大断面横架材を有する2スパン伝統木造軸組の耐震要素配置と力学特性

ARRANGEMENT OF EARTHQUAKE RESISTANT ELEMENTS AND STRUCTURAL PROPERTIES OF TWO-SPAN TRADITIONAL WOODEN FRAMES WITH LARGE SECTION BEAMS

井立直人*，多幾山 法子**

Naoto IDATE and Noriko TAKIYAMA

This paper presents the results of static cyclic loading tests and simulation analysis for four types of traditional wooden frames in order to understand the seismic performance of frames with uneven large section beams (Sashigamoi) and to clarify the influence of the beams and shapes of fitting-type joints on the behavior of the whole frame. Major findings are as follows: (1) In the static loading tests, two-span frames underwent column splitting or column breaking more readily and with smaller deformation than in the case of one-span frames. In addition, the shear forces exhibited directional dependence, which is attributed to the asymmetry of the frames or the shapes of the column-beam joints. (2) A method for modeling traditional fitting-type joints was developed, and analysis results were in good agreement with the test results. (3) Based on parametric studies, the smaller the beam height distance, the smaller the difference in the restoring force with the loading direction.

Keywords: Traditional Wooden Structures, Sashigamoi, Static lateral Cyclic Loading Test, Story Shear Force, Nonlinearity Displacement Incremental Analysis, 伝統木造建物，差圧，静的水平加力実験，層せん断力，非線形変位増分解析
2. 静的水平力加力実験概要

2.1. 試験体概要

試験体の詳細を図1. 各部材の諸元を表1. 実験時の部材含水率を表2に示す。試験体は1820 mm × 2730 mmを基本寸法とし、1 スパンの軸組試験体Fと差鴨居試験体S1に加え、2 スパンで差鴨居の配置高さを同じ試験体S2、配置高さが極端に異なる段違い試験体 S3の計4体とする。試験体は、柱（スギ、120mm角）、桁（ベイマツ、120×244mm）、上台（ベイマツ、120mm 角）、差鴨居（ベイマツ、120×270mm）、下すす（ベイマツ、15mm 角）から構成される。柱頭、柱脚、差鴨居接合板のほぞは栓締めとした。次に、柱頭カバーの下部、柱脚カバーの下部、及び柱頭カバーの上部に鉄筋を配置した（図2）。また、試験体は1/20rad、1/75rad、1/10rad、1/15rad、1/20rad、1/10radの順に2回ずつ繰り返し、最大変形角1/5rad、もしくは水平抵抗力を喪失するまで加力する。また、柱頭差鴨居及差鴨居下部から200mm離した柱側面にひずみゲージを貼付し、モーメント推移を差鴨居の軸方向変位を測定する（図2）。さらに、接合部で部材の両端に設置した接面変位計で、直交部材軸までの相対変位を計測（図2）。接合部回転角を求める。

2.2. 加力・計測システム

加力システムを図2に示す。試験体土台はアンカーボルトで鉄骨架台に固定し、柱1本あたりの上載荷重が比較的大きい地域の建物を参考にし、上載荷重は1本あたり1tとする。試験体頂部に設置した治具を介し、負荷点幅を増加させ加力を行。加力方向は面内左方向を正とする。なお、加力方向正側の柱を前柱、負側の柱を後柱。又は2 パスブ試験体の中央を柱と呼ぶ。試験体頂部の加力位置に荷重セルを設置し、試験体の水平抵抗力を計測する。試験体頂部の回転 vmax をウエイン変位計を用いて計測する。反対位置を柱の内法高さ H で除した値を試験体の屈曲変形角 R と定義する。加力は R の振幅 1/120, 1/100, 1/75, 1/50, 1/30, 1/20, 1/15, 1/10, 1/8, 1/6 rad の順に2回ずつ繰り返し、最大変形角1/5rad、もしくは水平抵抗力を喪失するまで加力する。また、柱頭差鴨居及び差鴨居下部から200mm離した柱側面にひずみゲージを貼付し、モーメント推移を差鴨居の軸方向変位を測定する（図2）。さらに、接合部で部材の両端に設置した接面変位計で、直交部材軸までの相対変位を計測し（図2）、接合部回転角を求める。

3. 実験結果

3.1. 試験体損傷状況

代表的な損傷を写真1に示す。また、S1、S2、S3 試験体の1/20 ～1/5rad までに生じた曲げモーメントと損傷の進展を図3に示す。なお、●は目標変形角で生じた新しい損傷。○は損傷状態を表す。F 試験体では加力中に目標変形角を達成できなかった。しかし、解体後に確認したところ、柱頭と柱脚のほぞが損傷した。また、解体後に柱頭差鴨居接合部の川崎変位計で損傷が生じた。1/5rad から1/10rad にかけて後柱の柱頭ほぞが損傷した。1/6rad では後柱の柱頭と後柱の差鴨居接合部の川崎変位計で損傷が生じた。また、限界時に全柱差鴨居接合部の川崎変位計で損傷が確認した。

| 表1 部材一覧
<table>
<thead>
<tr>
<th>部材</th>
<th>材種</th>
<th>機械等級</th>
<th>木取り</th>
<th>断面寸法</th>
</tr>
</thead>
<tbody>
<tr>
<td>柱</td>
<td>スギ</td>
<td>E90</td>
<td>心材</td>
<td>120mm 角</td>
</tr>
<tr>
<td>桁</td>
<td>ベイマツ</td>
<td>E110</td>
<td>心材</td>
<td>120mm×240mm</td>
</tr>
<tr>
<td>上台</td>
<td>ベイマツ</td>
<td>E110</td>
<td>心材</td>
<td>120mm×240mm</td>
</tr>
<tr>
<td>左差鴨居</td>
<td>ベイマツ</td>
<td>E110</td>
<td>心材</td>
<td>120mm×270mm</td>
</tr>
</tbody>
</table>

| 表2 実験時の部材含水率一覧
<table>
<thead>
<tr>
<th>試験体</th>
<th>含水率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>14.1 11.8</td>
</tr>
<tr>
<td>S1</td>
<td>13.3 10.6 7.84 13.1 15.6</td>
</tr>
<tr>
<td>S2</td>
<td>11.5 8.0 8.34 6.67 12.3 14.5 14.1</td>
</tr>
<tr>
<td>S3</td>
<td>8.17 12.5 8.34 7.67 8.0 12.5 15.6</td>
</tr>
</tbody>
</table>

| 表3 柱の材料強度一覧
<table>
<thead>
<tr>
<th>試験体</th>
<th>曲げ強度 (N/mm²)</th>
<th>縮小強度 (N/mm²)</th>
<th>曲げ歪り係数 (kN/mm²)</th>
<th>縮小歪り係数 (kN/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>11.0 7.57</td>
<td>12.9</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>10.7 7.56</td>
<td>12.9</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>10.6 7.55</td>
<td>11.2</td>
<td>8.47</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>10.5 7.54</td>
<td>10.0</td>
<td>8.46</td>
<td></td>
</tr>
<tr>
<td>本文</td>
<td>12.5 7.53</td>
<td>10.0</td>
<td>8.51</td>
<td></td>
</tr>
</tbody>
</table>

——248——
S2試験体では-1/15radで中柱の差鴨居接合部下端から繊維直交方向にひび割れが生じ、加力が進むにつれて割れが進展した。+1/10radでは差鴨居の前柱側はその曲げひび割れが生じ、-1/10radでは全柱脚はその曲げ、後柱の柱頭での繊維方向への割れ、はその位置が生じ、-1/8radで前柱を貫くひび割れ、後柱の差鴨居接合部の下端から繊維方向への割れが生じはじめ、+1/6radでは後柱の柱頭が負側に発生し、初期位置に戻らなくなった。-1/6radでは、後柱で柱頭と差鴨居接合部の下部の割れが発生、中柱で右差鴨居が端抜けした。また解体後に全柱差鴨居接合部の下の損傷の破断を確認した。
S3試験体では+1/20radから+1/10radにかけて全柱の柱頭がひび割れした。+1/10radでは、中柱右差鴨居接合部の下端から繊維方向に割れ、中柱右差鴨居がひび割れが生じた。-1/10radでは後柱差鴨居接合部の下端から繊維方向に割れが生じ、+1/6radでは後柱が差鴨居接合部上端から端抜けし、中柱右差鴨居は端抜けした。また、解体後に全柱差鴨居接合部の下の損傷の破断を確認した。

3.2. 復元力特性
図4に復元力特性とP-A効果を除去した層間変形角度を示す。
F試験体は1/30radで最大抵抗力P_{max} = 1.03kNを示して以降、緩やかに低下し、1/10radで喪失した。
S1試験体は1/30radでP_{max} = 1.38kNを示して以降、緩やかに低下し、1/6radで後柱の差鴨居接合部の割れが柱頭に伴い水平抵抗力が大きく低下して喪失した。
S2試験体は1/20radでP_{max} = 1.46kNを示し、1/10radでの後柱の柱頭の割れとその破損、1/8radで後の柱の差鴨居接合部の割れに伴い、水平抵抗力は大きく低下した。また、水平抵抗力は負側加力よりも正側加力で大きな値を示した。
S3試験体は1/20radでP_{max} = 4.66kNを示して以降、緩やかに低下し、1/6radの後柱端抜けに伴い倒壊時に喪失した。また、水平抵抗力は負側加力よりも正側加力で大きな値を示した。
3.3. 試験体層間変形角R一接合部回転角θ関係（2スパン試験体）
S2試験体とS3試験体の試験体層間変形角R一接合部回転角θ関係を図5に示す。なお、S2試験体の中柱差鴨居接合部は差鴨居の端抜けに著しく値が変化したため、データの一部を除いている（図5e）。また、接合部回転角θは時計回りを正とする。
両試験体の柱頭接合部において、層間変形角Rと接合部回転角θは概ね等しいが、S2試験体の中柱の接合部において、θがRを若干下回った。
S2試験体の柱頭接合部は、全柱において加力方向によらず接合部
回転角 θ が側面変形角 R を若干上回った。一方、ほうぞ折損前の柱頭接合部では、正側加力時には前柱、負側加力時には中・後柱において、θ が R を下回った。ほうぞ折損後には、中柱で θ と R の差が広がり、前後柱では θ と R が概ね等しくなるよう変化した。

S3 試験体の中柱の柱頭・柱脚接合部は接合部回転角 θ と層間変形角 R が概ね等しい。また、前柱の柱頭接合部では、正側加力時に θ が R を下回り、負側加力時には逆転した。しかし、柱脚接合部では、正側加力時に θ が R を上回り、負側加力時には逆転した。一方、後柱の柱頭・柱脚接合部では、前柱と真逆の現象が生じた。

両試験体の接合部回転角 θ を比較すると、S2 試験体の方が S3 試験体よりも試験体損傷による影響が大きい。

4. 2 スパン架橋に生じる現象
4.1. 柱の折損
S2 試験体の中柱は、$-1/15$rad 時に生じた曲げモーメントが後柱より小さいにも関わらず、柱のほうぞ穴下端から折損した。しかし、柱の断面変位を考慮しても絶対加速度は材料強度 (表 3) を下回り、折損した根拠は得られない。木材は部分圧縮を受けると繊維が分断するが、中柱では両端変形から突張力を受け、その繊維分断を利用して斜面に破傷が生じたことが推察される。圧縮の必要を約 30% に低減して絶対加速度を求めた場合、絶対加速度より柱は折損すると推定される。ただし、部分圧縮を受ける部材の断面変形の低減率に関しては今後検討する必要がある。
4.3. 界限耐力計算に基づく単純加算されたせん断力と実験値比較

マニュアル 58) で示される従来の水平抵抗力（設計値）を図 4 に併載する。F 試験体と S1 試験体ではなく設計値との比較が進捗されることを考慮した。しかし、S2 試験体の実験値は、正側では設計値と比較的近いものの、負側では設計値より低めのせん断力で剛性低下した。主な原因として、(a) 差鶴居の両ほど形状が異なることや右差鶴居の中柱側ほどが無いことで、加力方向で抵抗力が異なりること、(b) 前後の差が著しくなること、(c) 前後差を増やすとともに差鶴居に生じる軸力が 1 スパン架橋より大きくなること（図 6, 7(a), 7(a)) が考えられる。

S3 試験体の正側加力時には実験値は概ね近いが、負側では実験値より大きく下回った。前述のとおり、差鶴居が段違いに配置されたことにより、加力方向によって、両差鶴居の突張力が加わる力点間距離が全ての曲げ変形において中柱に生じるせん断力が大きく変化することに起因すると考えられる。

5. シミュレーション解析と検討解析

5.1. 解析方法と解析モデルの構成要索

大断面構架を有する架橋の統合型接合部を現実的解析モデルを提案し、静的水平加力実験のシミュレーションとして非線形変位増分解析を行い、積分検証を行う。なお、解析においては、材料非線形と幾何学的非線形を考慮する。

バイアス型の復元力を持つね練を設定し、以下の仮定に基づいた解析モデルを構築する 59)

a) 大変形領域を考慮、変形は材面に集中する、または、折断や端抜けなどの損傷の発生、は単に応力を確認して判断する。
b) 抵抗要素、へり込みと摩擦、圧縮のせん断抵抗とする。

c) 压縮荷重は縦軸せん断方向に生じ、傾斜方向は剛体とする。
d) はねで生じるへり込みで、三角変形へり込み 60) とし、はねのへり込み長さはその半分とする。

e) 摩擦抵抗は不要であると設ける。摩擦係数すくえ摩擦とす
f) 反力に対する 2 誠実断 61) を考え。
g) バネは圧縮のみ作用し、パネ特性は文献 18) に準拠する。
h) 各材は軸線上に線材置換する。
5.2. 抵抗要素の復元力特性

めり込み抵抗力は、三角変位めり込みを仮定する[4]。材端に変形が集中すると仮定した場合の材端に生じるめり込み圧力の関係、降伏変形角θdは次式で表される。

\[\Delta p = \frac{2}{3} x_0 y_0 \left(\frac{1}{2} - \frac{2 \sigma_0}{3 x_0} \left(1 - \exp \left(- \frac{3 x_0}{2 \sigma_0} \right) \right) \right) \delta \]

ここで、文献18）に従って、諸寸法x_0, y_0, l, H, 係数C_{x0}, C_{y0}, C_{x}, C_{y}

\[\theta_d = \frac{x_0 y_0}{2} \sqrt{\frac{C_{x0} C_{y0} C_{x} C_{y}}{2 \sigma_0}} \]

0.6, 0.8 摩擦 0.4 から次式で求められる。また、降伏変形角は、式(2)に等しいとする。なお、柱側面と柱面の摩擦は、すべり摩擦、土台表面と柱面の摩擦はすべり摩擦とする。

\[F = \mu P \]

込斜め断抵抗力の 2 面せん断剛性K1 と降伏耐力Pの次式のようになると計算される。ただし、主材（はさぎ）と母材（木）で、片側剛性K_{x}, K_{y}および摩擦係数μによる荷重Pは文献18）から算出する。

\[K_1 = \frac{2K_x K_y}{K_x + K_y} \]

\[P = \min(P_1, P_2) \]

以上より算定した抵抗抵抗の復元力モデルについて、差動力はひずみを最大降伏（後述の図11 (a)）、柱側面と差動力の摩擦抵抗（図11(d)）、差動力接合部で込斜め断抵抗（図11(e)）を例として、S1試験体用柱の材料特性値に基づき算出したものを図10 に示す。

5.3. 接合部に働く抵抗力のモデル化

正側加力において差動接合部で生じる抵抗力のモデル化手順

正側加力時に差動接合部で生じる抵抗力のモデル化手順を次に示す。

1. 柱と差動部に節点を設け、節要素を結ぶ（図11 (a1)）。
2. 柱と差動部を上端の接面要素から、柱の外線にリッドリングを設ける（図11 (a2)）。
3. リッドリングと差動部はひずみを生じる箇所の節点をめり込み抵抗力で連続する（図11 (a3)）。
4. 接合部が変形するとボネに圧縮力が働く（図11 (a4)）。

5.4. シミュレーション

解析結果と実験結果の比較を図12 に示す。

初期剛性は全体構造において既知である。各試験においては、主構造および附属構造に付着している場合が多く、差動部および附属構造において、1/10rad 付近までゆるい距離で復元力の測定を試みている。しかし、S2 試験体の正側加力時には実験時に1/10rad 付近で柱のひずみが摩擦し、それ以降、解析値と大きく乖離している。解析終了後

に部材応力を確認したが、柱の形状は解析に至らなかったことがわかった。解析においては部材の応力が十分考慮されていないことが考えられる。一方、S3 2 試験体の1/6rad で生じた柱の解析は解析終了前に部材応力より計画された。

損傷による影響が生じる前の曲げモーメント分布状態を比較するため、実験時に損傷が確認された1/20rad 時の曲げモーメントの解析結果を図3 示す。全試験体で同様の傾向が見られ、差動接合部では解析結果が実験値を上回ったもので、実験結果を概ね評価できたことが見受けられる。

5.5. 差動接合部の破壊力のモデル化

差動接合部構成要素の破壊に影響を及ぼすために、解析を行う。解析の目的は以下の3ケースを実施する。

【ケース1】 S1 試験体の差動部の破壊力をパラメータとして、S3 試験体の正側加力破壊を許容した検討を行う。

【ケース2】 S3 試験体の架格解析用に、柱内法残高を柱間寸法で除したものを使用した解析を行う。
ケース3 S3試験体の差鴨居配置高さ間隔をパラメータとし、左
差鴨居を固定したまま右差鴨居配置高さを上昇させる。なお、両柱
差鴨居接合部の接触を回避するため、右差鴨居上端が左差鴨居下端
より25mm下に到達するまでを右差鴨居の上昇範囲とする。
解析結果を図13に示す。ケース1では、差鴨居高さを下げていく
と大変形時には復元力が若干異なるが、大きな差異は見られない（図
13(b)）。ケース2では、限界耐力計算のマニュアル5.4と同様に、架
構アスペクト比の増大に従って、復元力は低下する傾向が確認でき
た（図13(c), (d))。また、ケース3では、差鴨居配置高さ間隔を狭
めると、正側加力時には復元力が若干増加し、負側加力時には若干
低下することで加力方向による復元力の差が減少した（図13(e),(f))。

6. まとめ
本論では、大断面横材で差鴨居の有無、配置高さをパラメータとし
て、1スパン試験体2体と、2スパン試験体2体（差鴨居を
対称配置した架構、段違い配置した架構）について静的水平加力実
験を実施し、差鴨居配置や接合部形状が架構全体の力学特性や破壊
性状に与える影響を把握した。さらに、架構型接合部を簡易な解析モ
デルで表し、シミュレーションを通じて精度検証を行った。最後に、
差鴨居の配置に着目した複数解析を行った。
得られた成果を以下に示す。

a) 2スパン架構では、1スパン架構よりも側柱の変形量が増加し、
柱-横梁材接合部において柱の折損など致命的な損傷が生じやす
い。また、耐力要素配置や接合部形状が異なることによる非
対称性に起因して、加力方向によってせん断力に差が生じる。

b) 2スパン架構は、柱-差鴨居接合部の断面欠損部で柱が折損し、
対称架構の中柱は、両側差鴨居から与えられる突張力で部分圧縮
が生じたことで折損したと考えられる。段違い架構の後柱は、
橋梁から生じた断面剪断及び差鴨居の突張力による部分圧縮に起因
して折損したと考えられる。

c) 対称架構では、加力方向先頭の柱がせん断力を多く負担したが、
段違い架構では正側加力最後尾の柱でもせん断力を多く負担す
る場合がある。本論の試験体では、正側加力時に側柱、負側加
力時には中柱がせん断力を多く負担した。

d) 大断面横材を有する架構の復元力を表現可能な解析モデルを
構築し、概ね精度よく再現できることを確認した。

e) 感度解析より、1スパン架構の復元力は差鴨居の配置高さに依ら
ないこと、2スパン段違い架構の差鴨居配置高さ間隔を狭めると、
加力方向による影響力の差が減少することを明らかにした。

謝辞
本研究は一般財団法人住友総研 2014年度研究助成（代表者：多嶋山
法子）、アジア高度研究 アジア地域の風土と社会に根ざした持続可
能都市建築の構築技術の補助の下で遂行した。材料試験に関して、
科学研究費補助金基盤研究A(No.15H02275）（代表者：林俊輔）の補
助を受けた。実験に関して、首都大学東京都市環境学部教授の山田
幸正氏、近畿大学工学部教授の松本慎吾氏、香川大学工学部講師の
宮本慎氏、首都大学東京都市環境学部建築都市コースの元学部
生から多大な助言を頂いた。ここに記して感謝の意を表す。
ARRANGEMENT OF EARTHQUAKE RESISTANT ELEMENTS AND STRUCTURAL PROPERTIES OF TWO-SPAN TRADITIONAL WOODEN FRAMES WITH LARGE SECTION BEAMS

Naoto IDATE* and Noriko TAKIYAMA**

** Assoc. Prof., Div. of Architecture and Urban Studies, Tokyo Metropolitan Univ., Dr.Eng.

In seismic evaluation methods based on limit strength calculation, a shear force with a one-to-one correspondence with a load-bearing element is defined, and the shear force of construction only adds the restoring forces of the element. However, the specifications of traditional joints and element position may vary, and the calculation method does not depend on these specifications.

Some previous studies have considered the specifications of traditional joints such as column-to-beam (Sashigamoi) joints based on element experiments and simulation analysis. However, the influence of element position on the structural properties and the behavior of traditional wooden frames with large section beams (Sashigamoi) based on multi-span frame experiments has been addressed in few studies.

Japan has experienced numerous earthquakes, and there are many reports of traditional wooden structures collapsing because of earthquakes. However, many traditional wooden structures remain sound and unaffected and are extremely interesting. Evaluation of the seismic performance of such traditional wooden buildings may be significant in preventing damage to buildings and ensuring safety.

Against this background, this paper presents the results of static cyclic loading tests and simulation analysis for four traditional wooden frames in order to understand the seismic performance of frames with uneven large section beams (Sashigamoi) and to clarify the influence of the beams and shapes of fitting-type joints on the behavior of the whole frame.

Major findings of the present work are as follows:

(1) First, static cyclic loading tests were conducted on four traditional wooden frames; the number of frame spans, the presence or absence of large section beams (Sashigamoi), and the position of beams were considered as the parameters. Two-span frames underwent column splitting or column breaking more readily and with smaller deformation than in the case of one-span frames. In addition, the shear forces exhibited directional dependence, which is attributed to the asymmetry of the frames or the shapes of the column-beam joints.

(2) Second, a method for modeling traditional fitting-type joints was developed. This method can be used to analyze traditional wooden frames with large section beams (Sashigamoi). Simulation analysis results were in good agreement with the test results.

(3) Finally, a parameter study about the aspect ratio of the frame, large section beam position, and beam height distance was carried out, and the restoring force was verified. The smaller the beam height distance, the smaller was the difference in the restoring force with the loading direction.

(2016年6月10日原稿受理, 2016年11月10日採用決定)