液状化地盤において杭頭半剛接合法を採用した杭基礎の耐震性能

SEISMIC PERFORMANCE OF PILE FOUNDATION WITH SEMI-RIGID PILE HEAD CONNECTIONS IN LIQUEFIABLE SOIL

Sadayuki ISHIZAKI, Kohji TOKIMATSU and Toshiaki NAGAO

The seismic behavior of a pile-supported building with semi-rigid pile head connections in liquefiable soil is investigated using 2D effective stress analysis. The results of the simulations show that the pile stress reducing effect of the semi-rigid pile head connections is enhanced in liquefiable soil, because the superstructure inertia force and the seismic earth pressure acting on the embedded footing decrease. And the validity of the seismic deformation method as a seismic design method, which considers the non-linearity and axial force dependency of the pile heads, the varying axial force due to soil-pile-structure interaction, and the total earth pressure acting on the embedded footing, is confirmed.

Keywords: Semi-rigid pile head connection method, Liquefaction, Dynamic centrifuge model test, Embedment, Effective stress analysis, Seismic deformation method

1. はじめに

近年、合理的な杭頭部の接合方法として、杭頭半剛接合法が開発されている。杭頭半剛接合法は、杭頭部の回転を許容することにより杭頭接合部への応力の集中を回避し、杭基礎の耐震性を向上させる構法である。半剛接合部の構造性能は静的な構造実験により検証され、杭頭応力の低減効果や耐震性が確認されている。筆者らは、乾燥砂地盤および液状化地盤において、液状化杭基礎 - 建物系の模型振動実験を実施し、杭頭半剛接合法を採用した建物の地震時挙動を実測した。乾燥砂地盤では、半剛接合とした場合の杭の曲げモーメント分布は、剛接合とした場合と比べて、杭頭部で小さくなり、地中部の最大値は大きくなるが、深さ方向の最大曲げモーメントは小さくなること（以下、曲げモーメント分布の非線形化による最大応力低減効果）を実証した。さらに、液状化地盤では、杭頭部だけでなく地中部においても、半剛接合とした場合の曲げモーメントは剛接合とした場合と比べてむしろ小さくなり、剛接合と比較した最大応力低減効果は液状化とともに高まる可能性を示した。これは、液状化するに従い地盤の水平抵抗が減少するため、半剛接合とした場合、剛接合とした場合と比べて、建物からの慣力の増加に対して、杭頭回転角が増加するとともに杭基礎の水平抵抗が減少し、建物応答が長周期化し基礎変位が増大する傾向があり、その結果、杭頭に作用する水力、すなわち、建物からの慣力やモーメントに作用する地震時土圧が小さくなるため（以下、杭頭へ作用する水平力の低減効果）であった。すなわち、剛接合した場合、液状化地盤の変形に抵抗するよう、半剛接合とし

て杭基礎全体の变形性（いずれかの部材が変形性の限界に達するまでの性能）を高め、地盤変形に追随させることで、曲げモーメント分布の平準化による最大応力低減効果と杭頭へ作用する水平力の低減効果により、杭基礎の耐震安全性を高められる可能性がある。しかしながら、これらの効果は地盤条件や建物周辺等により異なると推測され、動的相互作用の効果を設計に取り入れるには、より一層の実現の解明と、適切な評価手法や耐震設計手法の構築が必要である。

地盤との相互作用を考慮した建物全体の地震時挙動については、半剛接合部を回転ばね等でモデル化した2次元FEMあるいは修正ベッセンモデルにより検討されている。また、筆者らは、前述の乾燥砂地盤における模型振動実験に対して、杭頭半剛接合法を軸力依存型の回転ばねでモデル化した2次元FEMを実施し、解析手法により杭頭接合部の挙動や建物の地震時挙動、曲げモーメント分布の平準化による最大応力低減効果を適切に評価できることを示した。しかし、これらの検討は非液状化地盤に限られており、液状化地盤におけるその建物の挙動を、有効応力解析等により適切に評価できるかは不明である。

液状化地盤における杭基礎の被害には、基礎検入れ部に作用する地震時土圧が大きく影響していると指摘されている。田村らは、大型せん断土槽実験により、建物と地盤の周期や、検入れ部と地盤の相対変位の関係により、検入れ部に作用する地震時土圧が外力として作用する場合があることを示した。さらに、応答変位法において、その地震時土圧を張り力が提案する土圧理論を用いて評価する手法を提案し、その妥当性を遠心模型実験との比較から検証している。
2. 実験概要

図1に示す加速度50g場で実施した振動実験の試験体を示す。以下、実験スケールで説明する。場所寸法は杭（2×2本）に支えられたRC造の層別建物を想定した。地盤構成は、深層から中等深層、その上に液状層、さらに深液状層を表すとし、液状化層は豊浦標準砂を用いDr60%で作製し、地下水位は液状化層上端より若干高かった。表面はケイ砂3号で作製した。実験では、建物の加速度、杭のひずみ、杭の左右におけるフーチングの相対変位、杭の回転角算定のため、フーチングの左右に生じる土圧等を計測した。試験体は、杭を剛接合とした試験体（Model R）と半刚接合とした試験体（Model S）の2つとした。入力地震波、最大加速度を200mgalに調整した舗装波とする。図2に建物に作用する水平力の模式図を示す。建物慣性力は上部構造物とフーチングの慣性力の和とした。フーチングには、左右の側面に土圧（Pn, Pp）が作用していた。フーチングの加算加振と並行する側面にはフェンシングを貼り、底面と地盤の間には隙間を設け、側面・底面摩擦力の低減を図った。従って、フーチングをかけ上げ引きずる土圧力は左右の土圧の差（Pn, Pp）により評価した。杭に作用する水平力は建物慣性力と土圧合力の和であり、それが杭頭せん断力の合計のとおり合う。

実験結果の概要を説明するため、図3に液状化前（t=0～13.5秒）、液状化過程（13.5～25.0秒）、液状化後（25秒以降）における建物慣性力と土圧合力の関係を示す。また、各時間における杭の曲げ曲げモーメント分布を図4に示す。液状化前における建物慣性力と土圧合力の関係は、図2で示すと杭の側面にあり、杭頭合は建物慣性力に対して抵抗として作用した。Model Sの曲げモーメント分布は、Model Rと比べて、杭頭では大きく、地中部分では大きくなるが、曲げモーメント分布の差異により最大曲げモーメントは小さくなっていた（図4 (a)）。液状化過程では、負の相関にあった建物慣性力と土圧合力の関係に位相差が生じた（図3 (b)）。液状化過程における曲げモーメント分布には、地盤変形の影響が確認できるが、液状化前と同様に曲げモーメント分布の変位による最大応力低下効果が確認できた（図4 (b)）。一方、液状化後におけるModel Rでは、
土圧合力が建物慣性力と正の相関にあり外力として作用する状況が明確に確認できた（図 3(c)）。その結果、杭頭へ作用する水平力が増加し、杭頂曲げモーメントが液状化過程と比べて 1.5 倍程度になった（図 4(c)）。一方、Model S では、建物慣性力と土圧合力の関係に依存して負の相関があり、土圧合力が建物慣性力に対して抵抗力として作用した。その結果、25 秒以降において Model S の杭頭へ作用する水平力の最大値は Model R を比べて 4 割程度となり、杭の地中部分の最大曲げモーメントも Model R より小さくなった。剛接合に対する杭の最大曲げモーメントの比は、液状化前では 7～8 割。液状化過程では 6～8 割、液状化後では 2 割程度であり、液状化の進行とともに最大応力低下減効果が高まる結果が得られた。これより、半剛接合とした場合液状化後の杭基礎の水平抵抗がより減少するため、建物応答の後期化により建物慣性力が小さくなり、また、外力としてフレーミングに作用する地震時土圧が逆に抵抗力として作用し、杭基礎に生じる水平力が小さくなった結果と考えられる。

３．2 次元有効応力解析による杭基礎建物の地震時挙動の評価

３．１ 解析方法

図 5 に模型実験に対する解析モデルを示す。地盤の有効応力モデルの構成則に、Stress Density Model (SD Model) 11、10 で、飽和地盤で三軸圧縮試験の不排水圧縮特性を、応力場の変化に応じて変化する応力場をモデル化する。解析定数は、液状化の程度を考慮して定める（表 1）。図 6 に液状化過程曲線を示す。なお、実験では Model SB の液状化層の Dr がわずかしかなかったが、解析では両者を考慮した。表層の非液状化層のせん断応力をひもひずみの関係は Ramberg Ogden の非線形モデルで非線形化する。表層の S 波速度は、微小加加速度を考慮して 80m/s と推定する。基準ひずみは 0.001, 最大減衰定数は 0.22 とする。

杭頭半剛接合部は、変形を同程度に変化する変形を生ずるとしてもモデル化を行う（図 7）。その骨格曲線を双曲線で定義する。両曲線の初期剛性は、杭頭接合部の曲げ変形を考虑して設定する。杭頂近傍に、次式で与えられる最大抵抗曲げモーメント（M）を用い、変形曲線の影響を排除する。

\[M_h = \frac{D}{2} \cdot N \] \hspace{1cm} (1)

ここで、D：杭頂径。N：杭頭軸力である。履歴特性は、実験と対応させ、非線形弾性とする。半剛接合部の水平と鉛直方向については、杭とフレーミングの節点を共有した。

杭と建物は線形変位要素を用いてモデル化を行う。地盤の剛性は、フレーミング幅とする。その際、液状化とともに杭に作用する地盤反力を過大評価する可能性がある。そのため、液状化層と下方では、杭頭 - 杭間に過剰間隙水圧の土圧を伴う波反力が低減するばね要素で考慮する。フレーミングの左右側は地盤と節点を共有せる底面は非線形であり、モデルの側壁はフレーミングと地盤の境界とし、底面は固定とする。構造物の減衰定数は、剛性比を基に、速度比が 1 の 3.6 回幅に 3 とする。土圧分布の過度変位記録（図 8）をモデル底面に入力する。

３．２ 実験結果に対するシミュレーション結果

図 9 に解析より得られた建物加速度、フレーミングの変位、杭頂の曲げモーメント、及ぼし液状化層の過剰間隙水压を各試験体について示す。高さ 7 m における過剰間隙水圧は初期有効圧載圧に達し、液状化した状態にある部分に従い、解析結果における建物加速度は、50 秒付近まで、短周期成分を過大に評価している。それ以降では、Model R の建物加速度を比較的良く再現している。解析結果における Model S の建物加速度が Model R より小さくなる状況 12）は十分に再現できており、Model S の建物加速度を若干過大評価している。図 11、12 に建物慣性力と土圧合力の関係を示す。液状化前では、解析結果は両者の値を良く再現している。また、50s 以降では、Model R の建物加力が建物慣性力と同一方向に作用し、Model S では依然として負の相関にある状況を良好に再現している。図 13, 14 に、杭頂接合部の曲げモーメント（M）と回転角（θ）の関係を示す。解析結果は、両者、試験体の杭頂接合部の挙動を良く再現している。図 15 に、杭頂曲げモーメントがピークを示す時刻の杭頂の曲げモーメント分布を示す。また、表 2, 3 に同時刻の建物慣性力、土圧合力、及び杭頭へ作用する水平力を示す。実験結果の Model S では、同時刻において、後方杭（Pile 1）の杭頭水平力がかなり小さかった。その理由、表 3 の杭頂に作用する水平力が解析結果と比べて半分程度となっている。解析結果は、建物慣性力を過大評価する傾向が確認できる。しかし、Model S では、土圧合力が建物慣性力に対して抵抗力として作用し、杭頭へ作用する水平力が、Model R と比べて大きさ低減する状況をある程度再現している。その結果、

<table>
<thead>
<tr>
<th>表 1 有効応力モデルの解析パラメータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>順澄度</td>
</tr>
<tr>
<td>方弾性</td>
</tr>
<tr>
<td>液状化層</td>
</tr>
<tr>
<td>下層</td>
</tr>
</tbody>
</table>

入力動騒音
Model Sの地中最大曲げモーメントは、Model Rと比べて極端に大きくならず、実験結果の曲げモーメント分布を良好に再現している。
解析より得られたModel SとModel Rの最大曲げモーメントの比は、液状化前7〜8割、液状化後10割程度であり、最
大応力の低減効果は実験結果に大きく影響している。以上
のことから、本解析手法により、液状化地盤で杭頭半剛接合構法を
採用した杭基礎構造の地震時挙動を、半剛接合構法を採用すること
により杭頭へ作用する水平力が小さくなり杭の最大応力低減効果が
高まる現象を、概ね良好に再現できると考えられる。ただし、本解析
は、半剛接合とした場合に建物加速度が小さくなる現象を定量的に
評価できていない。そのため、1）杭頭部付近の拘束圧の小さ
い範囲において地盤の3次元的な挙動を十分に再現していないこと
と共に、2）液状化後の粘性液体との衝突が考慮されていないこと
が考えられる。本解析は、建物慣性力が過大に評価され、その衝
突力を土圧力が負担するが、杭頭せん断力が大きくなる。杭頭曲
げモーメントに頭打ちが生じた場合、杭頭せん断力の増加は地中部
の杭応力の増加につながる。その結果、3.3節や5.2節における
解析結果は、安全側の評価となっていると考えている。

3.3 建物周辺地盤内の杭基礎構造の地震時挙動に与える影響
根入れ部に作用する地震時に土圧の特性は、建物と地盤の周期の関係、地盤とフーチングの相対変化に依存する。地盤とフーチングの相対変位は、液状化層の地盤変形量や杭基礎の変形を拘束する液状化層の下の層の特性に依存すると考えられる。そこで、遠心模型実験において、建物周期（T_b）と液状化層厚（下層層厚）を変えた数値シミュレーションを実施する。図15に解析ケースを示す。液状化層厚はCase 1: 9.1m, Case 2: 6.6m, Case 3: 4.1mである。T_b は0.15, 0.5, 1, 2, 5, 0sとする。本検討では、剛接合と半剛接合とした場合の比較を行い、建物周期や液状化層厚が杭頭部接合構法を採用した建物の地震時挙動に与える影響を把握すると同時に、杭頭部接合構法を採用した場合の外力として作用する地震時土圧の低減傾向や杭応力低減効果について検討する。

解析条件および解析定数の設定方法は3.1節と同様である。液状化後の地表面加速度から求めた速度応答スペクトルは2秒から5秒程度の周期成分が卓越して、全ての地盤モデル（構造物の影響のない）において、その範囲に液状化後の地盤周期がある。

図16にCase 2の液状化後における建物慣性力と土圧合力の関係を示す。図中の矢印は、液状化後において、杭頭部接合構法がピークを示す時刻である。建物慣性力と土圧合力の関係において、半剛接合とした場合には、負の相関関係が確認できる。一方、剛接合とした場合には、負の相関関係が確認できるが、履歴面積が大きくなる傾向が確認できる。また、杭の最大曲げモーメントが発生する時刻において、半剛接合とした場合には、土圧合力が建物慣性力に抵抗力として作用し、杭頭へ作用する水平力を低減する状況が、T_b が地盤周期より短い場合（$T_b=0.15s$, 0.5s, 1.0s）において、確認できる。一方、剛接合とした場合には、$T_b=1.0s$ を除いて、土圧合力が建物慣性力と同一方向に作用した時刻において、杭の最大曲げモーメントが発生している。いずれの建物周期においても、外力としてフーチングに作用する土圧合力は、半剛接合とした場合の方が小さい、Case 1, Case 3についても同様の結果が得られ、本検討の範囲内では、建物周期・液状化層厚によらず、杭頭部接合構法を採用することにより、外力として作用する土圧合力が、杭応力が最大値を示す時刻において、小さくなると考えられる。図17に、Case 2, $T_b=0.5, 1.0, 5.0s$において、杭頭部接合構法がピークを示す時刻の杭の曲げモーメント分布を示す。半剛接合とした場合の地盤層部最大曲げモーメントは、剛接合とした場合のそれより大きいが、剛接合とした場合の杭頭部接合構法がピークを示す時刻の杭の曲げモーメントより小さく、いずれの周期においても、半剛接合構法の最大曲げモーメント低減効果が確認できる。

図18に各ケースの建物加速度、フーチングの変位、杭の曲げモーメント、杭頭せん断力の合計（杭頭へ作用する水平力）の最大値を示す。建物加速度の最大値は、半剛接合とした場合の方が剛接合した場合より小さくなる傾向が確認できる。その傾向は、地盤の周期よりも短周期側の$T_b=1s$において、液状化層厚が薄くなり建物モデルが大きくならず顕著に確認できる。本解析は、半剛接合とした場合に建物の加速度が小さくなる現象を定性的に評価している。

半剛接合とした場合のフーチングの変位の大値が大きくなるため、フーチングの変位の影響もあり、その程度は大きくない。Case 3の$T_b=0.15, 4.5s$ では、半剛接合とした場合の最大曲げモーメントが地盤層部で発生しているため、最大曲げモーメントが大きくになっている。しかし、それぞれの解析ケースで剛接合とした場合では、それ以上に杭頭部接合構法が大きくになっている。
半剛接合とした場合の杭頭せん断力は、建物慣性力や外力としてフーチニングに作用する地震時土圧が小さくなるため、剛接合とした場合と比べて小さくなる傾向が確認できる。その傾向は、短周期側で顕著であり、特にCase 2 の $T_s=0.15$ では5割程度に低減している。

全ケースにおいて、杭頭半剛接合構法の優れた杭応力低減効果が確認できる。最大曲げモーメントの比は、Case 1.52%, Case 2.45%, Case3.48%であり、全ケースの平均で48%である。周期別に見た場合、$T_s=0.5s, 0.5s, 1.0s, 1.5s, 2.0s, 2.5s, 2.5s, 5.0s, 5.7$sであり、建物周期が短いほど、杭の最大応力低減効果が高くなる傾向がある。これは、周期が短いほど杭頭に作用する水平力（杭頭せん断力の合計）が剛接合とした場合と比べて小さくなるためと考えられる。

4. 応答変位法による杭基礎の耐震性能評価

4.1 耐震性能の評価方法

図19に解析方法の概念を示す。半剛接合部の回転性能は外力に依存するため、杭基礎に作用する変動軸力を適切に評価することが重要である。液状化に伴い、建物からの振動モーメントの回転中心が下がると同時に、外力として基礎掘入部に作用する地震時土圧が変動軸力を大きくすることが確認されている通り。杭頭半剛接合構法を採用した建物では、建物慣性力や外力として掘入部に作用する地震時土圧が小さくなるため、剛接合とした場合と比べて、変動軸力も小さくなると考えられる。これらの現象を直接考慮するため、建物の等価高さ (H_e) に上部構造物からの慣性力を作用させ、掘入部に作用する地震時土圧を評価する_reを導入する。さらに、変動軸力の反力となる鉛直ばねは、液状化層まで摩擦力が期待できないため、液状化層の下の層よりモデル化し、回転中心が下がることを評価する。建物の等価高さは次式により評価する。

$$H_e = \frac{2n+1}{3} H_0$$

ここで、n: 階数、H_0: 階高である。基礎掘入部に作用する最大土圧合力 P_e は、次式から算定する。

$$P_e = \frac{1}{2} \pi R^2 B (K_{Ed} - K_{Ed}')$$

ここで、γ: 単位体積重量、H: 掘入部の深さ、B: 基礎掘入部の幅、K_{Ed}: 受動土圧係数、K_{Ed}': 主動土圧係数である。受動変位（地盤と基礎掘入部の間）と土圧係数の関係は、張らの理論に基づき評価する。杭の水平・鉛直直線ばねは、建築基礎構造設計指針に基づき設定する。

4.2 耐震性能評価法の検証（実験に対する評価）

2章の実験に対し、基礎掘入部に作用する地震時土圧を評価した応答変位変法を適用し、評価方法の有効性を検証する。

杭体、フーチニング、建物、半剛接合部は、3.1節と同じ要素を用い、フレームを組む。すなわち、半剛接合部は軸力依存型の回転ばねで評価する。杭先端はピノである。地盤の ν 値は、相対密土と有効鉛直応力を用いて、マヤホフの式から逆算して求める。ν 値をもとに、杭の水平地盤ばねの初期値を設定する。液状化による地盤ばねの低減係数は0.2をとする。下層に設ける鉛直ばねは、相対変位2cmで極限摩擦力の比 $K_{Ed} = 5.0$, 和地盤の摩擦を40度として評価するものとする。入力地震の評価値に際し、表層の内摩擦角は35度、壁面摩擦角は内部摩擦角の1/2とする。主軸および受動土圧に達する相対変位は、それぞれ掘入部の深さの0.2%，2.5%～3%とする。水平地震度は、表層地盤の加速度記録から0.03とする。図20に上部土圧合力と相対変位の関係を示す。

表層地盤の加速度を積分して求めた地盤変位は再試験体で概ね等しいことから、同一の地盤変位を作用させる、地盤変位の深度分布は、図24に示す通り、表層は一定、液状化層は水平分布、下層は線形として仮定する。上部構造物とフーチニングに作用させる慣性力は、実験結果に基づき設定する。
果を用いる、慣性力を除き、両試験体の解析条件は同じである。

Model R 及び Model S の解析結果を図 22 及び図 23 に示す。解析結果は、Model R では上圧合が建物慣性力と同一方向に作用し（図 22(a)）、Model S では抵抗力として作用する状況（図 23(a)）や、それぞれの上圧合の大きさを良く再現している。また、解析結果は、それぞれの試験体について、杭頭接合部の挙動や杭の曲げモーメント分布を良く再現している。

解析対象とした時期では、地盤変位はその最大値に近く、建物慣性力は液状化後の最大値の 7 〜 8 割である。建物慣性力と地盤変位の最大値を同時に行わせた場合、杭応力や杭頭回転角が若干大きくなり、安全側の評価結果となることを確認している。

4.3 耐震性能評価方法の検証
(建物周期や液状化層厚が異なる場合への適用性の検証)
2 次元有効応力解析により、杭頭半剛接合構法を採用した杭基礎建物の地震時挙動を概ね良く再現できる（3.2 節）。そこで、3.3 節における建物周期や液状化層厚を変えた解析が実現すべきを再現していると考え、それらに耐震性能評価法を適用し、その有効性を検証する。
解析定数は、4.2 節と同様に設定する。応答変位法（S.D.M.）と 2 次元有効応力解析の比較を、図 24 では、剛接合とした場合における杭の最大曲げモーメントと土圧合力について、図 25 では、半剛接合とした場合のそれらと杭頭回転角について示し、半剛接合とした場合の上圧合力は、剛接合とした場合と比べて、建物慣性力に対して抵抗する（マイナス側）に多く分布している（図 24(b), 25(c)）。応答変位法による解析結果は、杭接合条件によりらず、全ての解析ケースについて、杭の最大曲げモーメントや、根入れ部に作用する地盤土圧、杭頭回転角を適切に評価している。以上のことから、本評価方法は、液状化層厚や建物周期によらず、杭頭接合条件により基礎根入れ部に生じる地震時土圧が異なる状況を適切に評価し、杭頭半剛接合構法を採用した場合の杭応力や、剛接合とした場合と比較した杭の最大応力低減効果を適切に評価できると考えられる。

5. 実大建物を想定した検討
本章では、実験モデルで検証できなかった大きな変動軸力の影響や、上部構造物や地盤の非線形性の影響を包括的に検討するため、液状化地盤に建ち杭に下圧軸力が生じる実大建物を想定したシミュレーション解析を行い、その杭基礎の耐震性能について検証する。

5.1 建物概要
建物は、液状化地盤に建つ地上 12 階 RC 建（2 〜 2 スパン、スペン長＝7 m）であり、杭は場所打ちコンクリート杭（軸径 1.2m、鉄筋比 2%、長さ 25m）で、建物の階数は 3.5m とし、基準時における重量は 12kN/m²、1 階は 20kN/m² とする。建物周期は、高さから Tc=0.84s とする。図 26 に想定した地盤の概要を示す。地表から、表土、液状化の検討対象層である干渉砂層（干渉砂層-1・2）、軟弱なシルト層、比較的硬い干渉砂層、支持層としての黑鉢砂層で構成されている。ブーチング深さは深度 2.5m であり、地下水位は深度 3m とする。

5.2 2 次元 FEM による架橋建物の地震時振動の評価
図 27 に 2 次元 FEM の解析モデルを示す。干渉砂層-1・2 および干渉砂層-1・2 によるモデルによりモデル化し、図 28 にそれらの液状化速度曲線を示す。液状化層では、地盤・杭間に地盤ばねを設ける場合、非液状化層は、せん断応力 - ひずみ関係の非線形性を Ramberg Osgood モデルにより評価する。基準ひずみと最大減衰定数は、砂質土では 0.001 〜 0.24、粘性土では 0.002 〜 0.22 とする。

建物は基点系の等価せん断型モデルによりモデル化を行い、振動モーメントが杭基礎に伝達されるよう、曲げ剛性は十分に大きくずる、各層の降伏せん断耐力は、ベースシェールを 0.45 とした A 単位分布により設定する。各層の初期降伏せん断剛性は、基さ方向の剛性比を耐力
比と等しくし、解析モデルの1次周期が建物周期と等しくなるよう
に設定する。図29に示すように、せん断ばねの非線形特性をトリリ
ニアにモデル化し、遮望特性は武田モデルとする。基礎梁は剛な接
要素でモデル化する。半剛接合部は、テグープでけす接合面の径を
800mmとし、回転性能を高める。本建物では、引張力が生じるた
め、断面中央に芯鉄筋（鉄筋比1.13）を導入する。図30に、半
剛接合部のM=θ関係を示す。実験では、フーチングや杭がRC部
材のため、めり込みが杭根部の回転性能に大きな影響を与える。そ
のため、今井らのめり込みを考慮した理論に基づき断面解析を行
い、逐次転力に依存して変化するトリリアニアモードによりモデル化
を行う。その遮望特性は非線形特性とする。杭は接要素も含めモデ
ル化する。そのM=θ（α：曲率）関係は、軸力Nに依存するので
トラリアニアモデルとし（図31）、その遮望特性を武田モデルとする。
杭の先端はビン支持とする。構造物の減衰定数は、剛性比型として
、連成系の1次固有周期に対して3%とする。人力地震波は人工地震波
とし、応答スペクトルは建災1461号に定められている極めて稀に発
生する地震動。位相特性は八戸波NS成分とする（図32）。
図33に液化後において杭接点の性能を最大変位を示す時刻
の杭の曲げモーメント分布を、図34に杭接合部のM=θ関係を、図
35に杭接合部のM=θ・N=V関係を、図36に半剛接合とした場合と半剛接合
とした場合で比較して示す。図4に、同時の建物慣性力、フーチ
ングに作用する土圧合力、杭頭へ作用する水平力、及びフーチ
ングの変位を示す。半剛接合とした場合、建物慣性力が若干減少し,
さらに土圧合力も減少している。この結果、杭頭へ作用する水平力(杭
頭せん断力の合計)は約8割程度になっている。フーチングの変位は、
剛接合とした場合より、あまり大きくない。半剛接合とした場合の
杭の曲げモーメント分布は、杭頭で小さくなるだけでなく、地中層
の最大値においても剛接合とした場合と同等か若干小さくなされてい
る（図33）。これにより、地中層の接合力には段階変形の影響が大きい
ため杭接合条件の影響は現れにくいが、杭頭へ作用する水平力が
小さくなること、杭基礎全体の変形性能が高まることが影響してい
ると考えられる。剛接合とした場合、全ての杭において杭頭部が横
局線変形に達し、杭頭に甚大な変形を生じるものと推測できる（図
35(a)～(c)）、一方、半剛接合とした場合、全時点で、杭の曲
げモーメントは降伏曲線の中に納まっている。半剛接合部において
は、解析モデルと同等の軸力比での構造実験において、杭頭回転
0.03radまで大きな損傷がないことが確認されている。解析より得
られた杭頭回転角は以下である。図36に建物の最大せん断力を
示す。最大せん断力は、遠隔町界地水の上昇過程（19.5付近）に発
生している。半剛接合とした場合、建物の最大せん断力は、若干小
さくなっている。以上のことを考慮、想定した地震及び建物条件にお
いて、半剛接合構造を採用した場合、フーチングの変位はあまり大
きくならず、また、半剛接合を引張力に対応した設計とするとこ
ことで、杭頭部の損傷を大きく低減できないものと考えられる。さらに、
建物慣性力と外力として取入れ部に作用する地震時土圧が小さか
なる結果、杭の地中最大曲げモーメントは剛接合とした場合と
同程度かそれ以下の若干小さなことを示した。
5.3 応答変位係数による杭基礎の耐震性能評価
応答変位係数における検討対象時間断面は、液化後における杭接点モーメントが最大値を示す時刻とする。杭、杭接合部は5.2節と
同じく、軸力依存型のモデルによりモデル化を行う。上部構造物か
らの慣性力の作用高さ（図19，η）は（2）式により評価する。
杭の水平地盤面に関しては、基礎構造設計に応じて、N
値をもとに初期剛性を算定し、相対変位による非線形性や液化地盤
反力を受けられる。液化層における地盤面の低減係数は0.2とする。
非液化層に設ける鉄直アレは、液積層ヒートでは相対変位
1cmで極限表面摩擦係数K3（非排水せん断強度：60kN/m2）を、溝積砂層
- 3cmでは相対変位2cmで極限表面摩擦係数K3（N値；35）で達するモー
デルとする。杭の先端はビン支持とする。取入れ部に設ける地盤ば
ねは、内部摩擦角を30度、せん断変位は拘束変位の4%、
水平変位は0.08とし、4.1節と同様に設定する。表4に示す建物慣
性力、及び同時刻の地盤変位を同時に作用させる。
半剛接合とした場合の解析結果について、図37に杭の曲げモーメ
ント分布を、図38に杭接合部のM=θ関係を、図39に杭のM=θ・
N=V関係を示す。解析より得られた杭の変動軸は2次元有応力

![図26 想定した地盤の概要](image1)

![図27 実建物の解析モデル](image2)

![図28 Number of Repeat Count](image3)

![図29 Relative Dispacement](image4)

![図30 欲置床のモデル化](image5)

![図31 被体のモデル化](image6)
力解析結果と良く対応しており、評価手法により建物慣性力や慣性力に作用する地震時土圧の影響により発生する変動軸力を良く再現できるものと考えられる（図33）。その結果、評価結果は、杭頭のM-θ関係において、押し込み側の曲げモーメントが増大し、引抜側で減少する状況を適切に評価している。さらに、杭の曲げモーメント分布では、杭頭だけでなく地中部の最大曲げモーメントも2次元有効応力解析結果と良く対応している。以上のことから、(178,888),(551,953)

6. 結論

液状化地盤において杭半剛接合構法を採用した杭基礎の耐震性能について、液状化地盤 - 杭基礎 - 建物系の2次元有効応力解析に基づき検討した。さらに、その杭基礎の耐震性能評価手法として変動軸力や慣性力に作用する地震時土圧を評価できる応答変位法を提案し、その有効性を検証した。得られた結論を以下に示す。

1) 本論文で示した2次元有効応力解析の有効性を達心模型振動実験に対するシミュレーション解析から検証した。その結果、解析手法は、杭頭半剛接合部の杭の曲げモーメント分布を良く再現できることを示した。また、解析手法は、液状化後において、半剛接合変形体の地中部最大曲げモーメントが剛接合変形体のそれより極端に大きくなる。剛接合と比較した杭の最大曲げモーメントの比が液状化とともに小さくなる現象を概ね再現することが可能である。これは、杭頭を半剛接合とした場合、液状化において外力としてフーチングに作用する地震時土圧が減少するため、杭頭へ作用する水平力が小さくなる状況を再現することが可能である。
ためと考えられる。
2) 遠心模型実験に対する解析において建物周期や液状化層厚を変えたパラメータスタディを実施し、それらが杭半間掘込法を採用した建物の地震時変動や崩れ入れに作用する地震時変形状態に与える影響を検証した。杭頭を半間掘込とした場合、剛接合とした場合と比べて、杭頭曲げモーメントが最大値を取る時期において、外力として基盤入力で作用する地震時変力が減少し、さらに建物慣性力に対して抵抗力として作用する傾向がある。また、その傾向は建物周期が建物の周期より短い場合に顕著である。杭頭を半間掘込とした場合の建物の最大変形は刚接合とした場合より小さくなる傾向がある。また、杭頭入力の変形により、基盤入力の変化が大きい変形を示す。以上の結果、杭頭を半間掘込とした場合、最大変形曲げモーメントが杭頭を半間掘込とした場合、杭頭せん断力も剛接合とした場合と比べて5倍程度になり、設定した全ての条件において、杭頭半間掘込法による杭の最大応力低減効果が得られることを示した。
3）崩れ入れに作用する地震時変力の応答変位応答変位を遠心機
型実験における応答変位に関する検討と、その変形性と応答変位応答変位に与える影響を検証する目的で、液状化地盤を用いた2階建の実建物を想定した2次元有効
応力解析を実施した。その結果、想定した建物において、杭頭を半間掘込とした場合に引張力に応答した傾向を示すことで、杭頭部の損傷が頗著に減少した。また、地盤を変形性の最大曲げ
モーメントは、杭頭へ作用する水平力が小さくなる結果、剛接合した場合と同様に変形を抑制することを示した。
4) 実建物を想定した2次元有効応力解析により、液状化地盤における杭に作用する変動曲げ荷重や杭脚部に作用する地震時変力は評価できる応答変位を適用し、変動曲げ荷重を変化する場合におけるその有効性を検証した。その結果、応答変位は、液状化地盤における杭に作用する変動曲げ荷重を良く再現し、その杭頭や地盤部の応力に変形を抑制することを示した。以上のことから、変動曲げ力や杭脚部に作用する地震時変力に応答できる応答変位は、液状化地盤において杭頭半間掘込法を採用した杭基盤の耐震性能の評価において、有効であると考えられる。

なお、本論文の応答変位による検討では、杭応力がピークとな
る時刻の慣性力と地盤変位を同時に作用させて誤解し、杭脚部に作用する土圧力を杭応力を正確に評価できるよう検討している。土圧による慣性力と地盤変位は液状化後の最大値であると考えているため、本検討の範囲内において、設計法として両者の最大値を同時に作用
させた場合、杭応力や杭頭回転角は若干増加し、安全側の評価にな
ると考えている。

参考文献
1) 安原稔、小室努、佐倉克也、村松光次、川村一三：杭頭半間掘
込法の開発、日本建築学会技術報告集、23号、pp. 131-136、2006、6
2) 青木一樹、島田光志、小室努：改良型簡易接合法を採用した砂浜コンク
クリート杭杭脚部の力学特性、日本建築学会構造系論文集、第67号、
pp. 125-132、2006、9
3) 石嶋塚、真島正人、長尾俊昌、柄田英樹、青木一樹：杭頭半間掘込法
を採用した杭基礎地盤と地盤の模型動振実験、日本建築学会構造系論文
集、第62号、pp. 171-177、2006、4
4) 石嶋塚、時松孝子、長尾俊昌：液状化地盤において杭頭半間掘込法を
採用した建物の遠心模型動振実験、日本建築学会構造系論文集、第665号、
pp. 1291-1297、2011、7
5) 石嶋塚、時松孝子、長尾俊昌：液状化地盤において杭頭半間掘込法を
採用した建物の地震時変形一層の非液状化層に基盤入力部を有する
建物の遠心模型動振実験、日本建築学会構造系論文集、第677号、
pp. 1089-1097、2012、7
6) 村松光次、森田真、原孝子、小室努、長尾俊昌、矢倉克也：基盤を基礎に
着せない場合にコンクリート杭の構造性能 1 2、日本建築学会
学術講演集、C-2、pp. 194-192、2002、8
7) 坂本高弘、石見広、小松正人、大橋健、斎藤賢次、渡辺一弘：杭頭接合
条件を考慮した地震応答変位に対する影響に関する研究、日本建築学会構
造系論文集、第649号、pp. 625-633、2010、3
8) 石嶋塚、真島正人、長尾俊昌、柄田英樹：杭頭半間掘込法を採用した
杭基礎地盤と地盤の模型動振実験、その4-1 セミナー論文集、日本建築
学会学術講演集B-1、pp. 699-710、2011、7
9) Shumin Fujii, Nortaki Isomoto, Yasuhiro Satou, Osamu Kaneko, Hidoki Funahara,
Toshiaki Arai, Kohji Tokimatsu: Investigation and Analysis of A Pile Foundation
Damaged By Liquefaction During The 1995 Hyogoken-Nambu Earthquake,
10) 田村修次、時松孝子、川原英樹、鉄道安全管理局、大阪市: 大型セメントスレートを
用いた液状化実験において基礎杭層部の有効土圧力と構造物慣性力
の関係、日本建築学会構造系論文集、第59号、pp. 129-134、2002、9
11) 岩塚健、社倉本広、時松孝子: 建築物の地盤上に加わる土圧力の変
化特性、第5回構造物と地盤の動的相互作用シンポジウム、日本建築学
会構造系論文集、第670号、pp. 2115-2112、2011、12
12) Cubrinoski, M., Ishihara, K.: State concept and modified elastoplasticity for
13) Cubrinoski, M., Ishihara, K.: Modelling of Sand Behaviour Based on State
14) 石嶋塚、時松孝子、長尾俊昌、柄田英樹：複仮材部材入力実験に基づく液状化地盤
と杭の動的相互作用評価に関する一検討、第35回土木学会研究発表会、
pp.1957-1958、2000、6
15) 石嶋塚、長尾俊昌、柄田英樹：液状化地盤において基礎杭入力部を有する
建物の耐震杭力，日本建築学会学術講演集B-1，pp. 515-516、2011，8
16) 作水弥呂，時松孝子：大型振動実験に基づく杭の変位能力の評価、日本
建築学会大会学術講演集第1-1、pp.417-418、2004，7
17) 柴田明雄：最新 耐震構造解析＜第2版＞、森北出版、2004、2
18) 田村修次、時松孝子、宮崎典子、八 SKU江好子、土屋真理：大型セメントスレート
を用いた液状化実験における基礎杭入力部に加わる土圧力の評価、日本
建築学会構造系論文集、第570号、pp. 101-106、2003、8
19) 日本建築学会：建築基礎構造設計指針、pp. 276-284、2002、228、2001
20) Meyerhof, G. G. : Discussion for Session 1, Proc. 4th International Conference
21) 石嶋塚、内野光一、田村修次、大西信也、藤原義男：液状化地盤にお

(2012年12月7日目次受付、2013年6月21日採用決定)