建物・杭・地盤の一体モデルによる超高層 RC 造建物のシミュレーション解析及び想定地震時の耐震性能評価

SIMULATION ANALYSIS OF A SUPER HIGH-RISE RC BUILDING USING MOMENT-RESISTING FRAME SYSTEM INCLUDING PILE GROUP AND SURROUNDING SOIL AND SEISMIC PERFORMANCE EVALUATION FOR FUTURE SCENARIO EARTHQUAKES

酒井 美月*，永野 正行**，鈴木 賢人***，
北 堀 隆司****，田沼 敬彦*****，小 田 聡******

During the 2011 Tohoku earthquake, super high-rise RC buildings constructed in the coastal area of Tokyo Bay were suffered from strong shaking including long period components with long duration time. This paper describes dynamic behavior of a super high-rise RC building using the moment-resisting frame system mainly focusing on seismic performance of pile group. Earthquake motions recorded at 3 floors in the building during the 3.11 mainshock are well simulated by the 3-D frame model with piles and surrounding soil by using recorded motions obtained at the pile tip depth level. Piles stresses are also investigated considering flexure of foundation beams and past nonlinear behavior. Seismic performance evaluation for the future scenario earthquakes is also discussed mainly focusing on variation of stresses and curvatures of piles.

Keywords: Super high-rise RC building, Pile Foundation, Moment-Resisting Frame model, pile stress. The 2011 off the Pacific Coast of Tohoku earthquake

超高層 RC 造建物、杭基礎、立体フレームモデル、杭応力、2011 年東北地方太平洋沖地震

1. はじめに

2011年3月11日14時46分に東北地方太平洋沖地震（M9.0，以降「3.11本震」と記す。）が発生し，東京中心部でも短時間の長い震度5弱～5 強の地震動が観測された。首都圏に建つ多数の超高層 RC 造建物では目視で確認できるほどの顕著な構造被害は見られなかったものの、強震記録を用いた建物応答特性の分析 1から固有振動数の低下，またアンケート調査 2から家具の転倒や内装材亀裂等の室内被害が報告されている。首都圏に建つ超高層 RC 造建物の多くは，場所打ち RC 杭で支持された基礎構造となっているため，上部建物だけではなく杭を含めたモデル化により，今後発生が予測される大地震後の継続使用を念頭に置いた健全性評価が重要となる。

この研究は，首都圏の比較的軟弱地盤上に建設され，自由地盤を含む強震観測数は行われている超高層 RC 造建物を対象とし，3.11本震時，余震時，および想定地震時の上部建物・杭の耐震性能を評価するものである。その過程で，地下構造のモード化や3.11本震経験の有無による杭応答特性の違い等を含めて検討する。最初に，対象建物に対する地盤のモデル化と含む上部建物・杭基礎の3次元立体フレームモデル（以降，一体モデルと記す。）を構築し，3.11本震記録のシミュレーション解析を行うとともに，上部建物・杭の応答特性を調べる。この際，地下構造のモデル化や基礎梁剛性の違いによる杭応力分布の変動を検討する。杭の応力変動に関しては，近年では一様モデルを用いた検討も行われており，基礎梁剛性の違いによる影響 3や杭頭接合条件による影響 4など，詳細な分析の必要性が示されている。ただし，これらは主に中層建物での検討となっており，地下室を有しない大入力型の杭基礎を伴う超高層 RC 造建物を対象とした検討事例は少ない。木下 5は首都圏北部に建つ超高層 RC 造建物を対象に，3.11本震時の杭応力の検討を行っているが，Penzien 型モデルでの検討にとどまっている。また設計時や模型実験による検討では水平1方向の入力地震動を利用する場合が多い。実際の入力地震動は水平2方向に関与しており，建物記録を含む超高層 RC 造建物を対象とする場合，2方向入力が杭応力に与える影響を評価することも重要となる。

次に，3.11本震後に発生した余震時の建物応答を検討し，3.11本震の経験の有無が杭応力を含む応答特性に与える影響を評価する。本論文は首都圏北部に建つ超高層 RC 造建物を対象に，立体フレームに基づくシミュレーション解析を3.11本震・余震を対象に実施
した。その結果、3.11 本震時の非線形挙動の履歴を考慮しない場合には、その後に発生した余震記録の再現が難しいことを示した。一方、杭応答に関するこのような検討は現時点ですべても多くない。

3.11 本震を経験した首都圏に建つ超高層 RC 造建築に対し、杭応力含む建物の応答特性がどのように変化するかを調べることは、今後想定される南海トラフでの海溝型地震 ①や首都直下型地震 ②のような巨大地震発生時および発生後の耐震性を評価するうえで重要となる。極端な例ではあるが、液状化地盤に建つ免震建物を対象に行った杭損傷の有無が建物応答に与える影響評価も、実験と解析の両面から実施されている ③。そこで最後に、将来発生が想定される地震を検討対象とし、単独解析及び 3.11 本震と連続解析を行い、

2. 解析モデル概要

対象とする建物は、東京都中央部の近接した建物が建った地区においての RCA 造建築である。主用途は住宅であり、文献 5 での建物 D に相当する。対象建物の軸組図を図 1、基準階層図を図 2、杭伏図を図 3、設計図書による対象建物の基本情報を見た表 1 に示す。設計用ベース地震係数は 0.13 である。地上部の構造形式はラーメン構造である。本研究では EW 方向を X 方向、NS 方向を Y 方向とした。対象建物には強震計が設置されており、建物

表 1 設計図書による対象建物の基本情報

<table>
<thead>
<tr>
<th>各層の層情報</th>
<th>仕様</th>
<th>定温用途耐火性</th>
<th>重量物</th>
<th>設計用ベース地震係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1500</td>
<td>SD345, SD390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D35</td>
<td>SD295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D35</td>
<td>SD295</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 1 各方向の軸組図

図 2 基準階層図

図 3 抗伏図

3.11 本震経験後の上部建物、杭基礎の関係特性を、3.11 本震の入力レベルとの対比により明らかにする。
先端上下地盤ばねは2.56×10^6 N/mであり、ここでは簡単に杭位置に与らず同一の値として、非線形ばねは杭底水平地盤ばねのみに考慮し、Bromsの式より群杭効果を考慮しない極限地盤反力を算定し、
隔壁特性は両曲線モデルを仮定した。32

3.3.11 本震のシミュレーション解析

3.11 本震時の地盤応答解析を行う。最初に、図7に示す杭先端地盤（G.L.-19m）の地震観測で得られた2方向の水平記録を入力地震波として、自由地盤の応答解析を実施した。このとき得られた表層地盤の最大せん断ひずみと最大加速度、等価ス波速度の深度分布を図8に示す。最大せん断ひずみは0.1%以下、最大加速度も約100cm/s²
以下であり、3.11本震時には地盤の非線形特性によるS波速度の大きな低下は確認されていない。

杭はベネト工法による場所打ちRC杭であり、図3に示すようにφ1100とφ1500の杭が混在して配置されている。φ1500の杭は各杭位置に配置されているが、ここでは簡単に図3の1に示す杭

各杭の杭頭と基礎頂点間の接着条件はすべて剛とした。地盤のPS検層によるS波速度の深度分布を図4に示す。杭先端

杭底水平地盤ばね定数

杭の各節点にはX方向とY方向にそれぞれ杭周水平地盤ばねを付加しており、それらをX方向と

杭周水平地盤ばねはFrancisに基づく評価法32を用いた。PS検層によるS波速度に基づ

Francisに基づく評価法32を用いた。PS検層によるS波速度を基

杭先端地盤ばね

杭底地盤ばねは

図4 PS検層によるS波速度

図5 地盤ばねの配置概要

杭先端地盤ばね

杭底地盤ばね

杭先端地盤ばね

杭底地盤ばね

杭先端地盤ばね

(1) 加速度波形
(b) 速度応答スペクトル

図7 3.11本震時の杭先端入力波

杭底地盤ばねは1.63×10^6 kN/m²。杭
上記で得られた自由地盤応答を上部建物・基礎・杭の一体モデルの杭周水平地盤ばね外から入力した。自重解析の後、X 方向と Y 方向の 2 方向同時入力による地震応答解析を実施した。減衰は既往のシミュレーション解析⑫を参考に、建物－杭－地盤の連成系の一体モデルより算出した 1 次固有周期に対し 1 % とし初期剛性比例とした。

時間刻みは 1/200s とした。これは 1/1000s で実施した応答計算結果とほぼ同等であることを別途確認している。また本検討では、観測記録との整合をとるために、剛性調整をコンクリート強度の上昇で等価的に表した。前震記録や図 9 に示す B1F の 3.11 本震初動部については、コンクリートのヤング係数を平均で 1.37 倍とすることによって、観測記録を良好に説明することができた。一方、3.11 本震時の初動部が非線形挙動を含む最大振幅時の前部を同時に関測するように剛性等を物理的に調整することはできなかった。このため本検討では、最大振幅時の応答が等しいようにコンクリート強度を設計時の 0.8 倍（平均的なヤング係数は 0.92 倍）とした。各ケースにおける建物 1 次固有周期を表 2 に示す。

上記条件により実施した 3.11 本震時のシミュレーション解析結果のうち、R 階（4 階の屋根スラブ）、12 階、B1F 階で算定された加速度波形及び速度応答スペクトルを、観測記録と比較して図 10 に示す。加速度波形は振幅の大きい時刻帯を捉えたものである。B1F での記録は良好に再現されており、有効入力値が適切に評価されているものと判断される。R 階ではやや低めの値が見られるものの、他の階では観測記録の振幅や位相とも良好に対応した。速度応答スペクトルも観測記録と周期が良好に対応した。R 階での速度応答スペクトルから読み取った非線形応答でのピーク周期（X 方向 1.71s、Y 方向 1.54s）は初動時の建物－杭－地盤連成系の建物 1 次固有周期（X 方向 1.33s、Y 方向 1.19s）（表 2）に比べ約 3 倍大きく、部材非線形に伴う固有周期の変化が確認された。

上部建物の高さ方向の最大応答分布（最大絶対加速度、最大相対

<table>
<thead>
<tr>
<th>設計図書</th>
<th>初動時用モデル</th>
<th>最大振幅用モデル</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 方向</td>
<td>1.40</td>
<td>1.39</td>
</tr>
<tr>
<td>Y 方向</td>
<td>1.27</td>
<td>1.26</td>
</tr>
</tbody>
</table>

図 11 3.11 本震時の上部建物の最大応答分布
変位、最大層間変形角）を図 11 に示す。R 階での最大加速度は観測値よりもやや過小評価となっているものの、12 階での解析結果は観測記録と良好に対応している。最大相対変位は杭先端地盤に対するものである。基礎棟での最大相対変位はほとんど見られず、建物頂部で約 10cm 強の相対変位が生じている。12 階での最大相対変位を観測結果は観測よりも過小評価となっているものの、R 階では良好に対応した。最大層間変形角は約 1/400 rad となっている。

図 12 にブッシュオーバー解析により得られた各方向の層せん断力と層間変位の関係の一例を示す。図面では各層における初段降伏時のステップをマーキングすると共に、3.11 本震時の最大応答も記載した。いずれの層も、降伏耐力には至っていないことが分かる。

解析終了後の損傷分布図を図 13 に示す。ほとんどの柱、梁及び一部の杭にひび割れが生じている。ただし計算では残留変形も見られず、地震後に実施した建物内部の構造解析等の調査でも、目立たないひび割れ等は確認されていない。

3.11 本震を対象とした解析モデルでは、初期の振幅応答については計算の再現は難しいものの、主要部屋では建物応答の振幅レベルをある程度良好に再現できることが期待できる。また、後に示す 3.11 本震後の余震応答についても観測記録と解析結果が良好に対応していることから、連繰入力解析に対しても有効なモデルになっていていると判断した。

4. 3.11 本震時及びモデル条件の違いによる杭応力の検討
4.1 3.11 本震時の杭応力
3.11 本震時の応答解析により得られた Y1, Y3, Y8 通りにおける杭頭の最大曲げモーメント分布を図 14 に示す。なお、ここで示す杭応力は X 方向及び Y 方向について時刻歴上で合成し、その最大値とした。実際で示す「3.11 本震時（初期応答あり）」より、杭根に依存し各杭に生じる最大曲げモーメントが異なることが確認できる。対象建物は基礎棟の規模が大きいため、杭根域の杭位置による差は少なく、最大杭頭曲げモーメントは約 750 kN·m 程度であった。図に自重解析時および自重解析時の曲げモーメントを差し引いたときの最大杭頂曲げモーメント分布を示す。Y3, Y8 通りでは、X5, X6 の最大値が大きくなっているが、自重解析を差し引いた場合には、位置による違いが小さくなることから、この差異が自重解析時との曲げモーメントによる違いと推定される。自重解析時の曲げモーメントは中心部が小さい V 字形の分布となっているが、逆対称で符号が逆転しているため、地震動入力時杭の応力の重ね合わせによる、X5, X6 で大きくなったものと推定される。

隅杭（X1-Y1）、中央杭（X4-Y6）、辺杭（X4-Y9）の最大曲げモーメントの深層分布図を図 15 に示す。中央杭と辺杭で最大杭頭曲げモーメントの大きさが若干異なるが、辺杭の杭頭位置では地震応答時の軸力変動の影響を受け、ひび割れが発生しており（図 13 参照）、これのが最大応力の違いの原因となった可能性もあると考えられる。

辺杭（X4-Y9）の軸力を N X 方向の曲げモーメント M の応答履歴を、δ 1500 時杭下端最終耐力曲線 5) と比較して図 16 に示す。

今回の解析条件では、一部の杭でひび割れを始め、降伏応力には達していない。
4.2 解析条件の違いによる応答の検討

図17 3.11震時の条件変更による最大杭頭曲げモーメント比

図18 3.11余震時の先端入力波

5. 3.11余震のシミュレーション解析及び応答の検討

シミュレーション解析で仮位置による応答の違いを検討する場合には2方向入力の検討が必要となる。ここでは、地震動を2方向に同時入力したときの結果について、各1方向入力の応答に対する比を図17(c)、(d)に示す。なお、各応答は2方向合成値を示し、自重解析後初期応答を除いている。2方向入力に対する1方向入力の最大応答の比は、最小でX方向0.79倍、Y方向0.62倍となっており、どちらも過小評価されることになる。実記録に基づくシミュレーション解析では、2方向入力による検討が必須となる。

シミュレーション解析結果として、R層、12階、B1階の加速度波形、およびR層の速度応答スペクトルを観測記録と比較して図19に示す。加速度波形では、連続解析の時間横軸をとった。これは、図18の290から310に対応する。B1階の波形は、いずれのケースでもほぼ同じであり、建物への有効入力が良好に再現されている。一方、R層や12階の加速度波形では、単独解析に比べ連続解析の方が観測記録の位相及び振幅との対応が良好である。速度応答スペクトルでも、連続解析によるピーク値は観測記録をやや過小評価するものの、単独解析に比べ観測記録との対応が良好である。上部建物の最大加速度分布を図20に示す。連続解析では、当該地震入力時における部分だけを抽出し、その最大値を求めた。X方向ではR層及び12階で連続解析の方が観測記録値に良く対応した。

単独入力により得られた最大杭頭曲げモーメントを、連続入力の3.11余震部分のみから抽出した最大杭頭曲げモーメントで除した比を図21に示す。各応答は2方向合成値を示し、自重解析後初期応答は除いている。単独解析の方が最大で約1.27倍大きく評価された。この原因を調べるために、最も差が大きいX2-Y3のX方向杭頭曲げモーメントについて、最大値生起時刻を含む時刻歴波形を図22
に示す。連続解析と単独解析では、最大値発生時刻が異なる。図 19 (a) には、R 階の X 方向において対応する時間の加速度波形部分を点線で示している。単独解析では、298s 以降で長周期成分の振幅が大きくなくなっており、図 22 に示す振動曲げモーメントの変化と概ね対応する。これより、連続解析と単独解析の振動曲げモーメントの違いは、上部構造の加速度応答、すなわち建物慣性力の違いが原因と考えられる。これらの結果は、入力震源が発生した場合の応答を含む建物応答を正確に予測するには、3.11 本震を含む連続解析が必要となる場合もあることを示唆する。

6. 3.11 本震経験の有無による想定地震時耐震性能評価

前章では 3.11 余震を対象に、3.11 本震経験の有無による建物応答及び耐力への影響を確認した。ここでは、あらかじめ想定される想定地震を対象に、単独解析及び 3.11 本震との連続解析を行い、過去の実績例を考慮の有無による建物応答及び抗
応力への影響を明らかにする。検討対象は、南海トラフ4連動地震
によって大手町で想定された地震動 \( ^{11} \) 及び東京湾北部地震時に建物
建物位置で想定される地震動 \( ^{11} \) である。各入力波の加速度波形と速
度応答スペクトルを図 25, 図 24 に示す。これらは、想定する S 波
速度は異なるものの、いずれも工学的基盤位置で想定されたもので
ある。各入力波の最大加速度は、南海トラフ地震で 3.11 本震の約半
分、東京湾北部地震で 3.11 本震の約 4 倍となっている。

連続解析では 3.11 条件同様の入力方法とした。ただし、これらの
想定地震は解放工学的基盤で求められていることから、一度自由地
盤の解析により杭先端位置での地盤応答 \( E+F \) 波を求め、これを
連続解析もしくは単独解析に用いた。また、南海トラフ地震波は 1
方向のみであることから、単独解析では X 方向のみに入力し、連続
解析では 3.11 本震部分は 2 方向入力をし、南海トラフ地震部分には
X 方向に杭先端位置での地盤応答を入力し、Y 方向には加速度 0 の
地震波を入力した。各想定地震波の杭先端位置での地盤応答 \( E+F \)
波と 3.11 本震時 (GL-19m) の速度応答スペクトルの比較を図 25
に示す。3.11 本震と比較して、南海トラフ地震では 4 秒以上での長
周期成分でのピークが大きく、東京湾北部地震では比較的短周期側
でのピークが大きい傾向にある。

単独解析及び連続解析における上部建物の最大加速度、最大層間
変形角分布を図 26, 図 27 に示す。連続解析では、当該地震波入力
時の部分だけを取り出して、その最大値を求めた。南海トラフ地震
では、最大加速度は単独解析の方が最大 2 割程度、最大層間変形角
は連続解析の方が最大 1 割程度小さい。図 25 の速度応答スペクト
ルでは、南海トラフ地震の 2 秒前後で周期の増加によって応答レベ
ルが若干増加する傾向を示すことから、周期が短い連続解析時の
最大層間変形角が大きくなくなったものと考えられる。固有周期の延び
によって速度応答スペクトルは若干増加するが、加速度応答スペクト
ルは低減する。このため、連続解析時の最大加速度は、単独解析
に比べ逆に応答が小さくなる。一方、東京湾北部地震では、連続解
析と単独解析で応答結果はほぼ一致した。これより、過去に経験し
た応答を大きく上回る入力地震動の場合は、過去の地震経験の
影響は小さく、ほぼ単独解析による応答結果で最大応答等が推定可
能と考えられる。この傾向は既往の研究 \( ^{11} \) にも指摘されている。

南海トラフ地震時の単独, 連続解析による解析終了後の上部建物
の損傷分を図を図 28 に示す。なお、南海トラフ地震終了後の残留変
形はほぼ 0 である。3.11 本震に比べ、単独入力時のひび割れ発生は
少ないが、連続解析ではひび割れ発生が進展している。ここには示
していないが、東京湾北部地震終了後にはほとんどの柱、梁、杭に
ひび割れが生じ、さらに一部の柱にヒンジを確認した。なお、単独,
連続解析による遺は見られなかった。

各地震波入力時の最大杭頭曲げモーメント比 (単独/連続) を図
29 に示す。各杭応力は 2 方向合成値を示し、自重解析後の初期応力
は除いている。南海トラフ地震では単独解析の方が連続解析に比べ
最大約 1.4 倍程度大きく評価された。一方で東京湾北部地震では各
解析による杭応力はほぼ一致した。南海トラフ地震では連続解析も
単独解析も Kinematic 成分は同じであるため、上部建物の Inertial 成
分の違いが杭応力の違いを現す。上部建物の最大加速度レベルは、
単独解析の方が大きくなることから、上部建物の Inertial 成分の影響
により、単独解析での杭応力が大きくなる。

図 26 南海トラフ地震時の上部建物の最大応答分布

図 27 東京湾北部地震時の上部建物の最大応答分布

図 28 解析終了後の損傷分布図 Y4 通り (南海トラフ本震)
( ○はひび割れ ）
図25より、南海トラフ地震の建物破壊時に付加の入力レベルは3.11
本震と同程度である。これより、3.11本震の入力レベルよりも小さ
い、もしくは同等の地震波を対象とする場合、3.11本震ば
基盤変形の有無による物性値が異なり、慣性力の影響により耐震力に差が生
じる可能性が示唆される。一方で、東京湾東部地震のよう
い3.11本
震の入力レベルよりも大きい地震波を対象とする場合、3.11本震
ば基盤変形の有無による物性値及び耐震力への影響は小さいことが分
かる。連続解析による東京湾東部地震時の杭頭（X4-Y9）のM-N 度
歴曲線を図30に示す。この結果は単独解析も同じである。このとき
の耐震力は降伏耐力を超えるレベルとなっており、3.11本震や南海
トラフ地震よりも耐震応答を与える影響は大きい。

7. まとめ
3.11本震時に強震記録が得られた超高层 RC 造建物を対象に、地
盤のモデレートを含む上部建物・基盤の3次元立体フレームを構築
し、シミュレーション解析及び応答力の検討を行った。また、3.11 余
震及び想定地震を対象に単独及び連続解析による物性値及び耐震力
の違いを検討した。得られた知見を以下に示す。
1) 3.11 本震を対象に杭先端位置の地盤で得られた強震記録を入
力した解析結果は、建物の RF、12F、B1F で得られた観測記録
と良好に対応した。3.11 本震時の杭の降伏が確認されてい
かった。
2) 基礎の柔軟性及び耐力帯の有無による杭の降伏の検討では、
最大杭頭曲げモーメントの大きさは、基礎柔・壁なし基礎柔
・壁あり<基礎剛・壁なしの順で大きくなることを確認した。基
礎剛の柔軟性の有無による波形は既往の研究と同じに比べ、
その差異は小さかったが、これは対象建物の基礎柔軟性が
2500mm と大きいためと考えられる。
3) 3.11 余震を対象に単独解析及び3.11 本震との連続解析を行っ
た結果、連続解析の方が観測と良好に対応した。また、最大杭
頭曲げモーメントは単独解析の方が大きく評価された。これ
は、建物慣性力による違いが原因と考えられる。これらの結
果は、大地震経験以外の杭容の含む建物応答を正確に予測す
るように、3.11 本震を含む連続解析が必要となる場合もあるこ
とを示唆する。
4) 想定地震波を対象に3.11 本震経験考慮の有無による物性値
及び応答力の検討を行った。その結果、対象とする地震波が
3.11 本震の入力レベルよりも小さい、もしくは等同である場
合、3.11 本震経験考慮の有無により物性値が異なり、慣性
力の影響により杭応答に差が生じる可能性が示唆された。

首都圏に建つ既存超高层 RC 造建物の多くは、3.11 本震によりあ
る程度の損傷を受けたものと推定され、その特徴性は3.11 本震以前
から変化しているものと考えられる。層間変形の結果等でも見ら
れるように、単独解析が危険側の評価を与える結果も見られ、既存
建物の耐震性評価では3.11 本震による損傷を考慮した検討は必須と
なる。3.11 本震による建物への影響に関しても、地盤変形等が異な
るいくつかの建物を含み取り続き検討を進めるともに、将来的に
3.11 本震を上回る地震が発生した時も、継続使用を念頭に置き、長
期にわたる経時性を考慮した耐震性評価を行っていく必要がある。

謝辞
本研究を進めるにあたり超高层集合住宅地震観測会議研究会の皆
様に多くのご助言をいただきました。査読者からいただきましたコ
メントは原稿を修正する上で大変有益でした。ここに記して感謝の
意を表します。本研究は科研費基盤研究（CNo.25420589）（代表者:
永野正行）の助成を受けました。

参考文献
1) 永野正行、増田剛郎、他8名：2011年東北地方太平洋沖地震時の強震記
録に基づく関東・関西地域に建つ超高层集合住宅の動特性、日本建設学会
論文集 第12巻 第4号（特集号）、pp.65-79, 2012.9
2) 藤田則悟、永野正行：東日本大震災後の超高层集合住宅とアンケート調査
による室内被害と強震記録との関係から推定される建物応答、日本建築
学会構造学会論文集、第683号、pp.51-60, 2013.1
3) 木村拓、社本康広、松井浩幸、野原英之、鈴木順、中井正一：基盤構造
物の耐震性に及ぼす基礎剛性の剛性の影響、日本建築学会構造学会論文集、
第618号、pp.41-48、2007.8
4) 引田真紀子、酒向裕司、宮本裕司：基礎剛・杭と杭周辺地盤の非線形性
が杭基礎構造物の地震応答を与える影響、日本建築学会構造学会論文集、
第641号 pp.1241-1248、2009.7
5) 山本健史、保見英美、永野正行、藤田則悟、田沼英彦、渡辺一弘：軟弱地
盤に建つ超高层 RC 造集合住宅の地震被害評価と被害との対応-2011年
東北地方太平洋沖地震時の強震記録に基づく検討1、日本建築学会技術
報告集 第19号、pp.447-452、2013.6
6) 野口健雄、永野正行、藤田則悟、山本健史、保見英美、田沼英彦、渡辺一
弘：東北地方太平洋沖地震を超高层集合住宅の震災推定とその
後の耐震性能評価、日本建築学会構造学会論文集、第20巻、pp.44, pp.49-
54、2014.2
7) 中川祥雄、他7名：超高层建築物等への長周期地震動の影響に関する検討
-南高トラフ4 04 電磁波による超高层・非延性建物の応答解析1、建築学会
研究資料 No.147号、2013.9、http://www.kenkyu.go.jp/japanese/contents/
publishations/data/147/index.html（参照 2016.3.20）
8) 中央防災会議：中央防災会議「首都直下地震対策専門調査会」第12 回、
資料2-4 地震ワーキンググループ報告書、資料2-2 地震ワーキンググルー

---79---
9) 谷田日輝, 塚田剛典, 田村修次, 永田正行: 地震動強度と地震動特性が耐震構造物の応答に及ぼす影響, 日本建築学会技術報告集, 第 21 卷, 第 49 号, pp.995-1000, 2015.10
11) 丹山田孝司, 宮本裕司, 三浦典治: 多点での原位置採取試料から評価した表層地盤の非線形特性, 第 38 回地盤工学会研究発表会, pp.2077-2078, 2003.7
12) 日本建築学会: 建築物と地盤の動的相互作用を考慮した応答解析と耐震設計, 2016.2
13) 謙護史・森川和彦: 錠模方向を考慮した群杭効率の推定式の提案, 第 3 回日本地盤工学会研究発表会, pp.416-417, 2004
15) コンクリートパイル建設技術協会: 朽木の N-M 図・M-σ 図・せん断力図作成システム Ver3.4（COPITA 版）, 2014.3
16) 酒井美月, 永田正行, 北橋隆司, 田沼賢彦: 建築物・杭・地盤の一体解析モデルによる超高層 RC 造建築のシミュレーション解析と基盤の逆解析による杭応力の検証, 日本建築学会大会学術講演概要, 構造Ⅱ, pp.245-246, 2015.9
17) 井山貴男, 内山風志, 牛垣和正, 千葉大輔, 村村義文, 佐藤健: 東北地方太平洋沖地震における仙台市内の中層鉄骨鉄筋コンクリート造建築の地震応答特性, その 2, 本震時の損傷状態の検証と連続した地震入力に対する応答性状, 日本建築学会大会学術講演概要, 構造Ⅱ, pp.1121-1122, 2012.9
During the 2011 off the Pacific Coast of Tohoku earthquake (the 3.11 main shock), Tokyo metropolitan area was suffered from long period ground motions with long duration generated from widely spread seismic fault rupture in east Japan Sea area. Indoor damages including slippage and overturning of huge furniture and cracks in wallpapers were reported in super high-rise RC buildings. In the metropolitan area, most of these buildings are constructed on soft deposit and supported by pile groups supported by engineering bedrock. Precise estimation of seismic response of piles is also required for the 3.11 main shock and future massive earthquakes, as well as damage estimation for upper structure.

This paper describes dynamic behavior of a super high-rise RC building constructed in Tokyo area mainly focusing on seismic performance of pile group. The 3-D moment-resisting frame model including basement and pile group is constructed for the super high-rise residential building where seismometers are equipped at 3 floors. After the 3-D model is validated by comparison with observed records during the 3.11 main shock, pile stresses are evaluated along with nonlinear responses of the superstructure. Structural responses and pile stresses are also calculated for the 3.11 aftershock and future massive earthquakes focusing on whether the building has experienced the 3.11 main shock or not.

Conclusions are summarized as follows:
1) The strong motion records during the 3.11 main shock observed at 3 floors of the target building are well simulated by the nonlinear response analyses for the 3-D moment-resisting frame model with piles by using records at pile tip level as the input motion. Pile stresses have not reached to yielding stress level during the 3.11 main shock.
2) Bending moments at pile heads under assumption of rigid foundation beams are larger than those for beams considering their flexibility. On the other hand, differences between two are smaller than those in the previous studies, because footing beam depth in the target super high-rise building is larger than that for low or middle-rise buildings.
3) The observed records during the 3.11 aftershock were well simulated by temporarily consecutive seismic response analyses after the 3.11 main shock, rather than independent analysis. Pile stresses during the 3.11 aftershock were also overestimated for temporarily independent seismic response analyses, because of the overestimation of upper structural responses resulting in increase of the inertial force applied at pile heads.
4) Structural response and pile stresses are estimated for the future scenario earthquakes, the Nankai Trough earthquake and the northern Tokyo Bay earthquake, focusing on experience of the 3.11 main shock. If the input level of the future earthquake is smaller or almost equal to that the 3.11 main shock, estimation of piles stresses could be different for experience of the 3.11 main shock due to difference of the inertial forces.