局部曲げと破断をともなう冷間プレス成形角形鋼管柱の塑性変形能力

PLASTIC DEFORMATION CAPACITY OF COLD PRESS-FORMED SHS COLUMNS DETERMINED BY LOCAL BUCKLING AND FRACTURE

Ryohei KUWADA, Yuji KOETAKA and Keiichiro SUTTA

This paper presents plastic deformation capacity determined by fracture or local buckling of the cold press-formed SHS columns by the cyclic loading test and finite element analysis with varying width-thickness ratio, shear span ratio, loading direction and ratio of axial force to yield axial strength. As a result, it is pointed out that the crack at the end of column occurs when width-thickness ratio and shear span ratio are small. And also it is notable that the possibility range of parameters with initiation of the crack is spread if loading direction is 45 degree.

Keywords: Cold press-formed SHS column, Local buckling, Fracture, Cyclic loading test, finite element analysis, Plastic deformation capacity

1. 序

鋼構造骨組の地震時倒壊挙動に着目した振動台実験15 16 や数値解析17 18 では、骨組が倒壊するときの地震動の強さや倒壊時の損傷集中層（倒壊時の崩壊機構）に、柱の耐力劣化が大きな影響を与えることが指摘されている。我が国の鋼構造骨組の柱には角形鋼管が多く用いられているが、角形鋼管柱の耐力劣化を含む復元力特性や

角形鋼管柱または箱形断面柱の耐力劣化や力学的挙動は、局部曲げと破断の2種類の最終状態に関して、このうち局部曲げに

する劣化挙動を明らかにするために、加藤・秋山ら19、鈴木ら20、住岡ら21、北・辻22、山田ら23、24、桑村ら25、内田ら26、27、津田ら28、山崎ら29、30、倉田ら31、32、山田・石田ら26、27、31、32、向出ら33、34、五十嵐・佐藤35、安井27など、数多くの実験や解析が行われて

いる。これらの結果に基づいて、加藤・秋山ら19、山田ら20、21、23、山田・石田ら26、27、29、30、耐力劣化の復元力特性のモデル化手法を、三谷ら28、加藤・中尾29、伊藤ら28、倉田ら28、安井27は、塑性変形

能力の予測方法をそれぞれ提案している。さらに加藤・秋山ら29、三谷ら29、伊藤ら30の予測式では柱の相対長を考慮しており、局部曲

柱に加えて曲げ座屈が連成する場合の塑性変形能力を評価すること

ができる。

一方で、柱体材と通しダイアフレームとの溶接部近傍における破断を扱った実験的研究が、秋山・桑村ら31、32、中島・福田ら33、34、服部ら35、上田・田中ら36、中川ら37によって行われている。

これら以外にも亀裂や破断が生じた実験が多数報告されており、その実験結果は西谷・高田によってまとめられている38。しかしながら、いずれの研究においても、破断によって終局状態を迎える場

合の塑性変形能力の評価法は提案されていない。

角形鋼管柱を対象とした既往の実験におけるパラメータに着目す

ると、局部曲げ状態に影響を及ぼす断面比や軸力比の影響について

検討したものや、地震時に水平2方向外力をうける場合を想定して

載荷荷重の影響について検討したもの数多く見られる。一方で、

柱軸方向の塑性化領域の長さを補保するせん断スパン比をパラ

メータとした実験39、40、41、42、43は、せん断変形を考慮するためのものであり、実建物の柱のせん断ス

パン比の下限値近傍（2.5程度）を対象とした実験は行われていない。

そこで本研究では、局部曲げと破断をともなう角形鋼管柱の塑性

変形能力を定量的に評価する方法の構築を最終的な目的とし、その

基礎的な検討を行うために、冷間プレス成形角形鋼管柱を対象とし

て、塑性変形能力に及ぼすせん断スパン比・幅厚比・載荷荷重・軸

力比の影響を繰り返し載荷実験および有限要素法解析によって確認す
る、ここでプレス成形材の特徴をまとめてみると、製造範囲の外径寸法がロール成形材よりも大きくなり、実用化ではせん断スパン比の小さな柱に使用される可能性が高いことがあげられる。また、冷間塑性加工を、角部のみにうけるプレス成形材の方が、鋼管全周におけるロー
ール成形材に比べて局部塑性が生じにくいことが指摘されており。 20, 26
この結果、破断が生じやすくなるものと考えられる。さらに、プレ
ス成形材では、冷間塑性加工された角部が最外縁となる方向に曲
げをうける場合に早期に破断が生じ 20, 23、平板部が最外縁となる場
合よりも塑性変形能力が大幅に低下するものと考えられる。

本論では、まず繰返し載荷実験によって、局部塑性と破断の一方
または両方が生じる場合の復元力特性・破壊性状・塑性変形能力な
どの力学的挙動に及ぼすせん断スパン比・幅厚比・載荷方向・載荷
比の影響を明らかにする。次に、有限要素法解析によって実験の再
現解析を行い、解析モデルや解析条件の妥当性を確認した上で、破
断の起点となった延性亀裂発生時の塑性変形能力に着目し、再現解析
結果から延性亀裂の発生条件を、それぞれの研究 20, 23に基づき固定する。さらに、実験よりも広範囲なパラメータに対して有限要素法解析を
行い、上記の固定条件を用いて延性亀裂が発生する条件を分析す
る。最終的には、局部塑性の発生および延性亀裂の発生によって決
まる塑性変形能力をもとめ、2 種類の終局状態のいずれかが支配的と
なる因子を明らかにする。

2. 繰返し載荷実験
2.1 試験体とパラメータ

試験体は図1に示す2シーム溶接により製作した冷間プレス成形角
鋼鋼管柱である。鋼種は SN490B とし、角部の外周曲率半径を板
厚 t の 3.5 倍となるように曲げ加工している。試験体下端のエンドグ
レートと母材の溶接詳細は開先角度 35°、ルートギャップを7mm
とする。溶接補材には YGW18 を、裏面付には金に9×5mmを用いる。
余盛高さの上限は、板厚 t が12、9mmの場合 t/4 + 3.0mm、板厚
 tが6mmの場合 t/4 + 3.5mm とし、グラインで平面仕上げしている。
これは、余盛の形状の違いによって溶接点端部における応力集中度、
応力集中係数 40, 41が試験体ごとに異なるものをできるだけ
避けて、延性亀裂の発生時期に及ぼす余盛の形状の影響を排除する
ためである。これによって、3章で示す延性亀裂発生条件の同定精度
を向上させることができる。

実験パラメータは、表1に示すように、幅厚比、せん断スパン比、
載荷方向、載荷力である。角鋼鋼管の外径 D を200mm、板厚 t を12, 9,
6mmの3種類とすることで、幅厚比を17 - 33の範囲で変化させる
る。また、図1中のせん断スパン L は、ベースプレート上に載荷と
共に可能な距離である。せん断スパン L を485、735、985mmとする
ことで、せん断スパン比 L/D を2.4, 3.7, 4.9の3通りで検討する。

<table>
<thead>
<tr>
<th>試験体</th>
<th>載荷方向</th>
<th>D/t</th>
<th>L/D</th>
<th>Mf</th>
<th>破断時</th>
<th>最終サイクル</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>0°</td>
<td>802 4801 56°+1 56°+1 311 -312</td>
<td>79°+2 80°-1</td>
<td>100°+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45°</td>
<td>802 4801 56°+1 56°+1 296 -307</td>
<td>79°+1 80°-1</td>
<td>90°-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>802 4801 56°+1 56°+1 267 -306</td>
<td>79°+1 80°-1</td>
<td>90°-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>0°</td>
<td>802 4801 56°+1 56°+1 307 -315</td>
<td>79°+1 80°-1</td>
<td>100°+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45°</td>
<td>802 4801 56°+1 56°+1 295 -297</td>
<td>79°+1 80°-1</td>
<td>90°-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>試験体</th>
<th>載荷比</th>
<th>材質</th>
<th>幅厚比</th>
<th>材質</th>
<th>幅厚比</th>
<th>材質</th>
<th>幅厚比</th>
<th>材質</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>0°</td>
<td>802 4801 56°+1 56°+1 317 -327</td>
<td>79°+1 80°-1</td>
<td>110°-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45°</td>
<td>802 4801 56°+1 56°+1 307 -318</td>
<td>79°+1 80°-1</td>
<td>110°-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>試験体</th>
<th>載荷方向</th>
<th>D/t</th>
<th>L/D</th>
<th>Mf</th>
<th>破断時</th>
<th>最終サイクル</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>0°</td>
<td>802 4801 56°+1 56°+1 317 -327</td>
<td>79°+1 80°-1</td>
<td>110°-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45°</td>
<td>802 4801 56°+1 56°+1 295 -297</td>
<td>79°+1 80°-1</td>
<td>110°-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>試験体</th>
<th>材質</th>
<th>幅厚比</th>
<th>材質</th>
<th>幅厚比</th>
<th>材質</th>
<th>幅厚比</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>0°</td>
<td>802 4801 56°+1 56°+1 317 -327</td>
<td>79°+1 80°-1</td>
<td>110°-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45°</td>
<td>802 4801 56°+1 56°+1 295 -297</td>
<td>79°+1 80°-1</td>
<td>110°-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>試験体</th>
<th>材質</th>
<th>幅厚比</th>
<th>材質</th>
<th>幅厚比</th>
<th>材質</th>
<th>幅厚比</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>0°</td>
<td>802 4801 56°+1 56°+1 317 -327</td>
<td>79°+1 80°-1</td>
<td>110°-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45°</td>
<td>802 4801 56°+1 56°+1 295 -297</td>
<td>79°+1 80°-1</td>
<td>110°-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表2に使用銅材の機械的性質（JIS Z23241 1A号試験片による）を示す。表3の全塑性モーメントM_pおよび全塑性時の部材角の弾性成分θ_eは、断面寸法の実測値および表2中の降伏応力を用いて算出し、いずれも軸力比0の値としている。

2.2 載荷方法

図2に載荷装置を示す。載荷は片持ち柱形式とし、図3に示す載荷履歴に基づいて水平ジャッキによって正負交番で柱の部材角を微増させながら、耐力が最大耐力の50%以下になるまで実施する。載荷履歴はθ_eで制御し、t_0を1回、t_0-2回ずつ繰返す。軸力比0の場合は鉛直ジャッキを取付けずに載荷し、軸力比0.3の場合は鉛直ジャッキの荷重を一定に保った上で部材角を与える。載のシート面は載荷面がウェブ面に位置するように設置している。

2.3 実験結果

2.3.1 曲げモーメント-部材角関係と破壊性状

図4に全試験体の曲げモーメント-部材角関係を示す。ここで各試験体の曲げモーメントMはM_pで無次元化し、部材角θはθ_eで無次元化しており、図中に最大耐力を実線でプロットしている。また表3の最大耐力到達時期、局部座屈および延性亀裂の発生時期、耐力が最大耐力の50%以下になるまで低下したサイクル（最終サイクル）、耐力低下の支配的要因となる破壊形式を試験体ごとに示す。

表3より、幅厚比16.7（軸力比0）と33.3においては、耐力低下の支配的要因となる破壊性状がせん断スパン比や載荷方向を変化させても同じであり、図5に示すように幅厚比16.7では破断、幅厚比33.3では局部座屈であった。一方、幅厚比22.2では、せん断スパン比が大きくなるにつれて、破壊性状が破断から局部座屈に変化している。これはせん断スパン比が大きくなることで、塑性化領域が柱材軸方向に広がり、局部座屈が発生しやすく、および柱端溶接部近の局部变形が緩和され、延性亀裂および破断が発生しにくくなることが確認されていると考えられる。また図4より、破断によって耐力低下した試験体（幅厚比16.7、幅厚比22.2（せん

![図4 曲げモーメント-部材角関係（●最大耐力）](image-url)
断スパン比 2.4, 3.7) は、局部座屈によって耐力低下した試験体（幅厚比 33.3, 幅厚比 22.2 (せん断スパン比 4.9)）と比べて、最大耐力に到達したときの部材角は大きいが、その後の耐力低下が著しいことがわかる。

載荷方向を比較すると、4.2および表3より、せん断スパン比 3.7, 幅厚比 22.2 の試験体において、0° 方向载荷では局部座屈が進展し、破断に至ったが、45° 方向載荷では局部座屈の進展は見られず、早期に延性亀裂が進展し、破断によって耐力が低下した。これは断面の法線荷重が平板部となる 0° 方向載荷の方が、法線荷重が角部となる 45° 方向載荷よりも局部座屈が発生しやすいこと。45° 方向載荷の方が同じ載荷方向における最大荷重の差が大きくないことから、上記のパラメータだけではなく、耐力低下の支配的要因が破断である場合、0° 方向載荷よりも 45° 方向載荷の方が最大耐力到達時の部材角が小さい。一方、耐力低下の支配的要因が局部座屈である場合、45° 方向載荷よりも 0° 方向載荷の方が耐力低下の進展が早い傾向が見られる。

載荷比の違いを比較すると、せん断スパン比 2.4, 幅厚比 16.7 の試験体において、載荷比 0 では耐力低下の支配的要因が破断であったが、載荷比 0.3 の場合は局部座屈が顕著に進展し、破断に至った（図6）。圧縮載荷により局部座屈は発生しやすく、延性亀裂や破断の進展は緩和される傾向があるが、載荷比 0.3 の局部座屈時においても溶接部の破壊が発生する場合があることを確認した。

2.3.2 塑性変形能力
各試験体の耐力の推移と塑性変形能力の関係を考慮するために、図7に曲げモーメント-累積塑性変形倍率関係を示す。図7の曲線は正負それぞれの目標振幅到達時における曲げモーメントとその時点までの累積塑性変形倍率をつなぎ合わせたものであり、曲線の延長は最大耐力 ymax で無次元化している。また、ηs は履歴曲線から得られる累積塑性歪エネルギー Ec を用いて (1) 式で算出する。

\[\eta_s = \frac{E_c}{(M, \theta)} \]

（1）

載荷比の違いを比較すると、図7(a)より、耐力低下の初期段階（ymax = 0.9Mmax の範囲）における塑性変形能力は載荷比 0 的試験体よりも載荷比 0.3 の試験体の方が高く傾向がある。これは圧縮載荷が作用することによって局部座屈がより早期に発生することに起因する。しかしながら、累積塑性変形倍率が 0° 方向では 250, 45° 方向では 100 を超える範囲となり、その関係が逆転している。これは局部座屈よりも破断の方が、耐力が急激に低下することによる。

載荷方向の違いを着目すると、図7(b)より幅厚比 16.7 (軸方向比 0) の試験体では、いずれの試験体においても 0° 方向载荷により 45° 方向荷重の方が塑性変形能力が低く、これは 2.3.1 項で述べたように、45° 方向荷重では延性亀裂や破断は 0° 方向荷重よりも早期に発生しやすい傾向による。しかし、0° 方向荷重において破断が生じる場合、最外縁となる引張フランジのほぼ全面の破断が一度に進行するため、45° 方向荷重よりも耐力の劣化度が急になる場合がある。

せん断スパン比の違いを着目すると、図7(c)に示す幅厚比 22.2, 45° 方向荷重の試験体において、Mmax = 0.9Mmax の範囲ではせん断スパン比が小さいほど塑性変形能力が高く、累積塑性変形倍率が 50 を超える範囲と、上記の関係が逆転し、せん断スパン比 2.4, 3.7 の試験体よりもせん断スパン比 4.9 の方が塑性変形能力が高くなっている。これは、局部座屈が顕著に進展したせん断スパン比 4.9

--- 1964 ---
の試験体よりも、破断が顕著に進展したせん断スパン比 2.4, 3.7の試験体の方が最大耐力の到達時期は遅いが、より急激に耐力低下することに起因している。また図 7(d)より、幅厚比 33.3・45°方位載荷の試験体では、せん断スパン比が大きいほど塑性変形能力が低い。これは、せん断スパン比が大きいほど塑性化領域が長くなり、局部座屈が発生および進展しやすくなることによるものと考えられる。

上記の関係を耐力低下の各段階ごとに比較するために、図 8に累積塑性変形倍率 \(\eta_p \) を最大耐力時から最大耐力の50%時まで10%刻みで示す。図より、最大耐力時の塑性変形能力は主に局部座屈の発生しやすさに左右されるため、破壊状況が局部座屈の試験体ではせん断スパン比の小さい試験体の順、すなわち塑性化領域の短い試験体の順に最大耐力時の塑性変形能力が高くなる。一方、破断が顕著に進展した試験体において、幅厚比 22.2では2.3.1項で述べたようにせん断スパン比の影響が見られなかったが、幅厚比 16.7ではせん断スパン比による明瞭な傾向は確認されなかった。

3. 実験の再現解析

3.1 解析方法

実験で観察された延性亀裂発生時の挙動を詳細に分析するため、実験と同条件における有限要素法解析を行う。対象は実験を行った試験体のうち延性亀裂の発生を確認した幅厚比 16.7（軸力比 0）、22.2の11体である。解析には、非線形有限要素法解析プログラム Abaqus（Version6.10）を用いる。図 8に示すように 0° 方向のモデルは対称性を考慮して、幅方向（x 方向）に2分割している。一方、45° 方向のモデルは局部座屈状況が共に平板部で四点になる場合があるため、形状の対称性を考慮せず、試験全体をモデル化している。

要素はソリッド要素とし、柱端溶接部に近いほど分割を細かくし、最小寸法を 2mmとしている。また板厚方向の分割は幅厚比 16.7では4分割、幅厚比 22.2では3分割としている。板厚、角部曲率半径、溶接部の余盛の寸法は、載荷前に計測した実測値を用いている。材料特性は、試験体と同一の厚さ鋼管板板厚、角部、溶接部から採取した丸棒試験片の繰返し載荷試験から得た真応力 - 真塑性歪率関係（図 10）に基づいて、多段階線形化を施して与えている。エンドプレートおよび裏当て金については、平板部と同じ材料特性を用いている。降伏条件は Mises の降伏条件を、硬化則は動的硬化則を適用する。

局部座屈を考慮するために、座屈固有值解析で得た1次の座屈モードを初期不整として与え、その面外変形状態の最大値は柱外径の 1%とした。

境界条件は柱上端をローラー支持（y 軸方向変位、x 軸回りの回転を許容）、エンドプレート下面をヒンジ支持（x 軸回りの回転を許容）とし、柱下端の x 軸まわりに実験と同一の制限回転角を与えた。

3.2 解析と実験の比較

図 11に各モデルの曲げモーメント - 部材間関係を示す。ここで、線形の曲げモーメント \(M \) は \(M_p \) で、横軸の部材角 \(\theta \) は \(\theta_p \) で無次元化している。図 11に、実験において局部座屈により最大耐力に到達した時間を \(\theta \) で、延性亀裂の発生を確認した時間を \(\theta_p \) でそれぞれ示している。

図 11より、解析では延性亀裂や破断による耐力低下を再現できないため、耐力低下が比較的早期に発生した45° 方向載荷では特に最大耐力低下の挙動に違いが見られるが、延性亀裂発生時点までは、実験結果を概ね精度よく追跡できている。また、幅厚比 22.2の試験体で、せん断スパン比が 3.7の 0° 方向載荷とせん断スパン比が 4.9の 45° 方向載荷では、解析で最大耐力に到達した点を図表で示している。局部座屈による最大耐力到達時のサイクル数は、実験で数サイクルの差はあるものの概ね対応していることがわかる。

3.3 延性亀裂発生条件の同定

一般に、鋼部材の破断による崩落状態は、延性亀裂の発生、亀裂の伝播、脆性破壊の発生の3段階で構成される。このうち亀裂の伝播から脆性破壊の発生を予測することは難しいため、本論では
村らの提案に従って延性亀裂が発生した時点を破断に対する安全側の限界とみなし、そのときの塑性変形能力を把握する。なお延性亀裂の発生は、鋼材の機械的性質（特に一様伸び）や応力三軸度の影響をうける。11, 12 が、部材寸法の影響をうけないことが指摘されている。

解析では延性亀裂の発生を再現できないが、実験で確認した延性亀裂発生時期を解析結果に照らし合わせることで、角形鋼管柱の延性亀裂発生条件を村川らの研究に基づいて同定する。文献39において鋼材の延性亀裂発生時の相当塑性歪 e_{sa} は次式により定義されている。

$$ e_{sa} = C \cdot e_{s} / \tau^2 $$

ここで、τ は応力三軸度、e_{s} は鋼材の真一様伸び、C は定数である。相当塑性歪 e_{sa} の値が (2) 式の右辺の値に達すると、延性亀裂が発生することを意味する。本研究では、C および e_{sa} を 1 つの定数とし、実験結果に基づいて $C \cdot e_{s}$ を同定する。

図 12 に、解析より得られる相当塑性歪−応力三軸度関係を示す。この関係を抽出した要素は、実験で延性亀裂の発生を確認した部材と溶接部の境界付近に位置し、解析において相当塑性歪が最大となる要素である。図では、要素の引き張りをうけるサイクル数のピーク値をつなぎ合わせて示している。図中の実験データ（表 3 改）を○, ■, ◆で示す。これからのプロットを延性亀裂発生領域が含まれるように (2) 式によって評価すると、0° 方向では $C \cdot e_{sa}=0.13$, 45° 方向では $C \cdot e_{sa}=0.05$ となる。ここで、45° 方向の解析結果はばっかいが見られるが、モデルにおいて安全側の評価となるように、延性亀裂発生時期がもっとも早いモデルに対して (2) 式の $C \cdot e_{sa}$ を同定している。

上記の手法を用いて、解析において延性亀裂が発生した時点で定め、そのサイクルを図 11 に示す。図 11 より、45° 方向では上記した (2) 式の $C \cdot e_{sa}$ を安全側の評価となり同定したことにより、解析の方がやや早めに延性亀裂が発生する場合が多い。一方、0° 方向では実験と解析が概ねよい対応を示していることが確認できる。以上の結果に基づいて、4 章の検討ではここで示した解析方法を用いることとする。

4. 角形鋼管柱の塑性変形能力の評価

4.1 解析方法

角形鋼管柱の塑性変形能力に及ぼす延性亀裂発生の影響を考察するため、実験よりも広範囲なパラメータに対して有限要素法解析を行う。解析対象は直径が 200mm の角形鋼管柱であり、その他のパラメータは表 4 に示すとおりである。解析モデルを図 13 に示す。解析モデルにおいて、角部の外側曲率半径、溶接部の寸法および裏当

[図 11 曲げモーメント−部材角関係]

[図 12 相当塑性歪−応力三軸度関係]

—1966—
て金の断面寸法は2mmで短えた試験体の設計値と同一とする。
要素の種類および軸方向の要素分割は3の解析と同様であるが、板厚方向の要素の寸法が2～3mmとなるように分割している。材料特性は、次式で示すRamberg-Osgood曲線（以下RO曲線）によりモデル化する（図14）。

\[e = \sigma / \alpha_a + \sigma (\sigma / \alpha_b)^n \]

ここで（3）式中の降伏応力 \(\sigma_a \) には490 N/m²級鋼の降伏応力の下限値325 N/mm²の1.1倍を用いる。また硬化域が引張試験で得た応力～歪関係と同様の曲線を描くように（3）式中の係数 \(a, b \) に \(a = 1, b = 10 \)を与え、この材料特性を全要素を統一的に用いている。上記以外の条件は3.1節の解析手法と同一である。

4.2 塑性変形能の比較

解析では亀裂や破断を考慮していないため、解析から得られる最大耐力を局部座屈の発生によるもので、ここでは、最大耐力までの累積塑性変形倍率 \(\eta_k \) を局部座屈による塑性変形能力とみなし、また、相当塑性歪 \(\varepsilon_{pl} \) = 応力～歪関係に3.3節で定めた延性亀裂発生条件を適用して延性亀裂発生時の累積塑性変形倍率 \(\eta_k \) をもとめ、これを延性亀裂による塑性変形能力と定める。ここで相当塑性歪～応力三軸度関係を抽出した要素は溶接部と母材の境界近傍で相当塑性歪が最大となる要素である。上記2種類の累積塑性変形倍率 \(\eta_k \) を図15に示す。なお、図15における中線のプロット（○）、△は、局部座屈または延性亀裂のうち、先に発生するものを表している。

まず解析パラメータごとの比較を行う。せん断スパン比 \(L/D \) が大きくなるほど \(\eta_k \) は小さく、\(\eta_k \) は大きくなる傾向にある。これは柱の塑性化領域が広がることで局部座屈の進展が促され、溶接部近傍の歪集中が減少することで延性亀裂の発生時期が遅れることが示される。また、幅厚比が大きくなるにつれて、せん断スパン比が同一の解析結果で \(\eta_k \) と \(\eta_k \) の大小関係が逆転する現象が見られる。これは、幅厚比が大きくなることで、先に発生する破壊が延性亀裂から局部座屈へと変化することを示しており、大小関係が逆転するときの幅厚比が、それぞれのせん断スパン比において柱の破壊性状が変化する境界値と考えられる。

載荷方向で比較すると、0°方向載荷よりも45°方向載荷の方が延性亀裂によって塑性変形能力が決定する範囲が広がっていることがわかる。45°方向載荷の場合、断面の外縁部が角部となり、見かけの断面が小さくなるので同じ部材角でも塑性歪が増大することに起因している。ただし、0°方向載荷においても幅厚比が小さい場合は、延性亀裂によって塑性変形能力が決まる範囲が存在する。また、軸力を作用している場合は、局部座屈の発生が促進され、延性亀裂の発生が抑制される傾向が見られるが、幅厚比が小さい場合には延性亀裂が発生する可能性を有していることがわかる。

上記の結果を2.2節で示した実験結果と比較すると、幅厚比33.3、45°方向載荷、軸力比0.0のパラメータにおいて実験結果との相違が多く見られる。これは、3.3で述べた延性亀裂発生条件を定めのために用いた45°方向載荷の実験結果で、延性亀裂発生時間（図3）にばらつきがあり、すべての結果に対して安全側の評価となるように（2）式を設定したためである。しかし、全体的に見れば、実験で確認した破壊性状の定性的傾向を概ね精度よく捉えていることがわかる。

5. 結論

冷間プレス成形角形鋼管柱を対象に繰返し載荷実験と有限要素法解析を行い、角形鋼管柱の局部座屈または延性破壊の2種類の終局状態（破壊性状）に及ぼす各種パラメータの影響を確認した。また、有限要素法解析によって得られる相当塑性歪～応力三軸度関係に、実験結果に基づいて定めた延性亀裂発生条件を適用することで、延性亀裂発生時の塑性変形能力を評価する方法を提案した。得られた知見を以下に示す。
35) 服部和経、見道隆、中野達也、水落亮輔、山田大喜、中込忠男、岡本晴仁：
 25 度圧延面使用冷間成形角線鋼管 - 通しダイアフラム溶接接合部の
 実大3点曲げ破壊実験（実験結果および性能評価），鉄骨造建築物の安全
 性向上に資する新自動溶接技術の開発 その18、日本建築学会大会学術
 講演概要集、A-1 材料施工、pp.63-64, 2012.9

36) 上田直、甲川剛、佐藤勇介、中澤好雄、篠倉和洋、佐々木清文：柱の塑
 性変形能力に及ぼす接合欠陥の影響 ー その1 冷間プレス成形角形鋼
 管柱の載荷実験ー、日本建築学会近畿支部研究報告集、第53号、構造系
 pp.377-380, 2013.6

37) 中川佳、松井和幸、沖見司、大森章夫、石井拓、加村久哉：建築構造用高
 性能 550N/mm²級冷間プレス成形角形鋼管、その2 部材曲げ試験。日本
 建築学会大会学術講演概要集、構造 III, pp.1199-1200, 2013.8

38) 西山裕司、向出豊司、多田元英：接合部破断により決定される角形鋼管柱
 の塑性変形能力に関する調査、日本建築学会近畿支部研究報告集、第54号、
 構造系、pp.477-480, 2014.6

39) 桑村仁、山本恵世：三軸応力状態における構造用鋼材の延性き裂発生条件,
 日本建築学会構造系論文集, 第 477 号, pp.129-135, 1995.11

40) 中野達也、渡邉一夫：冷間成形角形鋼管柱接合部への装飾先ロボット
 溶接の適用 (ii) 非接着性, 日本建築学会大会 材料施工部門 パネルディス
 キッション資料「建築鉄骨における溶接施工技術の前線」, pp.57-66, 2014.9

41) 桑村仁、稲葉隆一郎：鉄骨接合部の平面ひずみ状態における応力三軸度と
 歪集中率、鉄骨接合部の応力 - ひずみ状態 - その1、日本建築学会構造系
 論文集、第 518 号, pp.87-94, 1999.4

42) 桑村仁、秋山宏：延性き裂発生ひずみに及ぼす冷間塑性加工の影響、日本
 建築学会構造系論文報告集、第 454 号, pp.171-178, 1993.12

43) 桑村仁、秋山宏：延性き裂発生ひずみに及ぼすエッフェルの影響、日本建築学会
 構造系論文集、第 458 号, pp.119-125, 1994.4
PLASTIC DEFORMATION CAPACITY OF COLD PRESS-FORMED SHS COLUMNS DETERMINED BY LOCAL BUCKLING AND FRACTURE

Ryohei KUWADA *, Yuji KOETAKA ** and Keiichiro SUITA ***

* Grad. Stud., Dept. of Architecture and Architectural Engineering, Kyoto Univ.
** Assoc. Prof., Dept. of Architecture and Architectural Engineering, Kyoto Univ., Dr.Eng.
*** Prof., Dept. of Architecture and Architectural Engineering, Kyoto Univ., Dr.Eng.

Ultimate state of square tube columns is determined by local buckling and/or fracture under strong ground motion. A lot of experimental and analytical studies have been conducted in order to predict mechanical behavior, maximum strength and plastic deformation capacity determined by local buckling. On the other hand, there are few researches about plastic deformation capacity determined by fracture of welds at the end of column. In this paper, in order to confirm the plastic deformation capacity determined by either fracture or local buckling of the cold formed square tube columns, cyclic loading test and finite element analysis are conducted.

At first, mechanical behavior and plastic deformation capacity are investigated by the cyclic loading tests. Test specimen, which is illustrated in Figure 1, is cold press formed square tube columns whose width is 200 mm. Test parameters are width-thickness ratio, shear span ratio, loading direction and ratio of axial force to axial yield strength. As an experimental result, bending moment degrades due to development of the crack when width-thickness ratio is 16.7. On the other hand, bending moment degrades due to local buckling when width-thickness ratio is 33.3. The ultimate state varies depending on shear span ratio when width-thickness ratio is 22.2, and local buckling occurs in case of large shear span ratio because yielding area at the end of column expands along axial direction. Compared with 0 degree loading direction, fracture occurs in many specimens of 45 degree loading because effective depth of column is larger than that of 0 degree loading. And local buckling occurs firstly but fracture occurs finally even if compressive axial force is acted on the column.

Next, criterion of initiation of the crack at the boundary between column end and weld metal is identified by means of finite element analysis. The relationship between the stress triaxiality and the equivalent plastic strain is obtained from analysis result under the identical conditions with the loading test, as shown in Figure 12. And the value, which is plotted as diamond mark in Figure 12, is selected at the same point of the initiation of the crack in the loading test. The criterion of initiation of crack can be identified by Equation (2) based on the previous study by Kuwamura et al. The coefficient C_e in Equation (2) is determined to coincide with the minimum value of equivalent plastic strain of the plots and solid line in Figure 12. Consequently, C_e is determined as 0.13 in case of 0 degree loading, and determined as 0.05 in case of 45 degree loading.

Based on experimental and analytical results, plastic deformation capacity at the time of the initiation of crack is estimated through parametric analysis results. It is assumed that the cumulative plastic deformation, at the maximum strength obtained from finite element analysis is determined by local buckling because the fracture is not considered in the analysis. On the other hand, the cumulative plastic deformation determined by the crack is obtained from hysteresis loop until equivalent plastic strain reaches the criterion of the initiation of the crack. From Figure 15, cumulative plastic deformation capacity due to local buckling becomes smaller if either width-thickness ratio or shear span ratio increases. These characteristics obtained from analysis are coincided with the experimental results. As a result, it is pointed out that the crack at the weld metals may occur when width-thickness ratio and shear span ratio are small. And it is notable that the possibility range of parameters with initiation of the crack is spread if loading direction is 45 degree.

(2015 年 4 月 9 日原稿受理，2015 年 8 月 21 日採用決定)