In this paper, the authors have proposed a method to determine the necessary number of the braces for the ceiling area from the specified displacement criterion. When the ceiling can be regarded as a linear single degree of freedom system, the fundamental period of the ceiling is the design parameter to control the maximum displacement for the given design response spectrum, and the target fundamental period can be determined for the specified displacement criterion. When the ceiling is regarded as a nonlinear system, the necessary number of the braces can be estimated based on the relationship between the supporting area for a set of the brace and the maximum earthquake displacement of the ceiling. The supporting area for a set of the specified brace can be determined by the story number of the building, the floor number of the ceiling and the displacement criterion. The validity of the proposed method is verified by the time-history analysis by using the observed seismic records of the 2011 Tohoku Pacific Earthquake.

Keywords: Nonstructural component, Ceiling, Brace, Earthquake response analysis

1.はじめに

近年の地震被害では、非構造部材、特に天井の被害が顕著化してきている。既往の研究においては、地震被害に関する研究で、部分天井や接合金物に対する実験的研究および解析的研究の他、在来天井の耐震性の向上に関する研究も行われている。これらの新しい手法については、その力学特性と耐震クライテリアに応じた計画および設計が重要となる。平成25年に公布された国土交通省告示第771号では、特定天井における構造耐力上安全な構造方法が定められたが、特定天井以外の一般的な天井部位については、設計者の判断により安全性を確保することとされており、そのための具体的手法に関する知見の蓄積が望まれる。したがって検討例は少ない。

そこで本論では、1次設計レベルの地震に対して天井の変位のクライテリアを設定し、それを満足するために天井に必要となるブレースを設けるための手法について検討する。なお、二次設計レベルの場合は、それ以上の地震に対しては、天井は周囲の壁に衝突する可能性があるが、落下防止措置がとられていることを前提としている。

具体的には、建物階数（1次固有周期）と各階の剛性・質量分布をパラメータにして建物モデルを設定し、地震応答解析により各階の応答アドバイスを求め、天井への入力と考える。天井を線形の1質点系と見なせる場合には、各階の応答から変位応答スペクトルを求め、天井の変位のクライテリアに応じて天井に必要となる固有周期を定める。これにより必要なブレース量が得られるものとする。天井が非線形性を有する場合には、時刻履歴応答解析によって地震応答変位とブレース量との関係を求め、変位のクライテリアに応じて必要なブレース数をブレース1対が負担すべき天井面積あるいは天井質量として求める。筆者らは、在来の鋼製下地天井に部分的な補強を施した工法を提案し、静的および動的実験によりその力学的性状について検証し、地震入力に対する天井の応答を表現する解析モデルを構築しており。本論ではこの解析モデルを用いる。この工法によって天井は特定天井以外の一般的な天井部位に供されるものである。

2.解析方法

2.1建物モデルの設定

対象建物は、一般に動的解析を行う場合の少ない高さ60m以下の耐震構造体とする。文献24）では、鉄骨造（以下S造）については高さ15.5〜282.3m、鉄筋コンクリート造（以下RC造）については高さ10.8〜156.8mの建物について、固有周期と減衰定数に関する検討が行われている。それによると、実測データに関して、高さH（m）と1次固有周期T（秒）の関係を表す係数は、S造で0.020, ** Institute of Technology, Shimizu Corporation, M.Eng.
** Institute of Technology, Shimizu Corporation, Dr.Eng.
RC造で0.015とされている。データには1982年以降の建物のデータも多く含まれており、1972年当時の文献にも見られる係数（それぞれ0.021、0.014）と大きな差異はない。ただし、これらの周期は微小振幅時の値であり、同文献によれば設計値の8割程度である。

同文献では、安全性評価時の固有周期として、前述の2倍増しの値を推奨している（係数はそれぞれ0.024、0.018）。対象とする建物高さは30m以上で、本論で扱う建物の中、比較的高層の建物である。

中低層建物の共振周期については、志賀25)は中低層RC造建物を対象とした震害予測に関する検討の中で、実測値については式1)、大地震時の値については、式2)の2倍の式2)を用いている。ここでNは建物階数である。

\[T = 0.144N \]
\[T = 0.28N \]

文献26)から読み取ったT-N関係と式1)を図1に示す。実測データはばらつきが大きいことのため、式1)は実測データをよく対応している。

また、豊藤20)は、中低層S造建物の固有周期について検討しており、震度4程度の地震時には固有周期が微小振幅時の実験値について10%程度伸びること20)、レベル1程度の地震を受けた建物では観測により固有周期が計算値の95〜100%に達することを、大規模地震時にはほぼ算定値通りの周期に達するとの報告21)にそれぞれ言及した上で、層剛性が台形分布（最上層/最下層の層剛性の比が0.4）の場合、式3), 4)を示して、1〜12階建ての建物の設計時固有周期は、T=0.03Hで与えられる場合に比べて長くなるとしている。例えば3階建ての場合、T=0.03Hによる値が2.3倍となり、その差は低層ほど大きい（この検討では階高3.6m、式3)は設計時最大変形角R=1/300、公式4)はR=1/200の場合による）。

\[T = 0.4 + 0.023H \]
\[T = 0.5 + 0.027H \]

住所の研究に基づく以下の知見から、本論では、地震時の地震周期の伸びを考えつつ、低層ほど大きいT-N関係のほかにも考慮して建物モデルを設定すること。なお、以下、本論では建物の固有周期は地震時の固有周期を指することに。

AJ減衰データベース22)から、60m以下のデータを選び、構造種別毎にT-N関係を整理する。建物の1次固有周期に地震による伸びを考慮して、元データの2倍増しとする。なお、S造には16〜17階建てに短周期寄りのデータがあり（図2中図内），直線で近似するとT-N関係を短周期側に傾斜させる。短周期寄りの建物モデルはRC+SRC造（SRC造は鉄骨鉄筋コンクリート造）のデータから設定するので、これらのデータはS造から除く（RC+SRC造にも含まれない）。直線で図示して得られたT-N関係は以下のようである。

\[T = 0.1047N \] (S造)
\[T = 0.05511N \] (RC+SRC造)

図2に文献26)に記載されている中低層建物のT-N関係から、文献27)に依って周期を2倍としたもの（●）、文献28)の60m以下のデータのT-N関係から、文献29)に依って周期を1.2倍したもの（〇▲）、式2)，式4)，式5)，式6)を示す。図から、これらの式が建物階数と建物の地震時の1次固有周期の関係を、短周期寄りから長周期寄りにかけて表していると言える。

そこで、これらの式を利用して短周期寄りから長周期寄りにかけてA、B、Cの3通りの周期設定を行う。建物Aは式6)によるRC+SRC造の建物に基づく短周期寄りの周期設定であり、参照データから0.2秒の下限を設ける。建物Bは式2)と5)によるS造データと8階以下の平均的な地震時周期を反映した周期設定である。建物Cは式4)によるもので、参照データの中で長周期寄りのS造の地震時周期を反映した周期設定である。以上の周期設定を図3に示す。

一方、減衰については、文献24)では観測データのばらつきの大きさに言及しながら、安全性評価のための推奨値としてS造で1.5
表1 建物モデル諸元

<table>
<thead>
<tr>
<th>階</th>
<th>周期 (sec)</th>
<th>減衰 (%)</th>
<th>k比</th>
<th>周期 (sec)</th>
<th>減衰 (%)</th>
<th>k比</th>
<th>周期 (sec)</th>
<th>減衰 (%)</th>
<th>k比</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.200</td>
<td>3.00</td>
<td>0</td>
<td>0.200</td>
<td>3.00</td>
<td>0</td>
<td>0.200</td>
<td>3.00</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.200</td>
<td>3.00</td>
<td>0.7</td>
<td>0.200</td>
<td>3.00</td>
<td>0.7</td>
<td>0.200</td>
<td>3.00</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>0.200</td>
<td>3.00</td>
<td>0.7</td>
<td>0.200</td>
<td>3.00</td>
<td>0.7</td>
<td>0.200</td>
<td>3.00</td>
<td>0.7</td>
</tr>
<tr>
<td>4</td>
<td>0.200</td>
<td>3.00</td>
<td>0.6</td>
<td>0.200</td>
<td>3.00</td>
<td>0.6</td>
<td>0.200</td>
<td>3.00</td>
<td>0.6</td>
</tr>
<tr>
<td>5</td>
<td>0.276</td>
<td>3.00</td>
<td>0.6</td>
<td>0.276</td>
<td>3.00</td>
<td>0.6</td>
<td>0.276</td>
<td>3.00</td>
<td>0.6</td>
</tr>
<tr>
<td>6</td>
<td>0.351</td>
<td>3.00</td>
<td>0.8</td>
<td>0.351</td>
<td>3.00</td>
<td>0.8</td>
<td>0.351</td>
<td>3.00</td>
<td>0.8</td>
</tr>
<tr>
<td>7</td>
<td>0.351</td>
<td>3.00</td>
<td>0.4</td>
<td>0.351</td>
<td>3.00</td>
<td>0.4</td>
<td>0.351</td>
<td>3.00</td>
<td>0.4</td>
</tr>
</tbody>
</table>

図5 検討用地動の加速度波形と加速度応答スペクトル

2.3 非線形の天井モデル

本節では、天井の水平方向の力学特性が非線形性を有する場合のモデルとして、在来の鋼製下地天井に対して部分的な補強を施した工法による天井

2.2 建物への入力地震動

本節で検討する天井の耐震クラスは、1次設計レベルの地震動（最大加速度 80〜100 cm/sec² 程度）では天井が軽微に破壊を
留まることとする。検討に用いる入力地震動は、加速度応答スペクトル Sa=Coertg (C: 標準せん断力係数 0.2, Rt: 第2種地盤の構造
特性係数, G: 重力加速度, 減衰 5%) をターゲットとした模擬地震動とする。Sa は、周期 T=0.1秒で Sa=96cm/sec² とし、T=0.16秒で
196cm/sec² まで直線的に増加させる。地震動の作成手法は文献 32) に基づ
っており、相対角は相対差分に基づいて与えられる。加速度波形の例
と加速度応答スペクトルを図5に示す。波形は wy=1〜3の3波（最大加速度：88、110、101 cm/sec²）とし、継続時間は82秒である。
本波形を2.1節の建物モデルに入力し、各階の応答加速度を求め、
それを次の天井モデルへの入力波とする。
字形に配置されるものとして，質量 ρZ の質点に前述のプレース・クリップモデルを設置する。解析は，天井ボード2枚張りの場合 $\rho =16.5 \, \text{kg/m}^2$, $Z=4〜49\text{m}^2$の範囲とする。減衰は初期剛性による1次固有周期に対しX方向3.3%, Y方向1.2%の瞬間剛性比型減衰である。変位のクリティア（天井の吊り元に対する相対変位で，建物側の変形時変形は含まない。以下，クリティアと表記）は，建物の性格や意匠性・納まりにより定められるものの考え，X方向，Y方向とも10mm〜30mmの範囲とする。

振動実験で解析との整合が確認されている最大変位はX方向37.6mm, Y方向35.2mmであり，この応答レベルにおいて，X方向ではプレース側に弾性なる根元が生じたもので，顕著な残存変形を示さず，Y方向ではプレース端面に若干の緩みが見られた程度であった。本論のクリティアはこの実験結果を参考にして定めた。

プレース1対の変位30mmでの解析モデルによる制御剛性は，X: 0.18kN/m, Y: 0.19kN/mである。これに対して，天井の質量密度を16.5kg/m²として，プレース1対の負担面積を4〜49m²の範囲とするば，天井周期は0.4〜0.12秒となる。図3を参照すれば，天井は，建物Aでは概ね2階程度，建物Bでは3階程度までの低層建物の場合，建物周期と天井の大変形時の等価周期が近似でき，可能な建物Cは1階層でも建物の固有周期は0.6秒であるから，天井の等価周期は建物1次固有周期からずれがある。

耐震ハンガー プレースボルダー 耐震クリップ 滑り拘束方法
写真1 使用材料

![耐震ハンガー プレースボルダー](image1)

図7 本検討に用いた解析モデルの耐震変形関係

3. 解析結果

3.1 建物モデルの応答

ケース1の建物A, B, Cにおける各階の最大加速度分布と最大層間変形を，w=1の場合に図8に示す。同じく，ケースIIIの場合を図9に示す。観察は階である。3波についての各建物の最大加速度値と最大層間変形の逆数表2と表3に示す。

ケースIの場合，最大加速度は1階層で200〜310cm/sec²程度，複数階建物では410〜820cm/sec²程度を示している。層間変形は建物Aでは1/4000〜1/600，建物Bでは1/700〜1/260程度である。建物Cは前節で述べた通り，設計時最大変位が層間変形で1/200とした場合の周期設定であり，表3ではこれを上回っているが，図8をみると，1〜2階層の建物を除きほぼ1/200程度となっており，ケース1の建物モデルの設定は，振動特性および1次設計レベルの地震応答特性の観点から妥当と考えられる。

ケースIIの場合，地震動にもよるが，最大加速度・層間変形ともケースIに比べて顕著な違いはない。

ケースIIIの場合，最大加速度は，建物B, Cにおいて1割程度増加しており，層間変形は建物B, Cにおいて2割から5割程度まで増加している。建物Bでは一部で1次設計の地震時応答変位の許容値（関係1/200）を超えているが，多くの建物と階において応答が増大していることから，本ケースは，建物の“動揺”の性状を天井の入力・応答に反映させたケースと言える。
3.2 構造1質点系の天井の応答

天井を線形の1質点系とし、建造物モデルの地震応答加速度を入力とした場合に、クライテリアに応じて天井が保有すべき固有周期に関し

表2 最大加速度（単位：cm/sec²）

<table>
<thead>
<tr>
<th>ケース</th>
<th>入力</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vv-1</td>
<td>210</td>
<td>324</td>
<td>292</td>
<td>217</td>
</tr>
<tr>
<td>vv-2</td>
<td>260</td>
<td>324</td>
<td>292</td>
<td>217</td>
</tr>
<tr>
<td>vv-3</td>
<td>222</td>
<td>324</td>
<td>292</td>
<td>217</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vv-1</td>
<td>210</td>
<td>324</td>
<td>292</td>
<td>217</td>
</tr>
<tr>
<td>vv-2</td>
<td>260</td>
<td>324</td>
<td>292</td>
<td>217</td>
</tr>
<tr>
<td>vv-3</td>
<td>222</td>
<td>324</td>
<td>292</td>
<td>217</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vv-1</td>
<td>210</td>
<td>324</td>
<td>292</td>
<td>217</td>
</tr>
<tr>
<td>vv-2</td>
<td>260</td>
<td>324</td>
<td>292</td>
<td>217</td>
</tr>
<tr>
<td>vv-3</td>
<td>222</td>
<td>324</td>
<td>292</td>
<td>217</td>
</tr>
</tbody>
</table>

表3 最大層間変形角の逆数（単位：1/rad）

<table>
<thead>
<tr>
<th>ケース</th>
<th>入力</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vv-1</td>
<td>374</td>
<td>361</td>
<td>361</td>
<td>361</td>
</tr>
<tr>
<td>vv-2</td>
<td>394</td>
<td>361</td>
<td>361</td>
<td>361</td>
</tr>
<tr>
<td>vv-3</td>
<td>350</td>
<td>361</td>
<td>361</td>
<td>361</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vv-1</td>
<td>402</td>
<td>361</td>
<td>361</td>
<td>361</td>
</tr>
<tr>
<td>vv-2</td>
<td>428</td>
<td>361</td>
<td>361</td>
<td>361</td>
</tr>
<tr>
<td>vv-3</td>
<td>379</td>
<td>361</td>
<td>361</td>
<td>361</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vv-1</td>
<td>354</td>
<td>361</td>
<td>361</td>
<td>361</td>
</tr>
<tr>
<td>vv-2</td>
<td>350</td>
<td>361</td>
<td>361</td>
<td>361</td>
</tr>
<tr>
<td>vv-3</td>
<td>352</td>
<td>361</td>
<td>361</td>
<td>361</td>
</tr>
</tbody>
</table>

図8 各建物の最大加速度分布（ケース I vv-1）

図9 各建物の最大加速度分布（ケース III vv-1）

全体として、クライテリアが大きい程、建物の固有周期が短くなる程、天井の必要固有周期は短くなる傾向、すり、必要な剛性が小さくなる傾向が見られる。天井側で必要固有周期は非常に長く、構造の固有周期が短く、応答スペクトルの値が小さいため、クライテリアが相対的に大きく設定されていることを示している。

こうした値を除くと、必要固有周期はクライテリアが10mmの場合0.173〜0.282秒、20mmの場合0.207〜0.383秒、30mmの場合0.301〜0.522秒であり、剛性にして3倍程度の聞きがある。天井の合理的な計画のためには、建物の固有周期を考慮することが望ましいことが分かる。なお、以上は建物応答の内容、最大衝撃応答に基づいており、下記の論点は最大衝撃よりも通常小さい。

ケース I の場合、クライテリアと建物周期によって異なるが、ケース I に比べて、必要固有周期が長くなる場合はその変化は9〜15%程度であり、短くなる場合は2〜3%程度と小さい。

ケース IIIの場合、クライテリアと建物周期によって異なっているが、ケース I に比べて、必要固有周期が34%短くなる場合がある。

ここでは、ケース I、II、IIIの各を考慮して必要固有周期の近似式を求め、図11に示す。図には全てのケースでのA、B、Cに関する結果とその下限値を示すように設定した近似式の関係を示した。

近似式は以下のようである。

- クライテリア=10mmの場合
 \[T_{eq} = 0.21 T_r^{1.28} \quad (T_{eq} > 0.167 \text{sec}) \] ･･･ 7)
- クライテリア=20mmの場合
 \[T_{eq} = 0.28 T_r^{1.27} \] ･･･ 8)
- クライテリア=30mmの場合
 \[T_{eq} = 0.34 T_r^{1.18} \] ･･･ 9)
3.3 非線形1質点系の天井の応答

3.1 節で得られた各建物・各階の応答を、2.3 節で述べた天井の解析モデルに入力として与えた場合の応答変位を、1 号ブレースの負担面積 Z（横軸）と最大変位 D（縦軸）で整理し、その例を図 12 に示す。Z が大きいほど、天井の質量に対して相対的にブレースが少ないことを意味する。図ではケース I の建物 A、B、C について、

$I、II、III$ 階建てモデル、$V、IV、III$ 階建てモデル、$II、III$ 階建てモデル内、入力波が1 对に対する天井の Y 方向（紙面方向）の応答を示している。全体の結果について概要を述べると以下のようである。

建物 A の $1、II、III$ 階建て、建物 B の $1、II、III$ 階建てで、X 方向では面積 $Z=20〜30\text{m}^2$、Y 方向では $Z=16〜25\text{m}^2$ で応答が急に増加、もしくは極小化する形態となった。特に変位が大きいのは建物 A の $5、II、III$ 階建て

(周期 0.28 秒）の最上階で、30m^2 を超えている。建物 A の $5、II、III$ 階建て以上、建物 B の $2、III$ 階建て以上の建物の $1〜16$ 階建ての X、Y 方向では、面積 Z の増加と共に応答 D と増加する右上がりの形態となっており (図 12 中 A-Y、16 階参照)。また、全体の傾向として、Z が大きければ応答 D は大きくなるが、それは建物数の多い建物・試験周期の長い建物タイプにおいて顕著であり、建物数の少ない建物・設定周期の短い建物タイプにおいては Z が大きくとも応答 D は増加せず、特定の Z 範囲で極小化する。この場合、天井の応答の卓越周期は一致しており、共振に基づいていることを確認している。

また、殆どの場合で最上階の天井の応答変位が、下階よりも大きかった。しかし、ケース I〜III において、建物 C の $2、III$ 階建て X 方向の場合には、面積 $Z=25〜36\text{m}^2$ の範囲で、1 階天井の応答の方が 2 階のそれよりも大きくなる場合があった。建物モデルの 1 次と 2 次の固有振動数を表 4 に、建物と天井 (Z=30m, Y 方向) の応答加速度の Fourier 振幅を図 13 に示す。建物の応答において 1 階では 2 次の成分が 2 階の成分を上回っており、それによって 1 階の天井の応答が 2 階のそれ以上を回ることがある。これは $Z=25〜36\text{m}^2$ の範囲の Y 方向に見られることであり、現象特性の違いから、X 方向では顕著でない。なお、2 次固有振動数の $3.5Hz$ は、ケース I の建物 A では 5

階建て、同じく建物 B では 1 階建ての 1 次固有振動数とほぼ一致するが、図 13 に見られる通り、Y 方向で $Z=25\text{m}^2$ の場合には最上階の天井の応答は特に大きなものとなっている。

これらの結果から、シアタラを $10、20、30\text{m}^2$ とした場合に、1 階ブレースの負担できる天井面積を、各ケース、各建物タイプ、建物階数、階毎、方向毎、入力波毎に調べることができる。ここでは、入力 3 波、ケース I〜III と XY 方向を区別せず、最小の負担面積を建物タイプの各階について求めることがなる。各建物タイプの最小の負担面積（絶対値で最上階の値）と建物階との関係を図 14 に示す。なお、解析から直接得られる結果には凹凸があり、図では平滑化している。

同様に下階を含めた必要面積を表 5 に示す。表 5 の横軸は建物階数で 1 階建から 16 階建を表し、縦軸は天井の階（1 階は 2 階床から懸垂された天井を表す）である。1 階建てから 5 階建てまでは各階、6 階建てでは 2、3、4、6 階、8 階建て以上は 2、4、6、・・・の

![図10 各建物の周期と変位クライテリアによる天井周期との関係（ケース I：屋上階）](image1)

![図11 各建物の周期と変位クライテリアによる天井周期との関係と近似式（ケース I〜III：屋上階）](image2)

![図13 建物 C-2 階建ての建物・天井の応答加速度の Fourier 振幅](image3)

表 4 建物 C タイプ 2 階建ての固有振動数

<table>
<thead>
<tr>
<th>固有振動数(Hz)</th>
<th>ケース I</th>
<th>ケース II</th>
<th>ケース III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 階</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 階</td>
<td>3.51</td>
<td>3.9</td>
<td>3.99</td>
</tr>
</tbody>
</table>
図12 各建物での天井プレース1対の負担面積と地震応答変位との関係（ケース1，wv-1，Y（野原）方向）

図14 各建物の建物階数と変位クライテリアに対する天井プレース1対の負担面積との関係

表5 変位クライテリアと各建物・各階での天井プレース1対の負担面積（単位：m²）との関係

—2051—
観測記録による検証

4.1 観測記録と本論の設定条件との関係

本節では、前節で示したクライテリアに対する天井の必要諸元について、地震観測記録を用いた地震応答解析を行い、妥当性を検証する。観測記録は2011年東北地方太平洋沖地震の際に、独立行政法人建築研究所の強震観測で得られた建物の観測記録を用いる20)。本論で設定している入力レベルが1次設計レベルであることから、当該観測記録の内、計測震度が4.5〜5.0で、超高層建築物や免震建築物を除いた10棟を対象とする。建物の階数と構造種別を表6に示す。殆どRC系の建物である。なお、1階もしくは地階の観測波の最大加速度は72〜158 cm/sec²である。

まず、基礎入力動（1階もしくは地階の観測波）と上階の観測波による伝達関数から1次固有周期を求め、地階含めた建物階数との関係を、本論の建物モデルの設定値と比較して図15に示す。地震観測記録による建物周波数と階数の関係は、RC造の計測データに基づく建物Aの設定値と整合が良いが、その内、5造の地震観測記録の値は、B〜タイプの設定値の間にあっている。限られたデータではあるが、本論で設定した建物階数と地震時の建物周期との関係は、地震観測記録に照らして妥当なものではないと言える。

次に、伝達関数から1/2法で求めた減衰定数（ピークが切れましたを除くと）4%〜16%にばらつくも平均して9%程度であった。伝達関数にはParzen Window (0.3Hz)を掛けていたので、減衰定数を高値より大きく評価されると思われるが、地盤との相互作用の影響等により、本論で設定した値（S造2%, RC造3.5%)よりも平均的には大きいと考えられる。

次に、観測記録の基礎入力動の加速度応答スペクトル（減衰5%）を求め、建物の1次固有周期における値と、本論で設定した入力地震動のレベル（図7）との比を検討する。同じく、クライテリアに応じた天井の必要固有周期における成分についても比較して、図16と表7に示す。基礎入力動については、本論で設定した入力レベルに対して0.7〜3.8倍の範囲でばらつきがあり、倍率の平均は1.28である。クライテリアに応じた天井の必要固有周期における成分については、倍率の平均は1.18〜1.41である。本検討で使用する地震観測記録の基礎入力動は、本論における入力地震動に比べて、平均的にやや大めの値となっている。

4.2 観測記録による天井の線形応答と非線形応答

観測された建物上階の地震記録を、天井の周期が式7, 8, 9によって規定される線形1質点系の天井モデル（減衰はそれぞれ3, 6, 9%)および1対のプレースの負担する天井面積が表5の各建物階の上段の値で規定される非線形1質点系の天井モデルに入力し、最大応答値をクライテリアと比較して図17に示す。また、応答値のクライテリアに対する余裕度（クライテリア／最大応答値）を表8に示す。線形の天井の場合、10種2方向の入力に対して余裕度は1.37〜2.02、非線形の天井（部分補強された天井）の場合は、余裕度は1.21〜1.85であった。前述の通り、本節で対象とした観測記録の基礎入力動は、本論で設定した地震動レベルに比べて平均的にやや大きいが、観測値の減衰が本論の設定より大きいために、天井モデルの地震応答変位は、前述の余裕を持ってクライテリアを満足したものと考えられる。
5 結論

本論では、1次設計レベルの地震に対して天井の変位のクリテリアを設定し、それらを満足させるために天井に必要となる諸元を定めるための手法について検討した。得られた知見を以下にまとめると。
1) 周期と建物階数に着目して建物モデルを設定し、その地震時応答加速度を線形の1質点系天井への入力としその応答を考慮しない場合について、変位のクリテリア（天井と吊り天井の相対変位、建物側の変形分は含まず）に対して天井に必要な固有周期に近似式（式7～9）として示した。1)
2) 建物モデルの地震時応答加速度を、部分的に弱められた在来工法天井の非線形1質点系天井モデルに入力した場合、変位のクリテリアに対する1対のブレースが持つできる天井座圧（質量密度16.5kg/m²）を表5に示した。
3) 上記の結果、複数階建ての建物の天井については、一般に上階ほど天井の応答は大きくなるが、モールの変形の影響と床天圭体の応答特性の影響を受けた、上下段の大きさ関係が逆転する場合があることを示した。
4) 本手法で得られたクリテリアに対する天井の必要諸元については、一部の妥当性を観測記録を用いて検証した。

参考文献
1) 日本建築学会：2011年東北地方太平洋沖地震災害調査報告書、2011.7
2) 西山功、伊藤弘、西田成友、梁一承：地下地震による体育館天井の落下被害の調査とその対策、日本建築学会論文報告集、第16号、pp.367-372、2002.12
3) 川口健一、吉田達、大塚ほか：新潟県中越地震と同様規模地質における大規模検討施設内の非構造材（吊り天井）被害の比較、日本建築学会論文報告集、第14巻第27号、pp.73-78、2008.6
4) 中島、北川則、かも：鋼構造のクラシックな天井における大規模検討施設内の非構造材（吊り天井）被害の比較、日本建築学会論文報告集、第14巻第27号、pp.73-78、2008.6
5) 中本、北川則、かも：鋼構造のクラシックな天井における大規模検討施設内の非構造材（吊り天井）被害の比較、日本建築学会論文報告集、第14巻第27号、pp.73-78、2008.6
6) 小林一、由利亜、荒井哲：鋼構造天井用を含む吊り天井の耐震性に関する研究、日本建築学会構造系論文集、第630号、pp.1295-1302、2008.5
7) 西山功、伊藤弘、西田成友、梁一承：在来工法天井及びシステム天井の動的加振実験、その1～2、日本建築学会大会学術講演概要、B-2分冊、pp.847-850、2002.8
8) 中本、元村正次郎、ほか3名：鋼製天井を用いた在来工法天井における流動の力学的特性に関する研究、その1～3、日本建築学会大会学術講演概要、B-1分冊、pp.843-848、2006.9
9) 杉山恵子、高木春、ほか9名：在来工法天井の吊り天井及び吊り天井の力学的特性に関する実験研究、その1～6、日本建築学会大会学術講演概要、B-1分冊、pp.227-238、2009.8
10) 船見宏彰、元村正次郎、ほか5名：在来工法による鋼製天井下天井の力学的特性に関する研究、その1～2、日本建築学会大会学術講演概要、B-1分冊、pp.911-914、2005.9
11) 藤尾利光、元村正次郎、ほか7名：鋼製天井下在来工法天井の動的性状、その1～7、日本建築学会大会学術講演概要、B-1分冊、pp.889-892、2010.9
12) 元村正次郎、佐藤幹男、川村伸夫、鋼製天井下在来工法天井の数値解析、日本建築学会大会学術講演概要、B-1分冊、pp.883-884、2010.9
13) 元村正次郎、佐藤幹男、川村伸夫、鋼製天井下在来工法天井における性能の数値解析、日本建築学会構造系論文集、pp.1355-1403、2014.9
14) 植田正尚、飯田信一、ほか5名：極大空間を有する在来工法天井の耐震対策工法の開発、日本建築学会大会学術講演概要、第18巻第39号、pp.465-470、2012.6
15) 秋山尚好、飯田信一、ほか6名：耐震性優れた新設計吊り天井の開発、その1～3、日本建築学会大会学術講演概要、B-1分冊、pp.504-506、2009.9、pp.873-874、2007.8
16) 益村雄二、元村正次郎、仲川英之、佐藤幹男、鋼製天井下在来工法天井の耐震性を向上させるための研究、その1～2、日本建築学会大会学術講演概要、B-1分冊、pp.777-780、2011.8
17) 金田幸雄、佐藤幹男、元村正次郎：強化されたクリーブを用いた在来工法天井に関する研究、その1、2、日本建築学会大会学術講演概要、B-1分冊、pp.877-880、2012.9
18) 吉村晃、岩下裕雄、ほか8名：耐震クリーブ工法の開発、その1～6、日本建築学会大会学術講演概要、B-1分冊、pp.391-394、2011.8、pp.1065-1070、2012.9、pp.683-684、2013.8
19) 涴木健雄、山田高、ほか9名：在来吊り天井下に用いる耐力に耐震プレースの開発、その1～3、日本建築学会大会学術講演概要、B-1分冊、pp.1011-1016、2013.8
20) 坂口健司、金子信弘、ほか3名：在来工法天井下天井の耐震性に関する実験研究、清水建設研究所報告、第86号、pp.29-28、2012.2
21) 坂口健司、田中啓光、坂口健司、金子信弘：耐震補強された在来工法天井の動的加振実験とシミュレーション解析、日本建築学会構造系論文集、pp.167-175、2015.1
22) 日本建築学会：建築物の減衰、2000
23) 日本建築学会：建築物の振動実験、1982
24) 日本建築学会：建築物の耐震設計資料、1981
25) 遠藤節郎：新設計耐震規準改正前後のPC建築物の耐震限界、日本建築学会施工研究会発表集、pp.347-350、平成7年6月
26) 金田幸雄：中高層鉄骨造建築物の固有周期と動特性、構造工学論文集、Vol.46B、pp.609-617、2003.9
27) 藤原克行、杉内光、入江康隆：地震観測記録に基づく51階建ス造建築物の動特性その1、2、日本建築学会大会学術講演概要、B-2分冊、pp.651-654、1992.8
28) 中村伸一、吉田瑞二、ほか3名：兵庫県南北部地震における精算センタービールの地震観測記録とシミュレーション解析、日本建築学会大会学術講演概要、B-2分冊、pp.715-716、1997.9
29) 日本建築学会：減衰データベース（http://news.wajj.or.jp/kouou/ s717.html）（参照2014.11.20）
30) 長崎順：新・地震動のスペクトル解析入門、鹿島出版会、1998
31) 高木豊、元村正次郎、ほか4名：鉄製吊り天井下天井の固有周期と安定期間での応答予測、鋼製天井下在来工法天井の動的性状その1、日本建築学会大会学術講演概要、B-1分冊、pp.883-884、2009.8
Various earthquake-proof ceilings have been studied recently, and the authors have developed a reinforcing method to improve the aseismic performance of conventional ceilings. The proposed method employs partial reinforcement only for the braces to be easily and economically applied into the conventional ceilings. The reinforced braces are able to increase earthquake-proof performance of the ceiling, and the necessary number of the braces for the ceiling area needs to be determined to fulfill the aseismic criteria.

In this paper, the authors have proposed a method to determine the necessary number of the braces for the ceiling area from the specified displacement criterion.

Table 1 shows the assumed parameters of building models. The story numbers of the building models vary one to 16. Three different relationships between the story number of a building model and the fundamental period are adopted in this study, as shown in Fig. 3. And a building model of the same story number is assumed to have 6 different storywise distributions of the story stiffness and mass as shown in Table 1. The earthquake responses of the building models are assumed to be linear, and the maximum acceleration responses are obtained for an artificial acceleration wave that is generated to be compatible for the assumed design response spectrum.

The obtained acceleration response of each floor of a building model is regard as an input wave for the ceiling, and the displacement response spectra are calculated from the obtained acceleration responses. When the ceiling can be regarded as a linear single degree of freedom system, the target fundamental period, T_{req}, for the specified displacement criterion can be determined from the displacement response spectra. The relationships between T_{req} and the fundamental period of the building, T_1, are expressed by approximation formulae in Eqs. 7 to 9.

When the ceiling is regarded as a nonlinear single degree of freedom system, the necessary number of the braces can be estimated based on the relationship between the supporting area for a set of the brace and the maximum earthquake displacement of the ceiling. The nonlinear ceiling model as shown in Figs. 6 and 7, time-history response analyses are carried out for a parameter of the supporting area for a set of the brace. The relationships between the supporting area for a set of the brace and the maximum displacement of the ceiling are demonstrated in Figs. 12 and 14. The upper limit of supporting area for a set of the brace is demonstrated in Table 5 for the specified displacement criterion, the story number of the building and the floor number of the ceiling.

The validity of the proposed method is verified by utilizing the observed earthquake responses of ten buildings subjected to the 2011 Tohoku Pacific Earthquake. Table 6 shows the story number and the structural type of each building. Those buildings are located in the areas of the seismic intensity 4.5 to 5.0. The observed earthquake records are input to the designed ceiling models for the displacement criterion of 10, 20 or 30 mm, and the maximum earthquake responses are compared with the criteria, as shown in Fig. 17. All of the maximum responses of the linear and non-linear ceilings with necessary braces are below the criteria and leave a good safety margin of 1.2 to 2.