微動の水平上下スペクトル比のピーク周期の空間変動と
表層地盤の不整形性の関係

RELATIONSHIP BETWEEN IRREGULARITY OF SEDIMENT-BASEMENT INTERFACE AND
SPATIAL VARIATION IN PEAK PERIODS OF HORIZONTAL-TO-VERTICAL SPECTRAL RATIO
OF MICROTREMORS

Kento MOTOKI, Tetetsu WATANABE, Kenichi KATO, Kojiro TAKESUE,
Hiroaki YAMANAKA, Masanori IIBA and Shin KOYAMA

We focused on spatial variation of horizontal to vertical spectral ratios (HVSRs) of microtremors as a proxy of an irregularity effect of sediment-base ment interface. We performed 3 investigations: 1) we evaluated coefficients of variation (CVs) of HVSRs' peak periods at 4 sites based on density mobile microtremor measurements, 2) evaluated sensitivity for CVs by numerical simulations for wave propagation with complex media, and 3) compared power spectral density estimated from CVs with that calculated from subsurface structure model. As a result, we found that CVs of peak periods were able to represent irregularities of sediment boundaries.

Keywords: Irregularity of geology, Microtremors, HV peak period, Spatial variation, Variation coefficient, Power spectral density

1. はじめに

地盤の境界面に不整形がある場合、地震波の焦点効果により1次
元波動論による地盤增幅よりも振幅が大きくなる場合がある（NIED, 2005年福岡県西部沖地震の際、被害が集中した裏磐固層周辺で、表
層地盤の不整形性により増幅的干渉が発生したことが余震観測によ
り確認されている）。地盤の不整形性は予測される地域において地震
動増幅の評価精度を高めるには、直下の地盤構造のみならず境界面
の深さ分布も調べる必要がある。

地盤の不整形性を調べるためには、地下構造の線または面的な
分布の推定が必要となる。不整形性を調べる評価手法として、多
数点での顕微観察（NIED）や、複数の測線で表面波探査（NIED）,
連続的な
微動アレイ測定（NIED）などが挙げられる。予め地盤の不整形性が予
測されている地域においては上記の評価が有効であるが、全てのサ
イトで同様な評価を行うことは経済的な面から効率的とはいえない。
不整形性が小さい場合は1次元増幅率と大きく変わらないことか
ら、詳細な調査の前に、地盤不整形性の有無を簡便に識別できれば、
地下構造探査の効率化が図れると考えられる。

簡便な地盤調査手法の一つとして単点微動があれば求められる。微動記
録の水平上下スペクトル比（以降、HVSRと呼ぶ）のピーク周期が
表層地盤の1次周期に近いことから、工学的基盤深さなどを推定す
るために補完的に利用されることも多い（NIED）。一様に傾いている層
境界面付近では、傾斜面に平行な水平方向のHVSRは、それを直交
する水平方向のHVSRよりも振幅が大きくなる特徴を有することが
報告されているが、それらは片流れなどの比較的単純な形状周辺
の特徴を含めており、山地地の埋め立てなど複雑な基盤形状に対し
ても同様な特性を有するかは明らかにされていない。

HVSRが直下の地下構造を反映しているならば、多地点で計測した
HVSRの変動により地盤の不整形性の大きさを表すことができる。不
整形な地盤において、HVSRに基づく地盤同定、微動アレイ測定
よりも簡便であるという研究結果もある一方で、地盤不整形性が

Kobori Research Complex Inc, Dr.Eng.
Kajima Corp.
Prof., Tokyo Institute of Technology, Dr.Eng.
Prof., Hokkaido Univ., Dr.Eng.
National Institute for Land and Infrastructure Management, Dr.Eng.
二 碼度周期の空間的変動の算出方法

本文論では微動記録から地盤モデルを介さず、微動のピーク周期の空間変動と地盤の不整形性の関係を調査する。空間変動の求め方の概念図をFig.1に示す。空間変動は、対象地点とある距離の周辺地点で測定した微動ピーク周期の変動係数 CV(h) (=標準値/平均)によって表現する。

\[CV(h) = \frac{1}{n_h} \sum_{i=1}^{n_h} (f(x_i) - \mu)^2 \] (1)

ここで、\(f \)はFig.1に示す中心と周辺の観測点、\(n_h \)は中心と半径\(h \)の範囲内の観測点数、\(T(\alpha) \)はピーク周期/平均ピーク周期を表す。\(\mu \)は平均ピーク周期を示す。以下で基準化した値なので、1となる。

3.観測記録に基づくHVSRSのピーク周期の変動

3.1 対象サイトと微動測定概要

地盤の不整形性の有無によるピーク周期の違いに焦点を当てているので、基盤が傾斜している地域と平坦な地域において微動測定した。具体的には、元木・他 (2016) で対象とした工学的基盤が平坦な2サイト (大和・観音) と、工学的基盤が不整形性を有している2サイト (大和・観音) を加えて、計4サイトを対象とする。追加したサイトの工学的基盤の深度とピーク周期分布をFig.2、3に示す。2サイトとも地形を造成したサイトであり、Fig.2中のハッチは法面を示す。

Fig.2の名張サイトではMS2地点でPS検層を実施しており、元木・他 (2013) にMWD検層とPS検層の比較が示されている。工学的基盤の深さはMWD検層によって求められたNp値に基づいている。Np値は標準貫入試験によって得られるN値に相当する値を表す。
Fig. 4 (a) Depth of Np25 and Np150 and location of microtremor measurements at Nabari site shown in Fig. 1, (b) observed HVSR and transition peak periods shown with broken thick gray line, and (c) simulated HVSR and transition peak periods.

Fig. 5 Comparison of CV of peak periods at 4 sites. The lateral axis, h(m) means interstation distances shown in Fig. 1. The black marks indicate the results at the irregular sites, and the gray ones indicate those at the flat sites.

Fig. 3(b) (a) (b) (c)
Fig. 6 Schematic image to construct subsurface structure models for numerical simulations.

Table 1 Soil physical properties.

<table>
<thead>
<tr>
<th>Layer and Material</th>
<th>VS (m/s)</th>
<th>VP (m/s)</th>
<th>density (cm/s)</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>220</td>
<td>1500</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>360</td>
<td>1900</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>460</td>
<td>2000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>2200</td>
<td>3300</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>800</td>
<td>2200</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>1200</td>
<td>2600</td>
<td>2.2</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Parametric study cases of numerical simulations.

<table>
<thead>
<tr>
<th>model name</th>
<th>relative slope angle to Model A</th>
<th>relative average depth of layer boundary to Model A</th>
<th>material of the deepest layer listed in Table 2</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model A</td>
<td>basic model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model B</td>
<td>flat only on the deepest boundary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model C</td>
<td>flat on all boundaries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model D</td>
<td>half slope angles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model E</td>
<td>1.5 times the slope angles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model F</td>
<td>1.5 times the model size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model G</td>
<td>2 times the model size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model H</td>
<td>different material of the deepest layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model I</td>
<td>different material of the deepest layer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7 Schematic image to construct Model A to G.
Fig. 8 (a) Distribution of observed peak periods, (b) peak periods simulated from Model A, and (c) Tz of Model A.

Fig. 9 Comparison of observed and simulated CVs of peak periods. The observed one is located between the results of Model A and B, and shows nearer the result of Model A than that of Model B.
Fig. 10 Comparison of CVs simulated among models by various slope angles. These models were constructed keeping the average depths of boundaries and model sizes.

- original size (Model A, X=1.0)
- 1.5 times the model size (Model F, X=1.5)
- 2.0 times the model size (Model G, X=2.0)

Fig. 11 Comparison of CVs simulated among models by varying model sizes. The lateral axis in (a) is set to be interstation distances and that in (b) to be the distances divided by the size rates.

Model A の結果に近い。
計算結果が現地観測記録と対応しない要因として、第 3 層と第 4 層の境界面の深度分布に関係ないことが、表層のVsが場所によって異なることなどが考えられる。境界面の深度分布に関してFig.9 の結果から考えると、第 4 層の上部は水平よりも第 3 層の上部の形状（第 3 層の厚さが一定）の方が近く、それよりもやや緩やかになっている形状が推定される。Model A の結果は現地観測記録よりも値が大きいものの、変動係数の全体的な傾向は再現していることから、以降の検討では、数値解析の結果を基に議論を展開する。

4.3 基盤傾斜や深さに対する変動係数の感度
パラメトリックスタディに基づいてピーク周波数の変動係数に影響するパラメータを整理する。まず、層境界面の傾斜を変動した Model A, C, D, E の結果を Fig.10 に示す。各モデルの結果は全て、55m まで変動係数が上昇し、55m より長い範囲で傾きが緩やかになる傾向はよく対応している。一方、変動値傾向によって明確に異なっており、変動係数の絶対値は層境界面の傾斜に対して温度が高くなることを表している。全ての層境界面を平坦とした Model C の結果は、約 2% と Fig.5 に示す大和サイトや航空サイトなど観測記録よりも小さい。また大和サイトを対象にシミュレーションした結果（元本・他、2016）のFig.16）と比較しても小さいことから、地盤モデルの違いに起因していると考えられる。

次に、モデルサイズの異なる Model A, F, G の結果の比較を Fig.11 に示す。左図は観測点間距離を横軸にとり、右図は観測点間距離を、サイズ倍率で除した値を横軸にしている。変動係数の絶対値はほとんど同じであるが、傾きが緩やかになる折れ曲がりの距離が異なっている（Fig.11(a)）。サイズ倍率で除した距離でみると、各結果はほぼ重なる（Fig.11(b)）。変動係数の積みが小さくなる距離はサイズ倍率に比例することから、不整形な層境界形状（以降、凹凸と呼ぶ）の水平方向の波長に関係すると考えられる。

最後に、地盤物性の影響を見ることで、速度コントラストに変化を与えたモデル Model A, H, I の結果の比較を Fig.12 に示す。Vs=800m/s の時の結果が Vs=1200, 2200m/s 時よりもやや大きいが、その差は
Fig. 14 Comparison between square root of semivariogram and CVs, which consist of simulated data of 9 cases.

Fig.10に示す地盤モデルの傾斜による差よりも顕著に小さい。従って、地盤の速度コントラストが変動係数に及ぼす影響は、地盤の不整形性による影響と比較して十分に小さく、考慮しなくても傾向は捉えられると考えられる。

以上の結果から、ピーク周期の変動係数の絶対値は地盤モデルの境界面の凹凸の振幅に、変動係数の傾きが変動する距離は境界面の凹凸の水平方向の波長に関係し、それらに比べ地盤物性は変動係数にほとんど影響がないことを明らかにした。

5. ピーク周期の変動係数と地盤の不整形性の比較

5.1 変動係数とパワースペクトル密度の関係

ピーク周期の空間変動を確率変数とみなし、地盤の不整形性との関係を検討するために、Fig.13に示すように両者をパワースペクトル密度に変換して直接的に比較する。このときの検討には、3章で行ったシミュレーションの結果と地盤モデルを用いる。

まずピーク周期の変動係数から、ばらつきを表す変動雑音の積分化を介して、パワースペクトル密度に導く。

変動係数 CV(h)の平均は、次式で示される。

\[
CV(h) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{n} \sum_{j=1}^{n} (T(x_i) - \mu)^2 \right) ^{1/2}
\]

ここで、\(N \) は変動係数が求められた観測点数、\(i \) はFig.1に示す中心観測点を表し、(1) 式から観測点数を平均化したものを示している。

セミバリオグラムの(h)も変動係数と等価になるように平均で除した値を用いて、CV(h)と比較できるように整理すると、以下の式で表現できる。

\[
\gamma(h) = \frac{1}{2} \sum_{i=1}^{N} (T(x_i + h) - T(x_i))^2
\]

ここで、\(N \) は距離 \(h \pm \Delta h \) にある観測点ペア数を表す。(3) 式の導出は付録に示す。\(N_{pe} \) は観測点数よりも多く、1つの観測点が複数回カウントされる場合も含め、(2)式も複数回カウントされる観測点がある。また、(2)式と(3)式が表現する量は、それぞれ々された距離範囲にある点の標準偏差と分散であるから、両式は次式で示す近似の関係にあると考えられる。

\[
\sqrt{\gamma(h)} = CV(h)
\]

Table 2に示す9ケースのシミュレーション結果を用いてセミバリオグラムの表面積と変動係数を求め、その関係をFig.14に示す。両者はよく対応し、近似的関係にあることが確認できる。

セミバリオグラムは自己関相関数によって、次式で表現できる21)。

\[
\gamma(h) = \frac{1}{2} E[T(x+h) - T(x)^2] - R(0) - R(h)
\]

\[
R(h) = E[T(x+h)T(x)]
\]

ここで、\(E \) は平均、\(R(h) \) は自己相関関数を表す。パワースペクトル密度と自己相関関数はフーリエ変換対にある。

\[
P(k) = \frac{1}{(2\pi)^{1/2}} \int R(x)e^{-ikx}dx
\]

\[
R(x) = \frac{1}{(2\pi)^{1/2}} \int P(k)e^{ikx}dx
\]

ここで、\(P(k) \) はパワースペクトル密度で、\(k \) は波数を表す。パワースペクトル密度は、変動係数から近似的に求められることが確認できた。

5.2 変動係数に有する地盤の不整形性の情報

ピーク周期と比較する地盤モデルの不整形性に関する変数は、周期と関係する量が望ましく、ここでは前述のTzとした。シミュレーション結果を用いて、ピーク周期とTzのパワースペクトル密度を比較する。(8)式を用いて積分できるようにピーク周期の変動係数を、関数形で表現された自己相関関数を用いて近似する。ここでは、自
Fig. 16 Comparison of power spectral density functions between normalized Tz of Model A and estimated one by optimized parameters with CVs of peak periods.

Fig. 17 Comparison of power spectral densities between normalized Tz and estimated by CVs. Left figure shows results by various slope angles and right one does those by various model sizes.

P(k) (m²)

0.01 0.1 10⁻³

10⁻² 10⁻¹ 10⁰

10¹ 10² 10³

10⁴

estimated from CV(h) of peak period (Gray)

Power spectral density of normalized Tz of the subsurface structure model (Black)

Estimated from CV(h) of peak period (Gray)

Power spectral density of normalized Tz of the subsurface structure model (Black)

CV(h)

spatial variance at inclined bedrock sites

additional variance due to the irregularity of subsurface layer

spatial variation at flat sites

Fig. 18 Schematic image in the difference of CVs of peak periods.

\[P(k) = \frac{4\pi \Gamma(k + 1) e^{-a^2/k^2}}{\Gamma(k) \left(1 - a^2/k^2\right)^{0.5}} \]

(10)

Tz のパワースペクトラル密度は、ピーク周期の変動係数と等価になるように次式で Tz' に基準化し、Tz' を 2 次元フーリエ変換して求めた。

\[Tz = \frac{Tz'}{E[Tz']} \]

(11)

ここで、E[] は平均を表す。ピーク周期の変動係数に基づく (10) 式による推定値と、Model A の Tz' のパワースペクトラル密度の比較を Fig.16 に示す。また、Fig.16 には観測点間距離の 2 倍を波長とした時の対応する波数範囲を示している。その波数範囲において、ピーク周期の変動係数からの推定値と Tz' の値はよく対応している。

基本モデルと同様に、傾斜を変更した地盤モデル（Model D, E）と、モデルサイズを変更した地盤モデル（Model F, G）に対して、ピーク周期の変動係数と地盤モデルの Tz' を波数領域で評価し、その比較を Fig.17 に示す。全てのモデルにおいて、ピーク周期の変動係数から推定した結果は Tz' とよく対応している。両者が対応する事、不整形地盤上のピーク周期と地盤モデルの凹凸の程度が類似していることを表している。

上記の知見と元木・他（2016）での結果から得られる、ピーク周期の変動係数と観測点間距離の関係の概念図を Fig.18 に示す。不整形性が 0、つまり境界面が平坦である場合に変動係数は 0 とならず、観測点と振動源の距離関係によって 5% 程度の値を持つことが確認されている。不整形性がある場合、ここでのケーススタディの結果（Fig.16, 17）において、パワースペクトラル密度でよく対応する事から、ピーク周期の変動係数に、地盤の不整形性が寄与していると考えられる。ピーク周期の変動係数は、境界面の傾斜に対しては異った高さの不整形性の有無によって観測値の結果が顕著に異なることから、ピーク周期の変動係数の大きさによって地盤の不整形性を考慮しなければならないサイトか、水平成層構造が近似できるかを識別する可能性がある。それは、例えば表面地盤の基盤傾斜の調査が求められている限界耐力計算の促進などにつながると考えている。地盤の不整形性を考慮すべきか否かの識別に関して、具体的な方法や基準については、今後の検討課題と考えたい。
6. まとめ
地盤の不整形性の有無を判断するための指標を検討するために、
単点微動のHVSRのピーク周波数の空間的変動を着目した。4 サイ
トの微動測定、不整形地盤モデルを用いた微動シミュレーション、
およびピーク周波数の空間変動と地盤モデルの不整形性の比較から以
下の知見を得た。

1. 微動観測結果に基づくピーク周波数の変動係数は、工学的基盤が
平坦なサイトと不整形地盤のサイトでも、距離に応じて増加し、
ある距離から傾きが小さくなる傾向が見られた。ピーク周波数の
変動係数の絶対値は、地盤の不整形性の有無によって大きく異
なり、±1 を考慮しても同様は重なり合わなかった。

2. 不整形地盤モデルを用いた数値解析に基づき、ピーク周波数の変
動係数の絶対値は地盤モデルの層界面の傾斜、変動係数の
傾きが小さい距離は地盤モデルのサイズ（層界面の形状
の波長） Influenced に影響を受けることを確認した。

3. セミリオグラムを介して、変動係数が近似的にパワースペクト
トル密度を表現できることを示した。ピーク周波数の変動係数か
ら推定したパワースペクトル密度は、地盤モデルのパワースペクト
ル密度とよく対応し、ピーク周波数の変動は地盤の不整形性
を表していることを示した。

以上の結果から、ピーク周波数の変動係数は、地盤不整形性の程度
を表し、水平成長構造に与えるかどうかの判断指標になりうる
と考えられる。具体的に実測については、不整形性が与える地盤高
幅への影響も考慮しながら、今後整理したいと考えている。

謝辞
計測サイトの場所は藤森工業株式会社三重事業所とタイコエレク
トロニクス合同会社から提供して下さった。本研究は、国土交
通省が実施した平成 22、23年度の建築基準整備促進事業による成果
の一部をフォローアップしたものである。測定作業は、東京工業大学
総合理工学研究科 山中研究室の津野靖士博士（現鉄道総合技術研究
所）、大学生に手伝っていただきました。また研究の開始
から、故三浦賢治博士に議論を頂きました。記してご協力く
ださった関係各位に謝意を表します。

参考文献
1) Ohori, M., K. Koketsu, and T. Minami, Seismic Responses of Three Dimensional
Sediment-Filled Valleys due to Incident Plane Waves, J. Phys. Earth, Vol. 40,
2) 元木健太郎・山中浩明・瀬岡和大・川嶋博: 2005 年福岡県西方沖の地震の
余震観測に基づく警戒断面周辺の不整形地盤による地震動特性の評価、日本
建築学会構造系論文集、第 602 号、pp.129-136、2006.4
3) 西脇二・後尾光・鈴木明徳: 写真要領: 回転打撃式ドリルを用
いた新しい地盤調査法、日本建築学会技術報告集、第 5 号、pp.69-73、1997.
4) 林弘一: 鈴木明徳・菅原秀雄: 入口震源を利用した表面波波検出の開発とその
土木調査への適用、応用地質技術年報、No.21, pp.89-99、2001.
5) 元木健太郎・渡辺哲史・加藤研一・武居正典・山中浩明: 震源変動:
地震波分析に基づく傾斜断面周辺の不整形地盤による地震動特性の評価、日本
建築学会構造系論文集、第 78 巻、第 688 号、pp.1081-1088、2013.6
6) 渡辺哲史: 加藤研一・武居正典: 地震波学: 工学的基盤の傾斜が表面波波増
幅特性に与える影響: 基礎的検討、日本建築学会技術報告集、第 36
巻、pp.455-458、2010.6
7) 浅野和之・岩田隆子・岩城篤文・美濃山隆・鈴木明: 地震および微動観測に
よる石川県小城郡穴水町における地盤震動特性、地震、第 2 輪、第 62 巻、
pp.121-135, 2009
8) Matsushima, S., T. Hirokawa, F. D. Martin, H. Kawase, and F. J. Sánchez-Sesma,
The Effect of Lateral Heterogeneity on Horizontal-to-Vertical Spectral Ratio of
Microtremors Inferred from Observation and Synthesis, BSSA, Vol. 104, No.1,
pp.383-393, 2014.2
9) Ueyabii, H., H. Kawabe and K. Kamea: Reproduction of microseism H/V spectral
features using a three-dimensional complex topological model of the
seismbed-bedrock interface in the Osaka sedimentary basin, Geophysical
10) 上林宏美・川辺秀憲・住江克宏・宮原 brunette: 岩盤面上部の傾斜が微動
に対するH/V比の基盤性とその表層付近の地盤構造の変動、日本建築学会構造系論文集、
第 74 巻、第 642 号、pp.1435-1440, 2009.8
11) 新井洋・上林宏美: 大阪狭溝盆地における微動束流型のH/Vスペクトル
逆解析による基盤構造の推定に関する研究、日本建築学会技術講演集、
B-2、pp.207-208、2013.8
12) 中川博人・中井正一: 岩面地盤が短期微動のH/Vスペクトルと分散曲線
を与える影響、日本建築学会構造系論文集、第 75 巻、第 656 号、pp.1827-
1835、2010.10
13) 元木健太郎・渡辺哲史・加藤研一・武居正典・山中浩明・飯田正紀・小山信:
地震の水平上部スペクトル比のピーク周波数に現われる時刻および空間変動
-工学的基盤が平坦なサイトにおける観測事例とその解析-、日本建築学会構造
系論文集、第 81 巻、第 721 号、pp.437-445、2016.3
14) 田野真明・大塚達夫: 常時微動の水平上部スペクトル比を用いる増幅係数
値の推定に適した基盤性とその適用、土木学会論文集、No.525 /1-33、
p.247-259, 1995
15) 新井洋: 堆積状況の不整形地盤を有する造成地盤の微動特性に関する一解析,
日本建築学会大震災学術講演集、B-2、pp.151-152, 2011.8
16) 佐藤美和・成田秀樹・山本健史: 常時微動に与える傾斜基盤のH/Vスペクト
ルと地盤動特性に関する検討、日本建築学会大震災学術講演集、
B-2、pp.145-146、2011.8
18) 佐藤明義・大川出・佐藤俊秀・藤田正喜・西川幸也: サイト固有の特性を
反映した実験に基づく南海トラフ地震の巨大地震に対する長期変動地震予
測、日本建築学会構造系論文集、第 79 巻、第 695 号、pp.157-166、2004.1
19) Davis, J. C., Analysis of Sequences of Data, Statics and Data Analysis in Geology,
pp.159-292, 2002
20) Sato, H., and M. C. Fehler, and Takuto Maeda, 2.3.2 Mathematical Description of
Random Media, Seismic Wave Propagation and Scattering in the Heterogeneous
参照
付録 セミリオグラムと変動係数の近似式に係る式の導出
本文のセミリオグラムと変動係数関数を関連付ける [3] 式の導出を以下に示す。
\[
\gamma(h) = \frac{1}{N_{pair}} \sum_{i=1}^{N_{pair}} [T(x+h) - T(x)]^2
\]
\[
= \frac{1}{N_{pair}} \sum_{i=1}^{N_{pair}} [(T(x+h) - \mu) - (T(x) - \mu)]^2
\]
\[
= \frac{1}{N_{pair}} \sum_{i=1}^{N_{pair}} [(T(x+h) - \mu)^2 - 2(T(x+h) - \mu)(T(x) - \mu) + (T(x) - \mu)^2]
\]
\[
= \frac{1}{N_{pair}} \sum_{i=1}^{N_{pair}} (T(x+h) - \mu)^2 - \frac{2}{N_{pair}} \sum_{i=1}^{N_{pair}} (T(x+h) - \mu)(T(x) - \mu)
\]
\[
= \frac{1}{N_{pair}} \sum_{i=1}^{N_{pair}} (T(x+h) - \mu)^2 - \frac{1}{N_{pair}} \sum_{i=1}^{N_{pair}} (T(x) - \mu)^2
\]
\[
= \frac{N_{pair}-1}{N_{pair}} \frac{1}{N_{pair}} \sum_{i=1}^{N_{pair}} (T(x+h) - \mu)^2
\]
\[
- \frac{1}{N_{pair}} \sum_{i=1}^{N_{pair}} (T(x) - \mu)^2
\]
\[
(A-1)
\]
An irregularly layered subsurface structure (hereafter irregular site) amplifies earthquake motions sometimes more than a stratified media (hereafter flat site) due to, for example, a focusing effect of seismic waves. An exploration of a depth distribution of a structural boundary is too costly at each site in practice. A preliminary examination is desirable to discriminate sites where an amplification factor can be approximately estimated with stratified media from irregular sites. Focusing on spatial variation of horizontal to vertical spectral ratios (hereafter HVSRs) of microtremors, we performed 3 investigations with respect to a relationship between coefficients of variation of HVSRs' peak periods (hereafter CVs) and effects of irregular interfaces of a subsurface structure.

First, we conducted densely mobile microtremor measurements at 4 sites, which consist of 2 irregular sites and 2 flat sites. The values of CVs on the irregular sites are significantly larger than those on the flat sites, and they can be obviously separated.

Second, in order to reveal the characteristics of shapes of sediment interfaces affected the values of CVs, we analyzed sensitivity to CVs by numerical simulations for wave propagation with complex media. The basic subsurface structure model was constructed based on results of the drilling method at Nabari site where mobile microtremor measurements were also conducted. CVs of simulated motions with the basic model are almost consistent with the CVs by the observation. We found that slope angles and wave number of irregular boundaries of layers respectively affected amplitudes of CVs and inflection distances making a smaller inclination of CVs.

Third, we compared CVs with irregularity of subsurface structure, using results of simulated microtremors and subsurface structure models. For a comparison, we converted CVs to a power spectral density (hereafter PSD) via a semivariogram. The PSD estimated from CVs showed a good agreement with the PSD calculated from the subsurface structure model in the wave number range corresponding to interstation distances of the CVs.

Through the above investigations regarding the difference of CVs of irregular and flat sites, we concluded that CVs can be a proxy to represent an irregularity effect of sediment interfaces.