EXPERIMENTAL STUDY ON BOND STRENGTH OF ADHESIVE POST-INSTALLED REBAR SYSTEMS DURING FIRE

Le Tien Thuan*1, Seira OWA*2, Changsuk SONG*3
and Kenichi IKEDA*4

1. Introduction

Nowadays, the functional safety of constructions constitutes a prime element of the civil system serving people. The one which accounted for it is anchoring system. In Japan, the seismic retrofitting is very important, and post-installed anchoring systems have played a vital role in it. They are generally used as fasteners in seismic retrofitting of older buildings and therefore knowledge of their load-bearing capacity especially in extraordinary situations such as fire condition is crucial. In post-installed anchoring system, anchors are set into already hardened concrete by drilling a hole and inserting the anchor and connecting with concrete by a synthetic resin. This type is adhesive post-installed anchoring system and is the primary focus of this study.

In the past, a few kinds of research (1) - (3) in the US and Europe have been conducted for this post-installed anchoring system during the fire condition. In Japan, the residual capacity of adhesive anchors which used Japanese reinforcing bar together with three kinds of adhesive in two patterns of heating and loading parameter: heating then loading and loading then heating. There are three types of possible failure modes: Steel failure, Concrete failure, and Bond failure. The bond failure is the primary failure mode to investigate. It ensures the specifications data and suitable for the testing system.

2. Experiments

2.1 Purpose of experiments

The experiments are tensile pull-out tests on adhesive post-installed anchor subjected to high temperatures to investigate their performance during the event of a fire in a building. For the pattern I test, a tensile load is increased at a constant high temperature, while for the pattern II test, the temperature is raised to a steady tensile load. The experiments topic are lacking in data and necessary for reliable fire design to comprehend the bond strength performance of adhesive post-installed rebar systems under fire condition. The experiment has been done with the equipment of Tokyo University of Science (TUS) laboratory. In this study, Japan steel rebar was used together with three kinds of adhesive resin in two patterns of heating and loading parameter: heating then loading and loading then heating. There are three types of possible failure modes: Steel failure, Concrete failure, and Bond failure.

Keywords: Adhesive Injection Post-installed Anchors, Epoxy Resin, Urethane Resin, Inorganic Resin Bond Strength, During Fire

接着力注入方式あと施工アンカーの火災時の付着強度に関する実験的研究

【カテゴリーⅠ】
correspond to a situation where the fastening is continuously under a tensile load, and then a fire occurs. The main point of the tests is the investigation of how the adhesive post-installed anchor systems react when a high load is applied in two patterns of heating and loading parameter. From there, the outcome data is used for comparison of two patterns to figure out if there is a connection. This is important to understand the behavior of the material overall and corresponds to the situation of a fastening that is under pure tensile load in normal conditions.

According to the conclusion, the understanding of construction system under the fire could be withdrawn. The analysis of bond strength can help to engineer in design methods and applications.

Overall 46 specimens are investigated in temperatures from 40°C to 200°C. The tests were carried out in the testing facilities of TUS.

2.2 Experiment setup
In these tests, the specimens were filled with concrete in a steel cylinder. The rebar, D16 (SD685) and the adhesive post-installed anchors to be tested are installed. Two thermocouples are installed to measure the temperature inside of the specimens. Table 1 shows the properties of the concrete cylinder which have been used for the specimens.

<table>
<thead>
<tr>
<th>Concrete cylinder</th>
<th>Height</th>
<th>Depth</th>
<th>Hole diameter</th>
<th>Compressive strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300 mm</td>
<td>150 mm</td>
<td>20 mm</td>
<td>28N/mm²</td>
</tr>
</tbody>
</table>

The rebar used in the tests is Japanese rebar which is suitable for constructions in Japan. The highest strength of rebar steel has been chosen to eliminate steel failure as the decisive failure mechanism. The properties of steel which have been used for the specimens are given in Table 2 below.

<table>
<thead>
<tr>
<th>Steel Designation</th>
<th>Yield strength</th>
<th>Tensile strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD 685</td>
<td>685 N/mm²</td>
<td>860 N/mm²</td>
</tr>
<tr>
<td>Diameter</td>
<td>Embedment dept l.</td>
<td>Total length</td>
</tr>
<tr>
<td>D16</td>
<td>160 mm/10d</td>
<td>800 mm</td>
</tr>
</tbody>
</table>

There are 3 kinds of resin which are used for connecting the rebar and concrete: epoxy resin (E), urethane resin (U) and inorganic (O) (cement). Each of them has different chemical properties. Table 3 shows the properties of each adhesive resins.

Table 3 The properties of adhesive resins

<table>
<thead>
<tr>
<th>Resin</th>
<th>Main Contained Component</th>
<th>Adhesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy resin (E)</td>
<td>Bisphenol A + Bisphenol B</td>
<td>Meta-xylene-diamine + Quartz</td>
</tr>
<tr>
<td>Urethane resin (U)</td>
<td>Urethane + Acrylate</td>
<td>Benzoylperoxide</td>
</tr>
<tr>
<td>Inorganic resin (O)</td>
<td>Cement based mortar + Accelerator</td>
<td></td>
</tr>
</tbody>
</table>

Note
- σ_c: Compressive strength, σ_t: Tensile strength, σ_b: Bending strength, σ_{st}: Tensile shear bond strength, $\tau_{a,n}$: Bond strength of adhesive resins

2.2.1 Specimen
The specimen has the same type as in the CSTB/EOTA experiments [CSTB 2011] (7), so it is easy to compare. The picture and dimension of the specimen are given in Figure 1.
The block of concrete (diameter 150mm, height 300mm) is manufactured in the factory using ordinary Portland cement concrete (design standard strength $F_c=15N/mm^2$). The rebar (D16, diameter(d) 16mm) is inserted through a drilled hole (diameter 20mm and effective embedment depth (10d), 160mm) and fastened with three kinds of adhesions, epoxy resin, urethane resin and inorganic. The high strength rebar (SD685, yield strength 685 N/mm2) is used due to focusing on bond failure. Besides, two thermocouples are installed to measure the temperature in the bonded part. One of the thermocouples is inserted down to the bottom of the hole, and the other is inserted in the position of about 30mm from the top surface in the concrete hole.

2.2.2 Setup

The central test equipment of Universal testing machine (Tokyo KOKI) was used (capability 1,000kN). The electrical oven body consists of two halves that can be opened and closed. It is placed around the test specimen in the hydraulic jack. The rebar of the specimen is fastened in the jack which puts on the tension load. The displacement of anchors is measured in average deformations measured by displacement meters. The meters are put on the top of a displacement jig steel which is fixed to the rebar of the specimen. When the deformation starting occurred, the displacement jig moves down together with the specimen. Thus, the deformation can be measured. At the indicative displacement of 30 mm it is considered bond failure. Failure modes of post-installed adhesive anchors are the following three modes mainly, steel failure (S), concrete cone failure (C) and bond failure (B). This experiments focusing on the performance of bond failure (B) therefore the high strength rebars are used due to preventing steel failure mode, and the steel plate on the surface of the concrete in specimens are put in order to prevent concrete cone failure mode. Photo 1 and Photo 2 show the test equipment.

Photo 1 Test equipment with specimen fastened in jack

Photo 2 Setup of the test specimen

Photo 3 shows the displacement meters and jig steel were set up to the universal testing machine. The measuring figure of displacement has been shown in Figure 2.

Photo 3 Displacement meter and jig steel

Fig.2 Measuring of displacement

2.2.3 Heating and Loading Condition

The parameters conditions were “during the fire,” the adhesive post-installed anchor has been heated-up for hours until it reaches the specific temperature and together with tensile load has been applied with different forces. The heating and loading condition was considered in two patterns:

* Pattern I: Heating then Loading until the bond failure occurred (The tensile load is increased at a constant high temperature)

* Pattern II: Loading then Heating until the bond failure occurred. (The temperature is raised to a steady tensile load)

The heating and loading conditions of the experiment can be seen in Figure 3.
recommendations for composite constructions (9). The equations below.

Thus, the estimated actual bond strength is based on the bond strength of the used adhesive resins in Table 3: epoxy, \(\sigma_0 = 19 \text{ N/mm}^2 \) (urethane), and \(\sigma_0 = 20 \text{ N/mm}^2 \) (In-organic) are used for the prediction. The values resulting from the bond failure equation (1.5) are:

Steel failure \(T_{a1} = \sigma_0 \cdot a_0 \) (1.1)

Concrete failure \(T_{a2} = 0.23 \cdot \sqrt{\sigma_0} \cdot A_c \) (1.3)

Bond failure \(T_{a3} = \tau_a \cdot \pi \cdot d_i \cdot l_e \) (1.5)

Note: \(\sigma_0 \): Yield tensile strength of rebar (N/mm²), \(a_0 \): Nominal area of rebar (mm²), \(\sigma_0 \): Concrete compressive strength (N/mm²), \(A_c \): Effective area projected of a single anchor in concrete failure (mm²), \(d_i \): Diameter of rebar (mm), \(\tau_a \): Bond strength (N/mm²).

However, in the prediction of the bond failure according to JBDPA, the actual bond strength is based on the strength of the concrete which has been used (1.6) instead of adhesive resin, this yields a significant underestimate to the bond strength of the fastening. Thus, the estimated actual bond strength is based on the bond strength of the used adhesive resins in Table 3: \(\tau_a = 25 \text{ N/mm}^2 \) (epoxy), \(\tau_a = 19 \text{ N/mm}^2 \) (urethane) and \(\tau_a = 20 \text{ N/mm}^2 \) (In-organic) are used for the prediction. The values resulting from the bond failure equation (1.5) are:

Steel failure \(T_{a1} = 137.7 \text{ kN} \)

Concrete failure \(T_{a2} = 93.2 \text{ kN} \)

Bond failure \(T_{a3} = 201.1 \text{ kN} \) with \(\tau_a = 25 \text{ N/mm}^2 \)

Bond failure \(T_{a3} = 152.8 \text{ kN} \) with \(\tau_a = 19 \text{ N/mm}^2 \)

Bond failure \(T_{a3} = 162.8 \text{ kN} \) with \(\tau_a = 20 \text{ N/mm}^2 \)

At higher temperatures (from 50°C) the bond strength of adhesive resin which used for the equation (1.5) is based on the tests of [CSTB 2011] for the Hilti HIT-HY 200 A&R (7). From this, the bond strength \(\tau_a \) from 50°C to 200°C was withdrawn then calculate the bond failure (tensile load) at respectively temperatures. Although bond strength withdrawn from (7) is only for epoxy but it is used for the two other kinds as the reference. The results are in Table 4.

Determined by the tests: specimen is heated in the oven until the temperature in the adhesive which is measured by the two thermocouples reaches an average of the target temperature. After that, the tensile load is applied and slowly increased while the displacement is measured. The speed of acting tensile load is about 0.02 kN/mm² per second based on a guideline in the standard test method of adhesive post-installed anchors in reference (10). At the indicative displacement of 30 mm it is considered failure and the load is noted. The measured temperatures are 50°C, 70°C, 80°C, 100°C, 130 and 200°C, with two specimens tested at each temperature. The heating condition is around 0.4°C/min, with the slowest at 0.32°C/min and the fastest 0.5°C/min. Generally, the furnace is set to heat up to 400°C. It has done with only epoxy adhesive type. The results were carried out in Table 5.

2.2.3.2 Pattern II

In the pattern II test: Use the results of the pattern I to make the tensile load to the specimens {the tensile load determined by prediction and experiment of Pattern I was applied} and heat up until failure mode occurred. At the indicative displacement of 30mm, it is considered failure, the failure temperature was noted. The time of heating up to the failure temperature depending on the target temperature itself and the temperature at which the furnace is set. The heating speed and acting tensile load speed are the same as the pattern I.

3. Result

3.1 Pattern I Test Results - Prediction

The displacement and load parameter until bond failure occurs are given in Figure 4. The bond strength of adhesive resins have been predicted by [CSTB 2011] can be seen in the Table 4.
the bond strength of the used adhesive resins in table 3: fastening. Thus, the estimated actual bond strength is based on JBDPA, the actual bond strength is based on the strength of the concrete which has been used (1.6) instead of adhesive resin, this however, in the prediction of the bond failure according to 1RWH Steel failure Concrete failure Tensile Strength (N/mm²).

In the pattern I test, the tensile load applied to specimens for Concrete failure: Yield tensile strength of rebar (N/mm²), aσ: Concrete compressive strength (N/mm²), Ay: Effective area (N/mm²), kN with 0وحدة: Nominal area of rebar, (1.4) equation in (1.5) are: μ: Loss in strength of rebar by 200°C. The loss in strength occurs very fast in the beginning and slows down when higher temperatures are reached.

3.2 Pattern I Test Results - Experiment tests

Table 5 shows the bond strength of adhesive post-installed anchor has been measured by experiment for the Epoxy type.

Table 5 Measured bond strength for Epoxy type – Pattern I

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Temperature (°C)</th>
<th>Tensile Load measured (kN)</th>
<th>Failure mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_50_1</td>
<td>50</td>
<td>142.8</td>
<td>B</td>
</tr>
<tr>
<td>E_70_1</td>
<td>70</td>
<td>91.6</td>
<td>B</td>
</tr>
<tr>
<td>E_80_1</td>
<td>80</td>
<td>75.6</td>
<td>B</td>
</tr>
<tr>
<td>E_100_1</td>
<td>100</td>
<td>41.4</td>
<td>B</td>
</tr>
<tr>
<td>E_130_1</td>
<td>130</td>
<td>33</td>
<td>B</td>
</tr>
<tr>
<td>E_200_1</td>
<td>200</td>
<td>23.3</td>
<td>B</td>
</tr>
<tr>
<td>E_50_2</td>
<td>50</td>
<td>146.8</td>
<td>B</td>
</tr>
<tr>
<td>E_70_2</td>
<td>70</td>
<td>105.7</td>
<td>B</td>
</tr>
<tr>
<td>E_80_2</td>
<td>80</td>
<td>80.9</td>
<td>B</td>
</tr>
<tr>
<td>E_100_2</td>
<td>100</td>
<td>31.1</td>
<td>B</td>
</tr>
<tr>
<td>E_130_2</td>
<td>130</td>
<td>31.6</td>
<td>B</td>
</tr>
<tr>
<td>E_200_2</td>
<td>200</td>
<td>23.6</td>
<td>B</td>
</tr>
</tbody>
</table>

Note/S: Steel failure C: Concrete failure B: Bond failure

Resin Type: Epoxy Target Temperature First Time

3.3 Pattern II Test Results – based on Pattern I Prediction

Table 6 and Figure 5 below are given the results of pattern II test for Epoxy type.

Table 6 Pattern II results for Epoxy type

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Failure Temp. (°C)</th>
<th>Tensile Load (kN)</th>
<th>Bond Stress (N/mm²)</th>
<th>Failure mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_50_1</td>
<td>55</td>
<td>112</td>
<td>14</td>
<td>B</td>
</tr>
<tr>
<td>E_70_1</td>
<td>59</td>
<td>80</td>
<td>10</td>
<td>B</td>
</tr>
<tr>
<td>E_60_1</td>
<td>65.6</td>
<td>96</td>
<td>12</td>
<td>B</td>
</tr>
<tr>
<td>E_80_1</td>
<td>89.7</td>
<td>48</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>E_100_1</td>
<td>100</td>
<td>32</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>E_130_1</td>
<td>123.5</td>
<td>24</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>E_200_1</td>
<td>290</td>
<td>20</td>
<td>2.5</td>
<td>B</td>
</tr>
<tr>
<td>E_200_2</td>
<td>301</td>
<td>16</td>
<td>2</td>
<td>B</td>
</tr>
</tbody>
</table>

The data show that there is a significant deterioration of the strength of the adhesive when the temperature is elevated. At 60°C already the bond strength has dropped by about 60% to 10 N/mm² compared to 25°C (normal), going further down to 2N/mm² by 200°C. The loss in strength occurs very fast in the beginning and slows down when higher temperatures are reached.

The same tendency for the losing bond strength in urethane resin when temperature elevated, but it has more stable when temperature under 100°C. From 100°C to 130°C, it declined rapidly and deteriorated slightly until the temperature reached 200°C. The results of pattern II test for urethane resin as it is seen in Table 7 and Figure 6 below.

Table 7 Pattern II results for Urethane type

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Failure Temperature (°C)</th>
<th>Tensile Load (kN)</th>
<th>Bond Stress (N/mm²)</th>
<th>Failure mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_50_1</td>
<td>46</td>
<td>112</td>
<td>14</td>
<td>B</td>
</tr>
<tr>
<td>U_50_2</td>
<td>53</td>
<td>105</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td>U_60_1</td>
<td>79.8</td>
<td>96</td>
<td>12</td>
<td>B</td>
</tr>
<tr>
<td>U_70_1</td>
<td>102</td>
<td>80</td>
<td>10</td>
<td>B</td>
</tr>
<tr>
<td>U_80_1</td>
<td>136</td>
<td>48</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>U_100_1</td>
<td>194</td>
<td>32</td>
<td>4</td>
<td>B</td>
</tr>
</tbody>
</table>
For the In-organic resin type, the results of pattern II test as it is seen in Table 8 and Figure 7 below.

Table 8 Pattern II results for In-organic type

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Failure Temp. (°C)</th>
<th>Tensile Load (kN)</th>
<th>Bond Stress (N/mm²)</th>
<th>Failure mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_50_1</td>
<td>82</td>
<td>112</td>
<td>14</td>
<td>B</td>
</tr>
<tr>
<td>O_50_2</td>
<td>60.7</td>
<td>105</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td>O_60_1</td>
<td>53.1</td>
<td>96</td>
<td>12</td>
<td>B</td>
</tr>
<tr>
<td>O_60_2</td>
<td>102</td>
<td>88.5</td>
<td>11</td>
<td>B</td>
</tr>
<tr>
<td>O_130_1</td>
<td>106</td>
<td>72</td>
<td>9</td>
<td>B</td>
</tr>
<tr>
<td>O_130_2</td>
<td>109</td>
<td>64</td>
<td>8</td>
<td>B</td>
</tr>
<tr>
<td>O_200_1</td>
<td>116</td>
<td>60.3</td>
<td>7.5</td>
<td>B</td>
</tr>
<tr>
<td>O_200_2</td>
<td>275</td>
<td>56.3</td>
<td>7</td>
<td>B</td>
</tr>
</tbody>
</table>

In this test, the tensile load has been applied from 112 kN (14 N/mm²) to 56.3 kN (7 N/mm²) to investigate the bond strength when the temperature rose. Figure 7 shows that it fluctuated and very unpredictable. The results compared to prediction are very different.

Generally, it could be seen that Epoxy has the lower capability to stay when temperature rises than the two others resin. In epoxy resin type, the bond strength decreased rapidly from the beginning then gradually deteriorated while in urethane and inorganic type, it has fluctuated in a wide range compared with prediction data.

Table 9 Pattern II Results for Epoxy type

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Failure Temp. (°C)</th>
<th>Tensile Load (kN)</th>
<th>Failure mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_50_1</td>
<td>48.8</td>
<td>142.8</td>
<td>B</td>
</tr>
<tr>
<td>E_70_1</td>
<td>60.5</td>
<td>91.6</td>
<td>B</td>
</tr>
<tr>
<td>E_80_1</td>
<td>68.3</td>
<td>75.6</td>
<td>B</td>
</tr>
<tr>
<td>E_100_1</td>
<td>97.3</td>
<td>41.4</td>
<td>B</td>
</tr>
<tr>
<td>E_130_1</td>
<td>130.3</td>
<td>33</td>
<td>B</td>
</tr>
<tr>
<td>E_200_1</td>
<td>275.5</td>
<td>23.3</td>
<td>B</td>
</tr>
<tr>
<td>E_50_2</td>
<td>52.4</td>
<td>146.8</td>
<td>B</td>
</tr>
<tr>
<td>E_70_2</td>
<td>62.3</td>
<td>105.7</td>
<td>B</td>
</tr>
<tr>
<td>E_80_2</td>
<td>65.4</td>
<td>80.9</td>
<td>B</td>
</tr>
<tr>
<td>E_100_2</td>
<td>84</td>
<td>31.1</td>
<td>B</td>
</tr>
<tr>
<td>E_130_2</td>
<td>87.7</td>
<td>31.6</td>
<td>B</td>
</tr>
<tr>
<td>E_200_2</td>
<td>180.3</td>
<td>23.6</td>
<td>B</td>
</tr>
</tbody>
</table>

The losing bond strength in two patterns test is in the same tendency but it could be seen that when the temperature is under 100°C, there is no significant difference. When applied the same
constant load, from 50° C to 100° C during the fire, the
temperatures that bond failure mode occurred of two patterns
are not changed much. Thus, it is supposed that the pattern I
loading test can be used as a method for predicting the bond
strength of epoxy injection type of pattern II test in this range of
temperature while from about 100° C, there is a need to do more
tests to determine if the losing bond strength can be predicted.

Figure 9 shows the bond failure and temperature relationship
between two kinds of pattern II test for epoxy (based on
Prediction and experiment of the pattern I).

It clearly showed the same trend of two testing methods. The
bond strength reduced considerably at high temperature from
the beginning then gradually deteriorated. There is a need to do
more tests with a smaller pace of temperature to figure out the
connection between two methods.

4. Conclusion

Epoxy injection type decreased to about 1/10 in about 280 °C
compared to average temperature. Urethane injection type
decreased to about 1/5 in about 200 °C. Also, in In-organic
injection type reduced about 1/3 in about 270 °C compared to
normal.

For the testing method, the pattern I test is simple to
experiment because, in the pattern II, the load gradually lost by
the time when temperature elevated, and it was added manually
every time it lost to keep the load stable. Thus, the pattern II test
is more complicated and closer to the real situation.

The pattern I test (by experiment) can be used as a method for
predicting the bond strength of epoxy injection type of pattern II
test for under 100° C.

5. Future Prospect

To clarify the relations between pattern I and pattern II test, it
needs to do more test with the little pace of temperature. When
the relations are carried out, it brings the practical advantages
to predict the bond strength by the simple method.

After this, the study field can become to “after fire” study field.
In this field, the after fire tests should also be carried out to find
the point that at which temperatures the bond strength starts to
deteriorate and how it deteriorated compare to during the fire
condition. From the results of after fire test, the relationships
with during fire tests can be carried out, thus can predict the
bond strength of the anchor system at higher temperatures.

Furthermore, there are eventually full-scale tests with anchors
in actual concrete members to investigate a situation very close
to the application in reality. When designers assume the
temperature and tensile load of adhesive post-installed rebar of
fire resistance in fire structural design of renewal applications
they can design what temperature need to target and what
tensile load in long terms need to choose base on the results of
the experiments soon.

References

1) Werner Fuchs and John Silva.: EOTA APPROACH TO
QUALIFICATION AND DESIGN OF POST-INSTALLED ADHESIVE
ANCHORS FOR FIRE EXPOSURE, ACI SP-283, 2012
2) Rolf Eiligenhausen, John F. Silva.: Behaviour of anchors in fire,
Anchorage in Concrete Construction, Ernst & Sohn, A Wiley Company,
2006
3) Andra Hoermann-Gast and Jacob Olsen.: The Effects of Temperature on
Post-installed Adhesive Anchors, International Council (ICC),
4) Xin Wang, ChangJiu Jiang, KaoZhong Zhao, Xiang Rui Chen.: Experimental Study on Fire Resistance Properties of Post-Installed
Rebar Connection, Advanced Materials Research, ISSN: 1662-8985 Vols.
671-674, 1877-1882 2013
5) Omori Masanori.: Evaluation of Fire Resistance Performance of
Post-installed Adhesive Anchors, Summaries of Technical Papers of
Annual meeting, Architectural Institute of Japan, C-2, pp. 745-746,
1995
6) SONG Changsuk, OWA Seira, LE TIEN THUAN, IKEDA Kenichi.: Experimental Study on Bond Strength of Adhesive Injection
Post-installed Rebar During High Temperature Assumed as Reinforced
Concrete Connections in Long Term. Part 1, Summaries of Technical
Papers of Annual Meeting, Architectural Institute of Japan
7) SONG Changsuk, OWA Seira, LE TIEN THUAN, IKEDA Kenichi.: Experimental Study on Bond Strength of Adhesive Injection
Post-installed Rebar During High Temperature Assumed as Reinforced
Concrete Connections in Long Term. Part 2, Summaries of Technical
Papers of Annual Meeting, Architectural Institute of Japan
and HILT GI HIT-HY 200-R injection systems in conjunction with concrete
reinforcing bar (ø 8 to 32 mm) and subjected to fire exposure,
CSTB/EOTA, 2014
for Seismic Evaluation of Existing Reinforced Concrete Buildings, 2001,
Guidelines for seismic retrofit of existing reinforced concrete buildings,
2001, and technical manual for seismic evaluation and seismic retrofit
of existing reinforced concrete buildings, 2001. First English edition,
Translated by Building Research Institute, pp.2-50
10) AIJ.: Design Recommendations for Composite Constructions,
11) Japan Construction Anchor Association (JCAA).: Text of Technical
Course of post-installed anchors, 2015
和文要約

本論文は、エポキシ樹脂、ウレタン系樹脂、無機系注入方式接着系あらびび施工アンカーの火災時の付着破壊モードにおける引張付着強度に関する実験的研究である。

ファスニングとしてのあらびび施工アンカーは日本では一般的に既存建造物の耐震補強等で使用されているが、火災時における荷重支持能力についてはあまり注目されていない。ヨーロッパでは既に検証されているが、3つの樹脂（エポキシ系、ウレタン系、無機系）の注入方式接着系あらびび施工アンカー（カートリッジ型）と鉄筋に関する高温下に暴露された際の挙動の実験的検証が本研究の主旨である。

実験は2つのパターンを行った。第一パターンでは最大引張荷重の計測を行った。第一パターンの実験方法としては目標温度まで試験体の内部温度を上昇させた後、付着破壊が生じるまで引張荷重を載荷し、最大引張荷重を測定した。第二のパターンも火災時の機械であるが、第一パターンで得られた付着破壊時の最大引張荷重を載荷した状態で、試験温度を上昇させながら付着破壊が生じる時点の温度を測定する方法にした。特に、第二パターンは、荷重が載荷された状況下での高温暴露であるため、実際の火災時の状況を再現したモデルである。全ての試験体の仕様は、コンクリートを充填した鋼管（直径Φ150、高さ300mm）に接着系アンカー（SD685、D16×160（10ha）、穿孔径20mm）を打設した。試験を行った温度は50℃、70℃、80℃、100℃、130℃、200℃、計46体試験体を用いた。以下にその結果をまとめる。

○ 高温時の付着強度は、接着系アンカーの主剤の種類によって、異なる傾向を示す。
○ エポキシ樹脂は、常温時と比較して約280℃の時点で付着強度が1/10に減少した。ウレタン系樹脂タイプは約200℃の時点で付着強度は常温時の約1/5に減少した。無機系タイプでは、常温時と比較して約270℃の時点で付着強度が約1/3に減少した。
○ 実験方法については、第一パターンによる実験方法が簡便であり、第二パターンの方が複雑ではあるが実際の火災時の状況に近い。
○ 第一パタンは、100℃未満のエポキシ系樹脂タイプの接着系アンカーの火災時の付着強度試験として、第二パターンの試験方法を簡易試験として用いることが出来る。

第一パタンと第二パタンの関係を明確にするために、より小さな温度ステップでより多くの実験データを蓄積する必要があり、その関係性を明らかにすることことができれば、より簡便な試験方法で火災時の付着強度を予測できる。今後の課題としてどのあたりの温度で付着強度が低下し始め、炭化が促進されるかを、火災時と比較して調べるために、火災後の実験を実施する必要がある。火災後の結果から、火災後の結果との関係を確認・検証することが出来れば、高温時接着系あらびび施工アンカーの付着耐力を計算し解析することで、火災時の付着強度を予測することができると考えられる。最終的には、実大の接着系あらびび施工アンカーを用いた火災時の挙動の実験的検証を行う予定である。

(2018年2月6日原稿受理，2018年12月27日採用決定)