (Q) : 柔要素の最大せん断力

(δ) - (Q) : 柔要素の降伏せん断力

(δ) - (Q) : 変形制御機構の最大せん断力

(δ) - (Q) : 変形制御機構が作用し始める変形角

(R) : 剛要素の降伏変形角

(R) : 鋼構造物の非線形性に基づく変形角

(S) : 地震動の視覚速度応答スペクトル

(t) : 建物の最大応答値発生時刻

(t) : 地震動の継続時間

(Vo) : 損傷に寄与するエネルギーの速度換算値

(Ve) : 入力エネルギー的速度換算値

(Ve) : 地震動のエネルギースペクトル

(Wi) : 1 質点系モデルの減衰による消費エネルギー

(Wi) : 柔要素の等価わきエネルギー

(Wi) : 柔要素の等価わきエネルギー

(Wi) : 剛要素の等価わきエネルギー

(Wi) : 剛要素の等価わきエネルギー

(Wi) : 変形制御機構の最大せん断力係数

(Wi) : 変形制御機構の最大せん断力係数

(Wi) : 柔要素の最大せん断力係数

(Wi) : 柔要素の最大せん断力係数

(Wi) : 剛要素の降伏せん断力係数

(δ) : 最大変形

(δ) : 変形制御機構が作用し始める変形

(δ) : 柔要素のみの場合の最大変形

(δ) : 剛要素の降伏変形

(δ) : 柔要素の剛性に対する変形制御機構の剛性の割合

(2013年 2月10日原稿受理，2013年6月20日採用決定)