The objective of this study is to clarify the relations between the effective length and bracing stiffness of braced compression members subjected to linear varying axial force. Bracings are composed of from one to ten discrete bracings at the equal intervals or continuous bracing. The buckling equations are derived by using the Rayleigh-Ritz method, and the effective lengths of columns are calculated, taking the bracing stiffness ratio and axial load ratio as analytical parameters. After discussing the relations between the effective length and bracing stiffness, relations between discrete bracing and continuous one, the required stiffness to ensure some given effective lengths are presented.

Keywords: Effective length factor, Distributed compressive force, Flexural buckling, Bracing, Required bracing stiffness, Rayleigh-Ritz method

1. 序
鋼構造部材の座屈補剛に関しては、鋼構造設計規準1)，鋼構造限界状態設計指針3)，鋼構造塑性設計指針3)，鋼構造座屈設計指針4)にその考えかたと設計法が示されている。これらの補剛設計は、一定軸力を受ける圧縮材の曲げ座屈補剛の研究成果をもとにしている。

梁材の横座屈補剛の考え方は、梁の横座屈を圧縮側フランジの横方向への曲げ座屈とみなすことにより一定軸力を受ける圧縮材の補剛に関する研究結果を取り入れている。これは梁に等曲げモーメントが作用する場合の圧縮フランジに対応し、梁の横座屈の補剛に関して最も厳しい条件を考えていることになる。しかしながら梁は一般には曲げモーメントに偏配が生じており、等曲げの場合を元に組み立てられた補剛設計がどの程度安全側であるかは不明であった。

上記のことをから、第一、第二著者文献5において、曲げ補剛のある梁の横座屈補剛に関して基礎的な知見を得ることを目的として、変軸力を受ける材にばねがついたモデルに対して、座屈長さ係数をRayleigh-Ritz法に基づいて算定し、解析変数として、無次元化ばね定数、損耗の軸力を定める、無次元化ばね定数と座屈長さ係数の関係を、軸力比を変数として示すとともに、座屈長さがばね区間長さに等しくなるために必要な無次元化ばね定数の算定式を提示した。また、文献6と7においてH形鋼梁の圧縮側フランジの曲げ座屈を、梁ウェブを連続ばねと考え座屈長さ係数を算定し、圧縮フランジが降伏強さを抑制できる梁長さLとフランジ幅Bの比の関係を求めた。

しかしながら論文5では、離散ばねが1本あるいは2本入っている場合のみを考察の対象にしており、ばねの数が多かった場合の性状は明らかになっていない。また、ばねの本数が無限大になると連続ばねと考えることができるが、離散ばねの本数と連続ばねとの関係も、チモシェンコとギアーが文献8において、弾性床上の棒の座屈に関して、3個より少なくない支点が座屈棒の半径長に相当するように、棒の部分や支点の構成方法を持っているとすると、孤立した弾性支点の場合にも、正確な解を求める上の（連続ばねの）公式を用いることができる」と述べている程度で、明らかになっているとは言えない状況にある。

本論文は変軸力を受ける材に離散ばねが1本～10本、等間隔につけまったモデルに対してばね定数と座屈長さの関係に及ぼすばねの本数の影響を示すとともに、座屈長さ係数に関して連続ばねとの関係を考察する。また与えた座屈長さ係数を期待するための必要ばね定数の評価式を提示することを目的とする。

2. 解析
2.1 問題の設定
轴力を線形に変化する変軸力材にばねが付いたときの座屈荷重、座屈長さ係数を算定する。図1(a), (b)に解析モデルを示す。離散ばねと連続ばねの場合を対象とし、1) 離散ばねの場合は、ばね定数K

*北九州市立大学環境工学部　教授・工博
**同大学教授・工博
***同大学准教授・工博

Prof., Faculty of Environmental Engineering, The University of Kitakyushu, Dr.Eng.
Assoc. Prof., Faculty of Environmental Engineering, The University of Kitakyushu, Dr.Eng.

West Japan Engineering Consultants Inc.
のばねが等間隔で \(n \) 本 \((n = 1, 2, 3, \ldots, 10, 12)\) を連続ばねの場合は
単位長さあたりのばね定数 \(k \) のばねがあり、荷重条件は降伏するばね
連続ばねの場合は左端の剛性力 \(N_1 \), 右端の剛性力 \(\beta N_1 \) で材間
に等分布の力の力における変形力材である。境界条件は両端固定
である。解析にあたっては、図 1(c)に示すように左支点を原点とし
材長方向に \(x \) 軸を取る。

本論文で対象とする問題の数値解の形は求まらないので、
Rayleigh-Ritz 法に基づく積分法を用いて計算を行う。

2.2 全ポテンシャルエネルギー

対象とする問題の全ポテンシャルエネルギーは、座標 \(x \) での力
\(N(x) \) が式(1)とすることより、降伏ばねの場合は式(2)で、連続ばね
の場合式(3)で表現できる。

\[
N(x) = N_1 \left[1 - (1 - \beta) \frac{x}{L} \right]
\]

(1)

\[
\Pi[x] = \int_0^1 E \frac{\partial^2 v}{\partial x^2} dx - \frac{1}{2} \int_0^1 (1 - (1 - \beta) \frac{x}{L}) v^2 dx + \frac{1}{2} \int_0^1 \kappa v^2 dx
\]

(2)

\[
\Pi[x] = \int_0^1 E \frac{\partial^2 v}{\partial x^2} dx - \frac{1}{2} \int_0^1 (1 - (1 - \beta) \frac{x}{L}) v^2 dx + \frac{1}{2} \int_0^1 \kappa v^2 dx
\]

(3)

式(2)および(3)で、
\(L \): 材の長さ,
\(E \): ヤング係数,
\(I \): 断面 2 次モーメント,
\(v(x) \): たわみ \((\text{図 1 の y 方向変位})\),
\(N_1 \): 左端の軸力,
\(\beta \): 右端の軸力を表す係数 \((\text{以下、軸力比と呼ぶ})\),
\(K \): 連続ばねのばね定数,
\(\alpha \): 連続ばねのばね定数,
\(\kappa \): ばねのある \(x \) 点でのたわみ,
\(n \): 連続ばねの数である。また、式(2)および(3)の右辺の第 1 項から
3 項はそれぞれ、曲げによるひずみエネルギー、軸力のポテンシャル
エネルギー、ばねのひずみエネルギーである。

2.3 座標モードの仮定と問題を支配する無次元量

(a) 座標モードの仮定

幾何学的および力学的境界条件を満足する座標モードを下式のように仮定する。

\[
v(x) = \sum_{i=1}^{n} a_i \cdot L \cdot \sin \frac{i \pi x}{L}
\]

(4)

Rayleigh-Ritz 法に基づき、式(4)を式(2)あるいは(3)に代入し、一般化座標 \(a_i \) \((i = 1, 2, \ldots, m)\) で無次元化して \(0 \) とおくと \(a_i \) \((i = 1, 2, \ldots, m)\) を未知数とする斎次 \(m \) 元線立方程式が得られ、自明の解以外の解
を有する条件として座標条件式が得られる。本論文では式(4)において
\(m = 12 \) として座標条件式を求めた。

(b) 問題を支配する無次元量

式(2), (3)を無次元表示すること、あるいは座標条件式より、対象
としている問題を支配するパラメータは無次元化軸力 \(p \), 軸力比 \(\beta \),
無次元化ばね定数 \(k^* \) であることを示すことができる。無次元化軸力 \(p \) およ
び無次元化ばね定数 \(k^* \) は下式で定義した。

\[
p = \frac{N_1}{\rho L}
\]

ここに \(p = \frac{\pi^2 EI}{(\gamma L)^2} = \frac{\pi^2 E}{\gamma (n-1)} \)

(5)

\[
k^* = \frac{1}{16 \pi^2 EI} \int_0^1 k dx \frac{1}{L} = \frac{1}{16 \pi^2 EI} \int_0^1 k dx \frac{L}{L} \]

(6)

式(6)は、図 1(a)において、軸力比 \(\beta = 1 \) でばねが中央に 1 本入ってい
るとき \((n = 1)\), 座標モードが sine 1 波のモードになるばね定数

\[
16 \pi^2 EI L^3
\]

で無次元化していることを意味している。本論文では降伏
ばねが数本入っているときおよび連続ばねのある圧縮材を対象と
しているが、比較を行うため式(6)で無次元化ばね定数を定義し
たばねが \(n \) 本および連続ばねのときの無次元化ばね定数 \(k^* \) はそれぞれ
下式となる。

\[
p = \frac{\pi^2 EI}{(\gamma L)^2} = \frac{\pi^2 E}{\gamma (n-1)}
\]

(7)

\[
k^* = \frac{1}{16 \pi^2 EI}
\]

(8)

\[
E
\]

(9)

\[
10.1 \quad k^* \approx 41.0 \text{となる。}
\]

一般的な場合は 3.3 節に示す。\n
本論文では、座標長さ係数 \(\gamma \) を下式で定義する。

\[
\gamma = \frac{1}{\sqrt{p}}
\]

(10)

3. 解析結果と考察

3.1 解析変数

以下の解析変数を選んで計算を行なった。

1) 無次元化ばね定数 \(k^* : 0 \sim 50 \)

---1952---
表1 解析の精度（ばねが10本の場合、γ/12γの値）

<table>
<thead>
<tr>
<th>m</th>
<th>k=0</th>
<th>k=5</th>
<th>k=50</th>
<th>k=0</th>
<th>k=5</th>
<th>k=50</th>
<th>k≈0</th>
<th>k=5</th>
<th>k=50</th>
<th>k≈0</th>
<th>k=5</th>
<th>k=50</th>
<th>k≈0</th>
<th>k=5</th>
<th>k=50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>0.7926</td>
<td>0.4579</td>
<td>0.9699</td>
<td>0.6833</td>
<td>0.3743</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.8490</td>
<td>0.9998</td>
<td>0.9509</td>
<td>0.7188</td>
<td>0.9739</td>
<td>0.8284</td>
<td>0.5281</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.9999</td>
<td>0.9963</td>
<td>0.9150</td>
<td>0.9968</td>
<td>0.9868</td>
<td>0.7967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.9995</td>
<td>0.9833</td>
<td>0.9996</td>
<td>0.9947</td>
<td>0.9327</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.9999</td>
<td>0.9973</td>
<td>0.9998</td>
<td>0.9989</td>
<td>0.9814</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.9999</td>
<td>1.0000</td>
<td>0.9997</td>
<td>0.9992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.9999</td>
<td>1.0000</td>
<td>0.9999</td>
<td>0.9997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\gamma_{12} = 1 \]

\[\gamma_{12} = 0.4007, 0.2300, 0.7291, 0.3286, 0.1990, 0.4872, 0.2890, 0.1821 \]

図2 解析の精度（ばねが10本および連続ばねの場合）

(a) 軸力比β=1
(b) 軸力比β=0
(c) 軸力比β=1
(d) 連続ばね 軸力比β=−1

図3 解析の精度（ばねが1本、2本、3本、7本の場合）

(a) ばね1本
(b) ばね2本
(c) ばね3本
(d) ばね7本

2) 軸力比β : −1, −0.5, 0, 0.5, 1

無元化ばね定数の値については、文献5の場合、本論文の無元化ばね定数k*に換算してばねが1本の場合0～5, ばねが2本の場合0～3.75の範囲で算定した。本論文では、1) ばねが3本で軸力が一定の場合（β=1）のばねのある位置が変位しないモードを表現できるばね定数（フルプレーシングとなるばね定数と呼ぶ）以上とすること、2) ばねの本数が3～10本における座屈長さ係数の値が0.25以下となることを基準とし無元化ばね定数k*を50まで計算を行なった。

3.2 解析の精度に関する検討

本論文では式(4)において、m=12として算定を行なったが、軸力比β=−1, 0, 1, 無元化ばね定数k*の0, 5, 50の場合について、m=1, 2, 3, …, 11とした場合も座屈長さ係数を算定し、式(4)で採用する項数mの座屈長さ係数におよぼす影響を検討した。表1および図2(a)～(c)にばねの本数が10本の場合の項数mとγ/12γの値の関係を示している。また図2(d)には連続ばねの場合を示している。ここに、γは、式(4)においてm=1(i=1, 2, 3, …)とした場合の座屈条件式となる行列式を零として算定した座屈長さ係数である。またγ/12γは式(4)においてm=12としたときの座屈長さ係数の値である（表1の最小値には式(4)においてm=12としたときの12γの値を示している）。

項数m=1で軸力比β=1の場合は座屈荷重は得られない。図2, および表1より、軸力比βの大きくなるほど、無元化ばね定数k*の値が大きくなるほど、mの値が小さいほどm=12とした場合の座屈長さ係数の差が大きくなることが観察される。しかし、どの場合もm=11とした場合の座屈長さ係数のγ/12γと、m=12とした場合との
比はほぼ1である。図3には軸力比βを一として、ばねの本数nを1, 2, 3, 7としたときの図2と同様な図を示す。ばねの本数nが多くなるにつれてγ/2πの値が1に近づく収束の状況は悪くなる傾向にあるが、m=12とすれば十分な精度で座屈長さ係数を算定できていると考えられる。

3.3 座屈長さ係数γと無次元化ばね定数k*の関係

(a) 等軸力の場合

図4に等軸力の場合の座屈長さ係数γと無次元化ばね定数k*の関係をばねの本数nが1, 2, 3, 7, 10および連続ばねの場合について示す。図4(b)は図(a)の無次元化ばね定数が小さい領域（k*=0〜5）を拡大して示した。図中の白丸印（FB）でフルブレーシングとなる点を、黒丸印（点S1, S2）で座屈モードが変化する点を示している（付録1, 2参照）。自立座屈点（点C1, C2）で連続ばねの場合の座屈モードが変化する点を示している。なお、上散ばねでフルブレーシングとなる無次元化ばね定数k*の定義は式(11)と、連続ばねで座屈モードが変化する無次元化ばね定数は式(12)で定義できる（付録3参照）。

\[
k^{*}=\frac{n(n+1)}{8}\left(1-\cos\frac{n}{n+1}\right)
\]

（11）

\[
k_{n}\approx\frac{n^2}{8}\frac{K_{eff}}{2\pi E}
\]

（12）

図4より、良好に知られているようにばねの本数がnの時、座屈長さ係数γ=1/(nt+1)でフルブレーシングとなる。図4で例えば、ばねの本数nが3本の時、k*の値が1.85でS1点に達したこの点で座屈モードはsine半波数が4から2に変化し、S2点（k*=16.6）で半波数が2から3に変化し、FB点（k*=40.97）で半波数が4となる。sine半波数が変化するS1, C1, (i=1, 2, 3...)点の座屈長さ係数γはばねの本数の影響は少ない。なお、フルブレーシングとなりsine半波数が変化するFB点の座屈長さ係数γは差がみられる。図4(b)でみられるようにk*<1で無次元化ばね定数が同じときには、ばねの本数が少ないほど座屈長さ係数は小さいが、たとえば図4(a)に示すばねが2本の場合、S1点でsine半波数が変化しγ=0.333のフルブレーシングになる過程でばねが3本の座屈長さ係数が小さくなり、常にばねの本数が少ないほど座屈長さ係数は小さいとは言えない。

表2に式(11)より算定したフルブレーシングとなる時の無次元化ばね定数k*の値を示している。表中のK_{eff}（2πEI）は必要ばね定数としてしばしば用いられる区間長Lを基準とした場合の無次元化ばね定数である。良好知られているようにk*=1.0でK_{eff}/（2πEI）の値は1, 1.5であり、ばねの本数が大きくなるにつれて2に近づいていることが分かる。一方、本論文で採用した無次元化ばね定数k*は定義式を基準としているため、K_{eff}/（2πEI）とk*の間に以下の関係があり、ばねの本数が増えると急激に大きな値となっている。

\[
k_{n}\approx\frac{n^2}{8}\frac{K_{eff}}{2\pi E}
\]

（13）

図5に座屈モードが変化するときの無次元化ばね定数k*と座屈波数に関する図iの関係を示している（付録2参照）。図の横軸iの位置で座屈波数はiからi+1と変化する（図5の横軸の下のsine波参照）。図中の点線はフルブレーシングとなる点を結んだものである。よってばねの本数が増えることで座屈モードが変化するときの無次元化ばね定数k*は大きくなることが観察される。また、フルブレーシングとなる点を除くとk*の値はばねの本数nとそれほど影響されないこと、iの値が大きくなるにつれて急激にk*が大きくなることがある。

(b) 变軸力の場合

図6および7に座屈長さ係数γと無次元化ばね定数の関係を示す。図6は軸力比βの影響、図7はばねの本数nの影響を示している。図6(a)-(c)はそれぞれ、ばねが1本、3本、10本入っている場合を、図6(d)は連続ばねの場合を示している。図6(a)-(c)の図中の軸力比β=1の場合には、図4と同様に白丸印（FB）でフルブレーシングとなる点を、黒丸印（点S1, S2）で座屈モードが変化する点を示す。
示している。図6(d)では白四角印（点C₁, C₂）で座屈モードが変化する点を示している。また図中にはこれらの点（FB, S₁, S₂, C₁, C₂）の座屈を記している。

同じ無次元化ばね定数のものでは、変軸力(β=1)の場合は一定軸力(β=1)の場合より小さな座屈長さ係数となり、軸力比が小さいほど小さな座屈長さ係数となる。また無次元化ばね定数k*が大きくなくなても、β=1のフルプレーシングの場合のように一定値とはならないものの、k*の値がある程度大きくなると座屈長さ係数の変化は小

图6 ばね定数k*—座屈長さ係数γ関係（軸力比βの影響）

图7 ばね定数k*—座屈長さ係数γ関係（ばねの本数nの影響）

图8 連続ばねとの差（軸力比βの影響）

图9 D₀の値の最大値

图10 連続ばねとの差（ばねの本数nの影響）
図8はその結果を示し、\(D \)の値を変化させた場合の変動を示してある。\(D \)の値が大きくなると変動が大きくなる傾向が示されている。運動のための変動を表す変動を示すことができる。

図10に示しているように、\(D \)の値が大きくなると変動が大きくなる傾向が示されている。運動のための変動を表す変動を示すことができる。

表3 必要改善数の変動

<table>
<thead>
<tr>
<th>(m)</th>
<th>(n)</th>
<th>(A_*)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.25</td>
<td>0.33</td>
</tr>
</tbody>
</table>

図11に示しているように、\(A_* \)の変動を示す変動を示すことができる。

図12に示しているように、\(A_* \)の変動を示す変動を示すことができる。
できる。

\[
k_{\text{req}}^* = 0.5(1 + \beta)
\] (17)

\[
\begin{align*}
 k_{\text{req}}^* &= \frac{27}{4} (0.9 + 0.6\beta) \\
 & \quad \text{または}
 k_{\text{req}}^* &= \frac{27}{4} (1.0\beta + 0.3\beta^2 + 0.5\beta + 0.6)
\end{align*}
\] (18)

本論文では、ばねの本数 \(n \) が 1 から 10 本に対して、座屈長さ係数 \(\gamma \) が 0.25, 0.333, 0.5 を期待できる必要無次元化ばね定数として下式を提示する（付録5参照）。式(19)から式(21)の表の右側の \(k_{\text{req}}^* \) は等軸力で座屈長さ係数 \(\gamma \) が与えられた時の無次元化ばね定数で、表 3 の値を用いる。

座屈長さ係数 \(\gamma = 0.25 \) のとき（ただし \(n = 3, 4, \ldots \)）

\[
\frac{k_{\text{req}}^*(\beta)}{k_{\text{req}}^*(\beta = 1)} = 0.518 + 0.246\beta + 0.0327\beta^2 + 0.0983\beta^3 + 0.105\beta^4
\] (19)

座屈長さ係数 \(\gamma = 0.333 \) のとき（ただし \(n = 2, 3, \ldots \)）

\[
\frac{k_{\text{req}}^*(\beta)}{k_{\text{req}}^*(\beta = 1)} = 0.416 + 0.314\beta + 0.188\beta^2 + 0.082\beta^3
\] (20)

座屈長さ係数 \(\gamma = 0.5 \) のとき

\[
\frac{k_{\text{req}}^*(\beta)}{k_{\text{req}}^*(\beta = 1)} = 0.5(1 + \beta)
\] (21)

図 12 に座屈長さ係数 \(\gamma \) が 0.25, 0.333, 0.5 となる時に必要な無次元化ばね定数 \(k_{\text{req}}^* \) と軸力比 \(\beta \) の関係をばね本数 \(n \) が 2 から 10 本、10 本、連続ばねの場合について示す。図中の実線は 2 章および 3 章で示した Rayleigh-Ritz 法に基づく解析によるもので、黑丸印は公式(19)～(21)によるものである。図 12(b)のばねが 3 本で \(\gamma = 0.25 \) のとき、式(19)による必要無次元化ばね定数 \(k_{\text{req}}^* \) は解析値に比べて大きな値となっているが、その他の場合は式(19)～(21)で必要無次元化ばね定数 \(k_{\text{req}}^* \) を精度よく評価している。

4. 結

線形に軸力が変化する変軸力ばねが 1 本から 10 本付いたとき、また連続ばねが付いたときの座屈荷重、座屈長さ係数を Rayleigh-Ritz 法に基づいて計算した。解析変数として、無次元化ばね定数 \(k^* \)、軸力比 \(\beta \) を選んだ。得られた知見は次の通りである。

1) 無次元化ばね定数 \(k^* \) と座屈長さ係数 \(\gamma \) の関係を示した（図 6, 7）。変軸力に影響受ける場合は、等軸力を受ける場合と異なり無次元化ばね定数 \(\gamma \) が大きくなっても座屈長さ係数が一定となる状態は見られず、無次元化ばね定数が大きくなるにつれて座屈長さ係数は漸減する（図 6）。無次元化ばね定数が \(k^* < 0.5 \) では、ばねの本数 \(n \) が 4 本から 10 本ではばね同無次元化ばね定数 \(k^* \) と座屈長さ係数 \(\gamma \) の関係を示す（図 7）。

2) 連続ばねと離散ばねの座屈長さ係数において、離散ばねの本数 \(n \) が多ければ、軸力比 \(\beta \) の値が小さいと連続ばねとの差は小さくなり、ばねの本数 \(n \) が 4, 7, 10 でそれぞれ連続ばねとの差の最大値 \(\Delta \gamma \) の値が 10%、約 5%、4%以内となる（図 9）。連続ばねを離散ばねに置き換えることで、座屈長さ係数を 5%程度以下の差で等価にするためには、7 本以上のばねを必要とする必要がある。

3) 等軸力でばねが 1 本ある場合のフランダレンギングとなる無次元化ばね定数を式(11)として、座屈長さ係数 \(\gamma \) が与えられたときの要求される無次元化ばね定数 \(k_{\text{req}}^* \) を式(15)として提案した。

4) 変軸力における座屈長さ係数 \(\gamma = 0.25, 0.333, 0.5 \) を与えるために必要な無次元化ばね定数 \(k_{\text{req}}^* \) の算定を式 (19)～(21) のように提案した。この式は元たわみや荷重の線形性のない線形弾性体より図 1 の解析モデルよりなる柱の中で得られたもので、軸力比 \(\beta \) が 0 に相当する。
ばねのない場合、座屈長さ係数の概念を用いると座屈荷重を安全側に（小さめに）評価をすることが分かっており[9]。ばねがあり非弾性域で座屈する場合も同様に安全側の評価ができる[6]。元たわみや荷重の偏心のある場合の補剛材の必要ばね定数、必要強度の検討は今後の課題とした。

謝辞
本研究の一部は小野俊哉君（当時北九州市立大学4年生）の平成24年度の卒業研究として行なわれた。ここに深く感謝します。

参考文献
1) 日本建築学会：鋼構造設計規準－許容応力度設計法－，2005.9
2) 日本建築学会：鋼構造限界状態設計指針・同解説，2010.2
3) 日本建築学会：鋼構造耐震設計指針，2010.2
4) 日本建築学会：鋼構造座屈設計指針，2009.11
5) 津田喜彦，城戸勝江：変形材の座屈補正について－曲げ勾配のある梁の横変補正第一，日本建築学会構造系論文集，第77巻，第673号，pp.461-468，2012.3
6) 津田喜彦，城戸勝江：変形材の座屈補正について－変形状式で変形したH型鋼圧縮フランジの曲げ座屈1，日本建築学会構造系論文集，第78巻，第690号，pp.1513-1521，2013.8
7) 城戸勝江，津田喜彦：座屈ばねで補正された変形材の変形材の座屈について－変形状式で変形したH型鋼圧縮フランジの曲げ座屈1，日本建築学会構造系論文集，第79巻，第700号，pp.525-532，2014.9
8) チソミチェコ，ギア：変形安定の理論＜上＞，ブリーム図版出版，1974
9) 津田喜彦，城戸勝江：座屈長さの概念を用いた変形材の非弾性座屈荷重計価の妥当性，日本建築学会構造系論文集，第667号，pp.1705-1712，2011.9
10) Friedrich Bielek: Buckling Strength of Metal Structures, MacGraw-Hill, 1952

付録1 フルブレッシングとなるときのばね定数（β=1の場合）
文脈10によると、ばね定数Kのばねがn本ある等変形Nを受ける材のばね定数KとNの関係式は下式となる。式中のnは座屈モードに関係する数である。

\[K = \frac{2N_1}{I} \left(\frac{1 - \cos \frac{x_n}{n+1}}{1 - \cos \frac{x_n}{n+1}} \right) a - b - 2N_2 \left(\frac{x_n}{\pi} \right) \left(\frac{1 - \cos \frac{x_n}{n+1}}{1 - \cos \frac{x_n}{n+1}} \right) a - b \]

(i=1, 2, 3, ..., n)

(A.1)

ここに、

\[a = \frac{\alpha}{\alpha - \sin \alpha}, \quad \beta = \frac{1 - \cos \alpha}{\alpha - \sin \alpha}, \quad \alpha = \frac{N_1}{E}, \quad N_n = \frac{x^2 EI}{\rho} \]

(A.2)

フルブレッシングとなる時は、N_n=\frac{x^2 EI}{\rho}$, \quad $\alpha = \pi$ であり、かつnである。したがって、$a = 1, b = 2$ となり、ばねがn本ある等変形数を受ける圧縮材がフルブレッシングとなるばね定数$K_{n\text{max}}$は下式となる。

\[K_{n\text{max}} = \frac{2x^2 EI}{\rho^2} \left(1 - \cos \frac{n+1}{n+1} \right) \]

(A.3)

無次元ばね定数$k_{n\text{max}}$は下式で与えられる。

\[k_{n\text{max}} = \frac{n(n+1)}{16} K_{n\text{max}} \left(1 - \cos \frac{n+1}{n+1} \right) \]

(A.4)

付録2 隔欠ばねにおける座屈モードが変わる点のばね定数（Δβ=1の場合）
ばね定数Kのばねがn本ある等変形Nを受ける材の座屈モードが変わる時のばね定数Kの値は次のようにして算定できる。式(A.1)より、$i=i$と$i+1$の時のばね定数Kの値が等しいとすると、下式が得られる。

\[\left(1 - \cos \frac{i\pi}{n+1} \right) a - b = \left(1 - \cos \frac{(i+1)\pi}{n+1} \right) a - b \]

(i=1, 2, 3, ..., n-1)

(B.1)

上式を満足する式(A.2)で定義されるaを求め、式(A.1)に代入すると、座屈モードが変化するときのばね定数Kが算定できる。たとえば式(B.1)で、ばねの本数$a=3$とし、$i=1$すると、$\alpha = 1.755$ で$k_{1}=1.854$、$i=2$ とすると、$\alpha = 2.783$ で$k_{2}=1.961$が得られる。

付録3 隔欠ばねにおける座屈モードが変わる点のばね定数（Δβ=1の場合）
等変形を受ける場合、無次元化座屈荷重pは下式となる。

\[p = \frac{I^2}{\pi^2} \left(1, 2, 3, ... \right) \]

(C.1)

式(C.1)でiと$i+1$で同じ座屈荷重を受ける場合が座屈モードの変化点となる。式(C.1)の右辺のiと$i+1$にして、両者を等置することにより、座屈モードが変化する無次元化ばね定数$k_{n\text{max}}$として下式が得られる。

\[k_{p} = \left(i + 1 \right)^2 \frac{x^2 EI}{\rho^2} \]

(C.2)

付録4 座屈長さ係数を与えた時の必要無次元化ばね定数（Δβ=1の場合）
座屈長さ係数γを与えた時の必要無次元化ばね定数は、式(2.2)の第3式よりも式(D.1)が得られ、式(D.2)で与えられる。
式(D.2)右辺の\(a \) と \(b \) は式(A.2)の第1および第2式で与えられ、\(i \) は無次元化パラメータで最大となるものを用いる。

付録5 変数の場合の変分無次元化パラメータの評価方法（\(\gamma=0.25 \)の場合）

変数の場合の必要無次元化パラメータの評価は以下のよう行った。必要
無次元化パラメータ \(k^{*}_{\text{req}}(\beta) \) を等変数 \((\beta=1) \) の場合の \(k^{*}_{\text{req}}(\beta=1) \) で無次元化した数値と軸力比 \(\beta \) の関係を \(\gamma=0.25 \) の場合を例として付図1に示す。

図より、\(n \) が3の場合の \(k^{*}_{\text{req}}(\beta)/k^{*}_{\text{req}}(\beta=1) \) の値に違いが観察され
るが、\(n \) が4～10および連続ばねの場合はおおむね同じ値を示している。本
論文では、安全側評価のため、\(k^{*}_{\text{req}}(\beta)/k^{*}_{\text{req}}(\beta=1) \) の値をブロックされたもの
より大きく評価し、また \(\beta=1 \) で \(k^{*}_{\text{req}}(\beta)/k^{*}_{\text{req}}(\beta=1)=1 \) となるように、式(19)
を導出した。\(\gamma=0.333 \) の場合も同様にして式(20)を算出した。\(\gamma=0.5 \) の式(21)
は、式(17)になった。
1. Introduction
The objective of this study is to clarify the relations between the effective length factor and bracing stiffness of braced compression members subjected to linear varying axial force. Bracings are composed of from one to ten discrete bracings at the equal intervals or continuous bracing. Relations between the effective length factor and bracing stiffness, and relations between discrete bracing and continuous one are discussed. Lastly, the evaluation formulas for the required stiffness \(k_{req}^* \) to ensure some given effective length factors \(J \) are presented.

2. Analytical work
Analytical model is shown in Figure 1. The buckling equations are derived by using the Rayleigh-Ritz method. In the analysis, buckling modes \(\psi(x) \) are assumed by Eq. (4), and the nondimensional bracing stiffness \(k^* \) is defined as Eq. (7) and (8). The effective length factors \(\gamma \) of the columns are calculated, taking the bracing stiffness \(k^* \) and the axial load ratio \(E \) as the analytical parameters.

3. Results and Discussion
At first, effective length factors are calculated by changing the number of the base function in order to examine the analysis accuracy. It is shown that the number \(m=12 \) is sufficient from the view point of the accuracy. Relations between the effective length factor and bracing stiffness are presented as shown in Fig. (6) and (7), and the evaluation formula (Eq. (11)) for the required stiffness to ensure the full bracing state are derived in case of the equal axial force (\(\beta=1 \)). Concerning the effective length factor, it is shown that the difference between the discrete bracing and the continuous bracing becomes small as the number of bracings increase and the axial load ratio \(\beta \) decreases. Moreover, the evaluation formulas (Eqs.(19)-(21)) for the required stiffness to ensure some given effective length factor (\(\gamma=0.25, 0.333, 0.5 \)) are presented.

4. Conclusions
The conclusions derived from the analytical work are as follows:
1) The relations between the effective length factor \(\gamma \) and bracing stiffness \(k^* \) of braced compression members subjected to linear varying axial force are shown in Fig. (6) and (7). When nondimensional bracing stiffness is smaller than 50, similar \(k^*-\gamma \) relations are observed.
2) As to the relations between the discrete bracing and the continuous bracing for the effective length factor \(\gamma \), the difference becomes small as the number of bracings increase and the axial load ratio \(\beta \) decreases. Equivalent potency with the continuous bracing within the 5% difference is obtained when the number of bracings is greater than 7.
3) In case of the equal axial force (\(\beta=1 \)), the required stiffness \(k_{req}^* \) at the full bracing state or the given effective length factor are presented as Eq. (11) and Eq. (15) respectively.
4) The required stiffness \(k_{req}^* \) to ensure some given effective length factors (\(\gamma=0.25, 0.333, 0.5 \)) are presented as Eqs. (19)-(21).