C.I.E. 標準昼天光による直接照度の計算図表
（その 1・水平面照度に関する図表）

正会員 小島武男*1） 正会員 比嘉俊太郎*2）
正会員 鶴見正保*3） 正会員 西安男*4）
正会員 岡本俊二*2）

1. 概要
筆者等は前回の論文1)で、天空輝度が高度θに応じて変化し、その分布が
\(B(\theta) = B_0 (1 + 2 \sin \theta) / 3 \), \(B_0 = \text{天頂部の輝度} \)
で表される場合に対して、簡単な直線形態をもつ開口に関する直接照度率を求める計算式を導き、
2, 3 の計算例を示した。それらの方程式は従来のように一様の天空輝度を仮定した場合の計算式より複雑で、利用
の簡便化のためには、適宜に数表化または図表化してお
くことが必要である。

ここでは、前論文の中で誘導した諸式のうち、水平面照度に関するもののが計算図表を掲げ、応用例として求めた
鉛直長方形開口による水平面直接照度率の分布計算例を
紹介する。

2. 計算式と図表
図表を作製したのは前回論文の諸式中、下記 (1)～
(5) の各句で、これらはそれぞれ Table-1 の各場合に

\[
U_H(\theta) = \frac{100}{2\pi} \left[8 \tan^{-1} \frac{b l}{d^2 + d^2 + d^2} - \frac{b dl}{(d^2 + d^2 + d^2)(b^2 + d^2 + d^2)} \right] + \left[\frac{b dl}{(d^2 + d^2 + d^2)(b^2 + d^2 + d^2)} \right] + 6 \left[\frac{b dl}{(d^2 + d^2 + d^2)(b^2 + d^2 + d^2)} \right]
\]

(1)

\[
U_H(\parallel) = \frac{100}{2\pi} \left[8 \tan^{-1} \frac{b l}{d^2 + d^2 + d^2} + \frac{b dl}{(d^2 + d^2 + d^2)(b^2 + d^2 + d^2)} \right] + 6 \left[\frac{b dl}{(d^2 + d^2 + d^2)(b^2 + d^2 + d^2)} \right]
\]

(2)

\[
U_H(\vartriangle) = \frac{100}{2\pi} \left[8 \tan^{-1} \frac{b l}{d^2 + d^2 + d^2} + \frac{b dl}{(d^2 + d^2 + d^2)(b^2 + d^2 + d^2)} \right] + 6 \left[\frac{b dl}{(d^2 + d^2 + d^2)(b^2 + d^2 + d^2)} \right]
\]

(3)

\[
U_H(\wedge) = \frac{100}{2\pi} \left[8 \tan^{-1} \frac{b l}{d^2 + d^2 + d^2} + \frac{b dl}{(d^2 + d^2 + d^2)(b^2 + d^2 + d^2)} \right] + 6 \left[\frac{b dl}{(d^2 + d^2 + d^2)(b^2 + d^2 + d^2)} \right]
\]

(4)

\[
U_H(\cap) = \frac{100}{2\pi} \left[8 \tan^{-1} \frac{b l}{d^2 + d^2 + d^2} + \frac{b dl}{(d^2 + d^2 + d^2)(b^2 + d^2 + d^2)} \right] + 6 \left[\frac{b dl}{(d^2 + d^2 + d^2)(b^2 + d^2 + d^2)} \right]
\]

(5)

Table-1 開口の形態と記号

<table>
<thead>
<tr>
<th>箇所</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>記号</td>
<td>U_H(\theta)</td>
<td>U_H(\parallel)</td>
<td>U_H(\vartriangle)</td>
<td>U_H(\wedge)</td>
<td>U_H(\cap)</td>
</tr>
<tr>
<td>例</td>
<td>(\vartriangle - 1)</td>
<td>(\vartriangle - 2)</td>
<td>(\vartriangle - 3(1))</td>
<td>(\vartriangle - 4(1))</td>
<td>(\vartriangle - 5(1))</td>
</tr>
<tr>
<td>例</td>
<td>(\vartriangle - 3(2))</td>
<td>(\vartriangle - 4(2))</td>
<td>(\vartriangle - 5(2))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
対する直接照明率を与えるものである。

Fig.1～Fig.5 は上記諸式の計算図で、それぞれTable-1 に示す各場合に対するもので、値はすべて % で極軸上の読みとして与えられる3)。

3. 鉛直長方形開口による直接照明率の分布例

Fig.6～の場のような鉛直長方形開口による水平面上の直接照明率 が分布計算を行った。図中の 0, 0.5, 1.0… に対する直接照明率を とすれば、
一定の に対し

\[U_H(N) = -U_H(0, b=N+0.5b') \quad (6) \]

であり、 で として取扱えばよい。 の値から、 の各値に対する受照面上の直線 とに対応する点を定め、同じ経度に対応する光を連続して、等（直接）照明率線（等 ）を描くことが出来る。(6) の計算を逐次運行すれば多数の が求めることが必要で、
系的に多数の直接照明率を求める場合、Fig.1 の使用はやや不便であるから、Table-2 の様な 値表を別に作製した。この表はその中の で Table-2 の に対する表を と と 2 に 0, 1 の場合には 同様 と 0.5 値に対する値を読み取ることにすればよい。

a. 0 の場合 Fig.7 は に対するもので図中の実線は 線、点線は一様輝度の場合の同様の直接照明率 と のコンタウラインである。図から、室奥に向かって と と の差が大となり、例えば、開口の中心線で 2 の線が開口幅の約 1/4 程度に置かれているのが見られ、 は によって大きく評価されていることがうかがわれる。

Fig.8(a), Fig.9(a) はそれぞれ、 で

\[d=0, 2, b'=1, \quad l=1, 2, 3 \]

Fig.7

1. 2 に対する等 と線図である。両図の比較から、同一面積の開口に対して、 が大きい方が室奥部の直接照明維持の点で有利であることがうかがわれる。

b. 0 の場合 Fig.8(b), Fig.9(b) はそれぞれ で で 的場合に対する等 と 線図。Fig.8(c), Fig.9(c) はそれぞれ、上記同様の開口に関し 的場合の図である。これらの図は (1+h) の分布から、 の分布を差し引くことによって求めたもので、 の場合に従って 0 の場合に従って、室奥部では同一の等 線が後退していること、分布の最大値が低下していることなどが認められる。

Fig.10(a)～(c) は以上の各図について、試みに 線の位置を に対してプロットした傾向図である。

c. 2, 3 の開口が等しい間隔で 2 個ある場合、4 個ある
* (a) $U_H(1\%)$ 点の開口からの最大距離，y
(b) $U_H(1\%)$ 以上となる部分の軸行方向最大長，d
(c) $U_H(1\%)$ 以上となる部分の最大幅，b
(d) $U_H(1\%)$ 以上となる部分の軸行方向最大長，d

![Fig.−9](image1)

![Fig.−10](image2)

![Fig.−11](image3)

![Fig.−12](image4)

![Fig.−13](image5)
場合の等 $U_h(\Omega)$ 線図である。これらは Fig.11 を参照し、下式によって求めた。ただし $p=1$ である。

$$U_h(\Omega) = U_h(\Omega, b = N - 0.5p)$$

$$-U_h(\Omega, b = N - b' - 0.5p) + U_h(\Omega, b = N + b' + 0.5p)$$

$$-U_h(\Omega, b = N + 0.5p)$$

$$(7)$$

$$U_h(\Omega) = U_h(\Omega) + U_h(\Omega, b = N - b' - 1.5p)$$

$$-U_h(\Omega, b = N - 2b' - 1.5p) + U_h(\Omega, b = N + 2b' + 1.5p)$$

$$-U_h(\Omega, b = N + b' + 1.5p)$$

$$(8)$$

計算にあたって $U_h(\Omega, -x) = -U_h(\Omega, x)$ として取扱うことは式(6)の場合と同様である。

Fig.12 (a), (b) から開口数の増加とともに、室奥部では $U_h(\Omega)$ の一定の分布線が後退するとともに、開口面に平行するように分布線が平坦化することが認められる。Fig.10 (c) は Fig.8 (a), Fig.12 (a), (b) について、試みに $U_h(\Omega) = 1\%$ 線の $N=0$ での位置をプロットした傾向図である。

Fig.13 は $l=1$, $b'=2$ の開口が図の点線位置で示すように互に直角に配置 ($h=0$) された場合の等 $U_h(\Omega)$
Table 2 \(U_i(b), \quad l = \text{const.} \quad \sigma(b) \% \)

<table>
<thead>
<tr>
<th>(a)</th>
<th>0.1</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>5.0</th>
<th>10.0</th>
<th>20.0</th>
<th>40.0</th>
<th>70.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.0</td>
<td>0.21682</td>
</tr>
<tr>
<td>50.0</td>
<td>0.21682</td>
</tr>
<tr>
<td>55.0</td>
<td>0.21682</td>
</tr>
<tr>
<td>60.0</td>
<td>0.21682</td>
</tr>
<tr>
<td>65.0</td>
<td>0.21682</td>
</tr>
<tr>
<td>70.0</td>
<td>0.21682</td>
</tr>
</tbody>
</table>

求めた結果に基づいて、以下の結論が得られる。

1. 結論

1.1 データの解析から、直接鉛直放射率の計算法に、水平受照面に関する諸式の計算方法を示し、鉛直直放射率の計算結果を比較検証した。

1.2 本稿では、前記の実験結果を用いて、直接鉛直放射率の計算方法を改め、改めた結果を示した。

1.3 本稿の結論を、より正確な計算方法について検討するため、今後の研究を望む。

NII-Electronic Library Service
LIMIT ANALYSIS OF BEAM-COLUMN CONNECTION (Ⅲ-2)
(Ⅰ- Type Connections of Wideflange Members Subjected to Strong-Axis Bending)
(See Page 51)

by Dr. HISACHI TANAKA, Prof. Indu. Sci. Univ. of Tokyo.,
YUNA CHUM LINE, Graduate Student Univ. of Tokyo,
Members of A.I.J.

COMPUTING DIAGRAMS FOR DIRECT DAYLIGHT FACTORS
AFFECTING THE HORIZONTAL PLANE ILLUMINATED
BY NON-UNIFORM SOURCE SURFACE

by SHUNTARO HIGA, Assist., Nagoya Univ.; MASAYASU
UKAI, Lect., Material Research Laboratory, Nagoya Inst. of
Tech. ; YASUO NISH, Lect., Meijo Univ., ; SHUNJI OKA-
MOTO, Assist., Nagoya Univ. (all of them are members of
A.I.J.).

Some formulae for computing the direct daylight factors which are attributable to source surfaces of a rectangular
and a right-angled triangle shape in vertical and horizontal positions were introduced by the authors in the paper of
the previous issue of this Transactions. The formulae are derived on the assumption that the brightness of source
surfaces is so distributed that \(B(\theta) = B_0 (1 + 2 \sin \theta)/3, \) where \(\theta \) is the altitude of that part of the source surfaces
where the brightness equals \(B(\theta) \) and \(B_0 \) is the brightness for \(\theta \) identical with \(\pi/2. \)

The present formulae are more complex, and therefore the calculation more tedious, than those derived on the
assumption of the uniform brightness. The authors have worked out some computing diagrams for convenience of
calculation. The diagrams for horizontal plane of illumination are given in this paper (Fig. 1~5). The examples
of application are shown in TABLE-1 on page 57, together with the symbols used in the diagrams.

As an example of application, the authors have calculated the distribution of direct daylight factors on the hori-
zontal plane illuminated by the vertical source surface of a rectangular shape. Some of the results of the calculation
are given as charts. For convenience sake they have also made another calculation of the formula to be
applied in this calculation. Simplified results are given in TABLE-2 on page 64.

SOME CONSIDERATIONS OF REGIONAL TENDENCIES ON ORNAMENTAL
DETAILS OF THE SHRINES IN THE JAPANESE MIDDLE AGE
(the 13th century~the 14th century)

by SATOSHI MIYAZAWA, Nara National Research Institute of
Cultural Properties, Member of A.I.J.

The buildings of the Japanese shrine develop into two courses.
One of them is based on the Japanese Style from ancient times. The examples taking this course are Ise
Zingū and Izumo Taisha and these shrines keep of ther initial style under no influences of the style of Buddhist
buildings.

Taking another course the buildings of shrine have the ornamental detail of Buddhist buildings.

The majority of shrines in the middle age develop into the latter course. Nikko Toshogū is at the zenith of
this course.

The purpose of this paper is to investigate the ornamental details and its regional tendencies of the buildings of
shrine.

The ornamental details are employed actively in the buildings of shrine at the end of the 13th century and
classified into following three types:

1. Wayo: This style is used from Nara period in Japan.
2. Daibastuyo: These styles are introduced from China in early years of the 13th Century.
3. Zenyuyu:

These appears the regional tendencies on the employment of the ornamental details after the 14th century. The
shrines in Nara and Southern Kyōto have details of the Daibustu Style. In Osaka prefectures, the shrines have
the details decorated gorgeously. The details of the shrines in Siga prefecture are simpler and plainer than that in
Osaka.

The chronological tendencies after the 14th century in to be found the regional characters in the limited area.