キーエレメント指標に基づく建物の発破解体計画手法の開発
DEVELOPMENT OF BLAST DEMOLITION PLANNING TOOL OF BUILDINGS BASED UPON KEY ELEMENT INDEX

東　健太*，穂部　大吾郎**
Kenta HIGASHI and Daigoro ISOBE

In this study, a blast demolition planning of buildings based upon the key element index, in which the contribution of a column to the strength of the buildings can be numerically evaluated, is developed. An Adaptively Shifted Integration (ASI) - Gauss code is applied to blast demolition analyses of ten-story steel framed building models with different span numbers. Various selection schemes of blasted columns using the index were evaluated by comparing the efficiencies and levels of safety during demolition. The variances of key element index values were considered, in particular, to make a large difference in the distribution of the index values in each layer of the building. Most of the cases using the variance of index values showed a collapse motion in vertical direction, and the scattered distances of structural members were significantly suppressed.

Keywords: Blast demolition, Key element index, Variance, Efficiency of demolition, ASI-Gauss code

1. はじめに

高度経済成長期に建設された建物の老朽化や都市の再開発に伴い,
建物の解体の需要は高まっている。現在、日本を含む世界的な
クレーンなどの重機を用いた解体は、その対象が大規模になるにつ
れ工事が長期化し、コストも増大してしまう。そこで、重機を用い
た解体でのの解体数を短縮するに、 CarlyleやGauss等の発破解体工
法が用いられている。この解体工法は、高層での巨大な建物に
のびないように、短期間に低コストで解体できるという点で優れ
ている。しかし、一部の業者による独自のノウハウを基に解体計画が
立案・施工されているため、高度な知識と経験に強く依存する部分
があり、発破解体の明確な選定基準は確立されていない。場合によ
っては建物が解体できずに中途半端に残存したり、予期しない方向
に倒壊したりするなど、失敗する恐れもある。また、発破解体を行
っている地域の多くは地震が少なく、現存している建物は十分な耐
震性を要求されていないため、解体し易いことが挙げられる。一
方、日本の建物は欧米と比べ強固な耐震設計が施されているため、
欧米の業者の実績を単純には適用できない。そのため、ノウハウ
に依存せず、精度の高い建築物でも確実に解体するには、力学的な基
準に基づいて発破解体を定量的に選定する手法の確立が必要となる。

穂部らは、大規模な骨組構造解析において最小限の計算コストで
非線形現象を再現可能とするASI-Gauss解析コードを用いること
で、構造物の発破解体を数値解析上で再現することを可能としてき
た。さらに、建物内的重要部材を数値解析的に特定する手段として、
Frangopolらが示した構造物の鉄筋鋼柱支持能力に対する損傷度の概念を基に、キーエレメント指標を考案した。そして、この指標を用いた発破解体計画の有効性を検証し、定量的
な指標に基づく建物の発破解体計画手法の開発を進めてきた。しか
し、文献では発破解体の最下層の柱に限定しており、建物を横倒
しにする計画が主であったため、隣接する建物が存在した場合にお
ける解体時の安全性は考慮されていない。さらに、建物の構造が異
なる場合の検討には至っていない。

本稿では、スパン数の異なる複数の鋼構造建築モデルを対象とし
て、様々な発破解体選定方法を検討し、解体効率と安全性に優れた
発破解体計画手法を開発することを目的とする。スパン数の異なる
構造モデルを解析対象とすることにより、冗長性の高い建築物模型
に対しても発破解体が可能となる手法を見出していく。また、解体
時に飛散した建材の飛散距離を求めることで、周辺への安全性の検
証を行う。続く第2節では発破解体計画手法ならびに解析モデル・
解析条件について記し、第3節では解析結果を示す。最後の第4節
では結論を述べる。

2. 発破解体計画手法

2.1 キーエレメント指標

安全で効率的な発破解体を実現するには、適切な発破解体を選定
する必要がある。その際に、建物全体に対する柱の寄与度を定量化し、発破箇所を選定する方法が有効であると考えられる。そこで本稿では、簡便な提案したキーレメント指標 **K** (以下、**KI** と記す)を基に発破箇所を選定することとした。**KI** とは、建物の全体強度に対する個々の柱の寄与度を数値化したものであり、数値が高ければどの建物の全体強度に対する寄与度が大きいことを示す。**KI** に関する詳細については文献 **cite** に譲り、本稿では、発破箇所を段階的に選定する上で必要である**KI** の算出方法を中心に記することとする。

まず、健全な状態の建物の降伏限界荷重として、全柱接合部に反力荷重を与えた状態における柱の降伏した柱の荷重を用い、**P_c** と表す。また、任意の**i** 個の柱（番号 **m**）を除去した状態の建物にも同様に鉛直方向に荷重増分を与える。その際に**i** 個以下のすべての柱が降伏した瞬間の荷重を**P_c(i,m)** とし、**i** 個の柱付近の**KI** の**m**を以下のように定義する。

\[\frac{K_I(i,m)}{\rho_c} = \frac{P_c}{P_c(i,m)} \]

(1)

添え字の 0 は健全な状態の建物の降伏限界荷重を用いていることを示し、添え字の 1 は柱 1 本を除去した第 1 次選定後の建物であることを示す。すなわち、上式は健全な建物の強度に対するその**i** 個の寄与度を表す。同様に、第(n - 1) 次選定までに選定された柱を除去した後の建物の強度に対する**i** 個柱番号**m**の寄与度は、第**n**次選定では以下のように定義できる。

\[\frac{K_I(i,m)}{\rho_c} = \frac{P_c}{P_c(i,m)} \]

(2)

ここで、右辺分子**P_c(i,m)** は、第(n - 1) 次選定までに選定された柱を除去した状態での建物の降伏限界荷重であり、第(n - 1) 次選定までの選定状況に応じて値が変化する。

式(2)を用いると、任意の本数の柱を除去された建物の強度に対する**KI** を連続して算出することが可能となる。

2.2 キーレメント指標の分散

KI を基に発破箇所を選定する場合、その指標値の大小を順位付けして選定する方法が考えられる。これからの方法に加え、本稿では、**KI** の分散を大きくするように発破箇所を選定し、発破後の建物に突出して大きな**KI** を持つ柱を抽出することで、より効率的な発破解体計画手法を構築することを目指した。該当する柱は建物全体の強度に対し大きく寄与するため、それを欠損させると建物により大きな崩壊を引き起こすことが可能性となり得る。**KI** の分散は、建物全体に残存する柱の**KI** から算出する方法（以後、**σ^2** と大きくするパターン）と各層（任意の層）ごとに残存する柱の**KI** から算出する方法（以後、**σ^2_1** と大きくするパターン）の2種類の方法によって算出し、前者は以下の式(3)，後者は式(4)によって求められる。

\[\sigma^2 = \sum \frac{(K_I - K_{I,0})^2}{N_{total}} \]

(3)

\[\sigma^2_1 = \sum \frac{(K_I(i) - K_{I,0})^2}{N_i} \]

(4)

ここで，**KI** は全層に残存する全ての柱の**KI** から算出する平均値，**N_{total}** は全層に残存する全柱数，**N_i** は層に残存する全柱数，**σ^2** は全層での**KI** の分散，**σ^2_1** は層単位での**KI** の分散を表す。

2.3 段階方式の発破解体計画

本節では、発破を行うタイミングをずらすことで、建物の強度を低下させ、かつ素の崩壊を目指す段階方式の発破解体計画について述べる。本研究における発破段階方式の発破解体計画は、柱部材の発破を第 1 発破と第 2 発破の 2 段階に分け、第 1 発破では建物を崩壊させることなく強度を低下させることを狙う。第 2 発破では、建物を実を崩壊させることを目指す。実際の発破解体の施工では、建物の部分的な崩壊の有無に発破のタイミングを合わせることにより、発破による建物の動的挙動を利用した発破解体計画がしばしば用いられる。しかし、建物が動的に挙動している状態での次の発破を行うと、予期せぬ崩壊挙動を招く恐れがある。そのため、本研究では、発破による建物の動的挙動を利用せずに、挙動が落ち着くまで十分な時間差（30 s）を与えてから第 2 発破を行うこととした。また、第 1 発破によりモデルの崩壊が開始してしまうケースは、発破解体計画の条件から除外することとした。

2.4 キーレメント指標に基づく発破箇所選定方法

KI に基づく発破箇所選定では、前節で示した段階方式の発破解体計画に従って発破箇所を選定する。まず、健全な状態モデルにおける各層内の柱の**KI** を基に第 1 発破箇所を選定する。その後、第 1 発破箇所の柱部材を除去したモデルについて再度**KI** を算出し、更新された**KI** に基づき第 2 発破箇所を選定する。本節では、第 1 発破で**KI** の小さい順に発破箇所を選定し、第 2 発破では**KI** の大きい順に発破箇所を選定する方法（以下，**S-L** 方式）を検討する。

この方法では、第 1 発破で寄与度の低い柱を発破するため、建物の強度を安全に低下させることができる。その後の第 2 発破では、建物全体が安定した状態のまま寄与度の高い柱を発破させるため、安全に破壊の形態が期待できる。次に、第 1 発破では**KI** の大きい順に発破箇所を選定し、第 2 発破でも**KI** の大きい順に発破箇所を選定する方法（以下，**L-S** 方式）についても検討する。この方法では、第 1 発破で寄与度の高い柱を発破するため、安全性に**S-L** 方式よりも劣ることが考えられる。ただし、建物の強度は**S-L** 方式よりも低下することができる期待できるため、解体効率が向上する可能性が高い。以上の方法とは別に、2.2 節に記した**KI** の分散を用いて発破箇所を選定する方法についても検討する。この場合には、第 1 発破箇所の選定においては**KI** の大小の順に以下のような方法をとる。前述の**σ^2** を大きくするパターンと**σ^2_1** を大きくするパターンについて**KI** の分散を算出・比較し、**KI** が最大となる柱を選定する。なお、本稿ではモデルの対称性を利用して4本ずつの組で選定し、除去する仮定した柱を数を4本ずつ増やしていた間の分散を要求し、その値が最大となる柱の組を段階的に選定していくこととした。また、部分的な崩壊に留まる可能性が高いため、最上層は発破の対象から除外した。次に、第 2 発破箇所として、第 1 発破後に残存する柱の中で**KI** の大きい順に順位を付け、任意の順位までの柱を選定する。すなわち、この手法の**S-L** 方式および**L-S** 方式と異なる点は、第 1 発破箇所の選定方法のみである。
2.5 無作為な発破箇所選定による発破解体計画

前節で記述したKIに基づく発破箇所選定方法を用いない場合として、乱数を用いて無作為に発破箇所を選定する解体計画について検討することとした。すなわちこの場合、構造的に対称な位置にある柱部材を発破箇所に選定する操作はしない、この手法を用いることで、発破した柱の本数と解体した建物の残存している割合との単純な関係を導き出し、KIに基づく発破解体計画手法の有効性を検証する際の比較対象とする。また、KIに基づく発破箇所選定方法とは異なり、1回の発破のみで解体する方法をとることとする。

![Fig. 1 10-story steel-framed building models](image)

Table 1 Specifications of numerical models

<table>
<thead>
<tr>
<th></th>
<th>3×3 span model</th>
<th>5×3 span model</th>
<th>7×3 span model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sizes in horizontal plane (X×Y axis direction)</td>
<td>21×21 [m]</td>
<td>35×21 [m]</td>
<td>49×21 [m]</td>
</tr>
<tr>
<td>Base shear coefficient</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Total No. of elements</td>
<td>2000</td>
<td>3200</td>
<td>4400</td>
</tr>
<tr>
<td>Total No. of nodes</td>
<td>1506</td>
<td>2394</td>
<td>3282</td>
</tr>
<tr>
<td>Total No. of columns</td>
<td>160</td>
<td>240</td>
<td>320</td>
</tr>
</tbody>
</table>

Table 2 Material properties of steel

<table>
<thead>
<tr>
<th></th>
<th>SM490</th>
<th>SM400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s modulus [GPa]</td>
<td>206</td>
<td>206</td>
</tr>
<tr>
<td>Yield strength [MPa]</td>
<td>325</td>
<td>245</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Density [kg/mm^3]</td>
<td>7.85×10^5</td>
<td>7.85×10^5</td>
</tr>
</tbody>
</table>

2.6 解析モデル・解析条件

本稿では、スパン数が異なる10層の鋼構造建物モデルを複数作成し、調査を実施した。解析モデルの鳥瞰図をFig. 1に示す。モデルの高さは40 m、階数は各層4 m、幅および及び解体長さは全て7 mとした。各モデルの諸元をTable 1に示す。柱は1部材を2つの線形モーメントコリヤ要素で分割し、梁は1部材4要素分割で表現した。柱部材はSM490の角管鋼、梁部材はSM400のH型鋼である。各材の物性をTable 2に示す。床面は全て塑性化を起こさない弾性要素とした。モデルを設計する際、柱と梁の断
面寸法はベースシール密度に基づく建物に必要とされる水平耐力を満たすよう、固定荷重と積載荷重を足し合わせた単位面積当たり 7.8 kN/m²の荷重が作用するものとして決定した。建物モデルが負荷される床荷重は、発破解体が行われる建物を想定し、固定荷重のみを考慮した。固定荷重は、単位面積当たり、一般階で 2.1 kN/m²、屋上で 3.5 kN/m²が作用するように、密度の次元に換算し、荷重を負荷する梁部材と床部材に加えた。

解析条件としては、時間増分を 1.0 ms として、自重解析を 0.0 s 時に行った。段発方式の発破解体計画では、第 1 発破を 1.0 s 時、第 2 発破を 4.0 s 時に行った。また、無作業な発破箇所選定による発破解体計画では、1.0 s 時に発破を行った。解析は、発破解体によるモデルの崩壊が終了するまで十分な時間をとるために 30.0 s まで行った。数値解析には、地震時挙動解析や発破解体解析において、実験との比較により解析結果の妥当性が示されている ASI-Gauss 解析コードを使用した。ASI-Gauss 解析コードに関する詳細については文献 3)に詳説。なお、建物の発破現象は、指定した箇所を強制的に破壊させ、要素の断面力を解放することにより表現している。

一例として、10 層 7×3 スパンモデルの健全な変状の場合は

\[\sigma_{i}^{2} \]

を大きくするパターンの場合に算出した。1 層から 10 層までの柱の \(K_{i} \) のうち 1 層から 3 層についてのみを Fig. 2 に示す。 \(K_{i} \) 値が大きいほど寄与量で表示している。また、第 1 発破箇所として既に選定・除去されている柱を黒色で示す。健全な状態の建物の \(K_{i} \) と比較すると、\(\sigma_{i}^{2} \) を大きくするパターンでは 1 層において突出して \(K_{i} \) の大きな柱ができていることが分かる。\(\sigma_{i}^{2} \) を大きくするパターンの特徴や傾向を把握するために \(f = 1.5 \) に対して調査した結果から、\(K_{i} \) の分散の算出対象となる層に突出して寄与度の高い柱が存在する傾向が確認できた。なお、\(\sigma_{i}^{2} \) を大きくするパターン、\(S-L \) 方式および \(U-L \) 方式については、健全状態の建物と比較すると \(K_{i} \) の大きな柱ができていたが、層内に突出して寄与度の高い柱が発現することはなかった。

次に、これらの健全な建物モデルに各発破箇所選定方法を適用させた場合において、第 1 発破による建物の全体強度の低下の度合いについて調査した。発破箇所選定方法の違いによる強度低下の変化を Fig. 3 に示す。横軸は、健全な建物の降伏限界荷重 \(q_{p} \) と第 1 発破後の建物の降伏限界荷重 \(q_{p} \) の比を取って、建物の全体強度の低下を示している。横軸は、1 発破柱数を全柱数で割ることで無次元化している。凡例の \(\xi_{i}^{2} \) は \(K_{i} \) の小さい順に 1 位から r 位までの柱を発破したことを表す。また、\(L_{i}^{2} \) は \(K_{i} \) の大きい順に 1 位から r 位までの柱を発破したことを表す。Fig. 3 より、\(K_{i} \) の小さい順または大きい順に柱を発破した場合には、強度を低下させるほどの柱を発破する必要かどうかが分かる。一方、\(\sigma_{i}^{2} \) を大きくするパターンは、発破本数が少なくても強度低下は大きく、全てのモデルにおいて最も効率良く強度を低下させる発破箇所選定方法であることが分かる。このことから、分散の考慮は発破解体効率の向上に寄与することが期待できる。

3. 解析結果

3.1 発破解体計画手法を用いた数値解析例

第 2 篇で述べた発破解体計画手法を 10 層 7×3 スパンモデルに適用した例を Fig. 4 から Fig. 6 に示す。まず、無作業な発破箇所選定
Fig. 5 An example of blast demolition analysis (7×3 span model, pattern to increase σ_i^2)

Fig. 6 An example of blast demolition analysis (7×3 span model, L-L method)

Fig. 7 Relation between the number of blasted columns and the sum of heights of remains (random selection of blasted columns)

Fig. 8 Relation between the number of blasted columns and the sum of heights of remains (selection of blasted columns based on key element index)
による発破解体分析結果の一例を Fig. 4 に示す。この発破解体が、建物を構成している全 320 本の柱のうち、261 本を発破する計画である。Fig. 4(b) は、柱部材を発破したステップでの図である。この例では、1.0 から 1.0 の発破の直後からモデル下部の柱部材が自重に耐えることができず、破壊を生じ、Fig. 4(c) に示す過程を経た後、Fig. 4(e) に示す最終形態となった。次に、段階方式の発破解体分析結果の例を 2 つ示す。まず、第 1 発破で柱を大きくするパターンを用いて発破した柱 32 本を発破し、第 2 発破で柱を大きくするパターンを用いた場合の解析結果を Fig. 5 に示す。Fig. 5(a) は、第 1 発破前後の模型の様子であり、Fig. 5(b) は第 2 発破前後の模型の様子である。Fig. 5(b) をとると、第 1 発破による部材の損傷がある。建物の他の箇所への影響は見られない、建物を崩壊に至らしめることなく建物全体の強度を低下させるという、第 1 発破の目的が達成されていると判断できる。第 2 発破後、上層の落下挙動 (Fig. 5(e)) をみて、6.9 s 付近より降下部の動きがほとんど止まった (Fig. 5(d))。その後、Fig. 5(e) のような最終形態となった。次に、Fig. 6 には L = L 方式の発破解体分析例を示す。この例では、第 1 発破で柱を 2 本までの柱 92 本を発破し、第 2 発破で柱を 4 本までの柱 176 本を発破する計画を用いた。Fig. 5 の場合と同様に第 1 発破による建物の他の箇所への影響は見られず (Fig. 6(b))。その後 Fig. 6(c) の落下挙動をみて、中央に巻き込むような形で解体できていることが分かる (Fig. 6(d), Fig. 6(e))。

3.2 発破解体効率、解体時の安全性の比較

本稿では、σ で大きくなるパターン、σ で大きくするパターン (I = 1, 3, 5, S = L 方式および L = L 方式) さらに乱数を用いて無作為に発破箇所を選定し 1 回の発破で発破する発破解体分析を実施し、解体効率を比較・検証した。解体効率は Fig. 7, Fig. 8 に示す発破柱数と残存物高さの和の関係より評価し、解体時の安全性は Fig. 9, Fig. 10 に示す柱材の飛散距離と残存柱の高さの関係より評価した。なお、発破解体解析結果の全ての発破位置の座標値を足し合わせた値を残存物高さの和と定義し、発破解体の成否を判断する指標として用いる。また、残存物高さの和を健全な建物の高さの和で割ることにより無次元化し、発破柱数は健全な建物における柱数で割り無次元化したものを用いた。この評価方法を取ることにより、スパン数の異なるモデル間での解析結果を比較した。さらに、発破解体解析結果の残存物を構成する全ての箇所の座標値の中で、健全な建物の外周部から最も離れた位置に存在する箇所までの水平距離を発破解体における建物の飛散距離と定義する。建物の飛散距離を評価に取り入れることで、解体時の周囲への安全性を考慮した発破解体計画を定める上での判断材料とする。

Fig. 7 に示す無作為な発破箇所選定による発破解体解析結果を 3 つのモデルで比較すると、発破柱数が少ない領域では、柱の発破後のモデルは崩壊を開始することがなく、最上部の軽微な部分崩壊に留まる結果となった。また、全てのモデルで発破柱数が 4 倍を超えた後から残存柱高さの和が下がり、その傾向を傾きは 3 つのモデルでほとんど同様となった。この結果から、無作為に
発破感を示した場合、スパン数に関係なく発破柱数と残存物高さの和に一定の関係が存在することがわかる。

一方、発破损を示すK1に基づいて発破感を示した場合の結果では、発破感を示す方法の違いによって傾向に差が生じた。さらに、スパン数が増加すると発破感を示す方法の違いによって解体感の差異が大きくなることが分かる。スパン数が増えることで応力伝達経路が充填され、応力伝達経路が優先されるため、第1発破によって最も効率良く発破感の全体形状を低下させることができることが示唆される。

発破感を示した場合、スパン数に関係なく発破柱数と残存物高さの和に一定の関係が存在することがわかる。発破感を示す方法の違いによって傾向に差が生じた。さらに、スパン数が増加すると発破感を示す方法の違いによって解体感の差異が大きくなることが分かる。スパン数増加による発破感を示す方法の違いによって傾向に差が生じた。発破感を示す方法の違いによって傾向に差が生じた。発破感を示す方法の違いによって傾向に差が生じた。発破感を示す方法の違いによって傾向に差が生じた。

4. おりに
本稿では、発破感を示す方法の違いによって傾向に差が生じた。発破感を示す方法の違いによって傾向に差が生じた。発破感を示す方法の違いによって傾向に差が生じた。発破感を示す方法の違いによって傾向に差が生じた。発破感を示す方法の違いによって傾向に差が生じた。発破感を示す方法の違いによって傾向に差が生じた。発破感を示す方法の違いによって傾向に差が生じた。
散距離が抑えられる結果となった。無作為に発破箇所を選定した場合より，K_iに基づいて発破箇所を選定した場合の方が，少ない発破本数で建物に全体的な崩壊をもたらす解体が可能となった。しかし，
検討を行った手法ではまだ多くの発破本数が必要となるため，解体効率のさらなる向上を目指すためには，発破回数を増やすなど，さらに効率的に建物の強度を低下させた後に解体する手法の構築が必要であると考えている。

謝辞

本研究では，元 筑波大学院の目下善輝氏（現 株式会社クボタ）から多大なる貢献を受けた。ここに記して謝意を表する。

参考文献
磯部大吾郎，江口正史，今西健介，佐々木嗣啓, 骨組構造の爆破解体解析・実験システムの開発, 日本建築学会構造系論文集, 第 612 号, pp. 73-78, 2007. 2.
大井謙一, 伊藤伸浩, 李正林, 部材消失に対する骨組構造の鉄直支持能力感受, 構造力学講演会講演論文集, pp. 329-335, 2005. 4.
Strong demand for demolition of buildings increases due to the aging of buildings which were built during the period of high economic growth and the redevelopment of cities. At present, demolition using heavy equipment is mainly conducted in Japan; however, the demolition work will be prolonged and the cost will increase if the scale of the building becomes larger. A blast demolition technique is often used in Europe and the United States to solve the concerns of demolition using heavy equipment. The blast demolition technique can avoid dangerous work at a high place and can be completed at a relatively low cost in a short period. However, as demolition planning is mainly conducted based on proprietary technology of some vendors, the technique requires high levels of knowledge and experience in such occasion when selecting blasted columns. Furthermore, Japanese buildings are designed more strongly than in Europe and in the US, so the rules cannot be simply adapted. To ensure reliable and safe demolition, it is necessary to establish a quantitative selection method of blasted columns based upon criteria of dynamics.

In this study, a blast demolition planning tool of buildings based upon a parameter called the key element index, is developed. The index indicates the contribution of a column to the strength of the building and can be numerically evaluated: the higher the index value, the higher the contribution to the overall strength of the building. An Adaptively Shifted Integration (ASI) - Gauss code is applied to blast demolition analyses of ten-story steel framed building models with different span numbers. Various selection schemes of blasted columns using the index were evaluated by comparing the efficiencies and levels of safety during demolition: namely, by comparing the relation between the number of blasted columns and the heights of remains after the demolition, and by the scattered distance of members after demolition. First, the blasted columns were selected randomly to derive a simple relation between the number of blasted columns and the heights of remains of buildings. The results indicated that there are similar tendencies in the relation regardless of the number of spans. However, some results deviated from the tendencies. In those cases, safety could not be secured because the buildings collapsed in the lateral direction. Next, some selection schemes of blasted columns based upon the key element index values were applied to secure safety during demolition. The variances of key element index values were considered, in particular, to make a large difference in the distribution of the index values in each layer of the building. A difference in efficiencies of demolition appeared between each selection scheme. The efficiency deteriorated in most of the selection schemes as the number of spans increased. However, the efficiency maintained the same level when the columns with the largest variance of the key element index values at the first floor were selected as the blasted columns. Most of the cases using the variance of index values showed a collapse motion in vertical direction, and the scattered distances of structural members were significantly suppressed.