折曲円錐殻について

I. 序
近年にとどめシエル構造の発達と共に、我が国でも建築界に於てシエルが盛んに用いられ始め構造関係により一つの部門を形成している事は我々この方向に興味をもつ者にとって非常に興味深い事である。然らに、このシエル部門の研究は比較的他の構造部門と見て新しく、未だ若もののであるので従々未解決の問題がなお多く残されていると言う事ができるであろう。例えば、弾性論の立場から選んだ型のシエルに対する厳密解が確立された場合、その厳密解を基本とする、より実用価値をもった近似式の確立、及びに数値計算による計算の簡略化、或いはシエルの研究同様算波をぎわしているリミットアナリシスによる解析等、幾多の問題が提わっている。その他、施工の問題、或いは設計上、デザイナー側よりの要請によるスタイルとかプロポーションに対する要請が可成り強くある場合がある事は否めない。単に一般にシエルのライズの高い事は構造的に有利な事は論をまたぬ事である。
然らに他方、ライズの高い事は人々の型のシエルの有する傾斜である独色鉄効果を更にせたより、又シールスペースを大きくしたりして往々不都合となる事があり、或いは音響効果上の問題を立てつける事もある。然にライズを低くする事は構造的に恒分不利を生む結果に至るが、型が従来のよりも一段と傾斜なたものであるので一般にフラットなシエルに対する要望が可成り強くなる。
そこで一つの試案として円錐殻について、これらの要求も出来るだけ満たすように考案を進めてみた次第である。

II. 構造的概要
一般には、円錐殻は第I図の図の断面をもつものであるが、半径が大きくなるとそれに応じてR（ライズ）も大きくなる。また断面の長母題も増してくるので、使用する大きさを規定する必要を生ずる。そこでI図の型のシエルを種々の要請を出来るだけ満足させる様々な2図の如く変形させてみた。（ライズの2図のものよりも1/3に減る。なおこの円錐殻を変形させた為に起る雨水の排水の問題はこれからの型のシエルの場合大きな問題となるのであるが、軽鋼造による小きさな配合をもった簡単な上層をRより中央に向って点線の如くに加える事によりこの問題を解決しようと思われる。第2図参照）

* 京都大学助教授 工博 ** 京都工芸繊維大学
*** 京都大学研究員

2図の如きシエルにおいてA-A'で支持を行った場合の応力状態として、一般に言い得る事は、薄膜状態ではA-B, C-D間では母線方向応力は圧縮となる。又B-C, D-E間では引張応力となる。リング方向応力はA-B, C-D間は圧縮状態となり、B-C, D-E間では引張状態となる。これらの値はライズの小さい範囲（φ>45°）では母線方向応力に対してリング方向応力の方が大きな値とする。

又前述の場合と反対に3図の加く支持したものは、2図の場合における応力状態とは逆の応力状態になる事は言うまでもない事である。

III. 設計式
1) 記号について。

\[r, \] 半径方向距離
\[r_1, \] 基準半径
\[I, II, III, IV, \] シエル番号
\[R_r, R_s, R_t, \] リング
\[\varphi, \] 角度
\[g, \] 等分布荷重
\[x, x', s, \] 母線上的座標
\[s_{NM}, \] 薄膜状態に於ける経線方向力、引張を正
\[n = I, II, III, IV, \]
\[s_{NM}, \] 薄膜状態に於けるリング方向力、引張を正
\[n = I, II, III, IV, \]
\[w, \] 法線方向のたわみ、内側にたわむを正
\[\frac{\partial w}{\partial S}, \] シエルの回転角

--- 341 ---
sN_{SB}: 曲げ状態に於けるリリング方向力、引張りを正、$n = I, II, III, IV$ とする。sN_{SM}: 曲げ状態に於ける経緯方向、引張りを正、$n = I, II, III, IV$ とする。

M_S: 曲げ状態に於ける経緯方向曲げモーメント、内側に引張りを生ずるものを正、$n = I, II, III, IV$ とする。

Q_S: 剪断力、S のます側で内側にむかうものを正、E: ヤング係数、I: シェルの厚さ

上記の記号と正の方向は第 4 図を参照してみてください。

2) 膜状状態に於ける諸応力

$X = \pm g_0 \cos \varphi$ $Z = \pm g_0 \sin \varphi$

i) $1N_{SM} = \frac{1}{2} g_0 \frac{r}{\sin \varphi \cos \varphi}$、$1N_{SM} = g_0 \tan \varphi$ とすれ、$0 \leq r \leq r_1$

ii) $11N_{SM} = -1 \frac{1}{2} g_0 \frac{r}{\sin \varphi \cos \varphi}$、$11N_{SM} = -g_0 \tan \varphi$、$r_1 \leq r \leq 2r_1$

iii) $111N_{SM} = \frac{1}{2} g_0 \frac{r}{\sin \varphi \cos \varphi}$、$111N_{SM} = g_0 \tan \varphi$、$2r_1 \leq r \leq 3r_1$

iv) $1111N_{SM} = -1 \frac{1}{2} g_0 \frac{r}{\sin \varphi \cos \varphi}$、$1111N_{SM} = -g_0 \tan \varphi$、$3r_1 \leq r \leq 4r_1$

3) 曲げ状態に於ける変形及び応力 [*注]^{11}

次の如く示す。

\[
\frac{w}{\partial \varphi} = e^{-\kappa x} (c_1 \cos \kappa x - c_2 \sin \kappa x) + e^{-\kappa x} (c_1 \cos \kappa x' - c_2 \sin \kappa x')
\]

\[
\frac{\partial w}{\partial S} = e^{-\kappa x} \left\{ \left[(-c_1 - c_2) \cos \kappa x + (c_1 + c_2) \sin \kappa x \right] + e^{-\kappa x} \left[(c_1 + c_2) \cos \kappa x' + (c_1 - c_2) \sin \kappa x' \right] \right\}
\]

\[
M_S = -K \cdot 2 \frac{r_1}{S} \frac{\kappa}{\sin \varphi} \left[(c_1 - c_2) \cos \kappa x + (c_1 + c_2) \sin \kappa x \right] - K \cdot 2 \frac{r_1}{S} \frac{\kappa}{\sin \varphi} \left[(c_1 + c_2) \cos \kappa x' + (c_1 - c_2) \sin \kappa x' \right]
\]

\[
Q_S = -K \left[e^{-\kappa x} \cdot 2 \frac{r_1}{S} \left[(c_1 - c_2) \cos \kappa x + (c_1 + c_2) \sin \kappa x \right] + e^{-\kappa x} \cdot 2 \frac{r_1}{S} \left[(c_1 + c_2) \cos \kappa x' + (c_1 - c_2) \sin \kappa x' \right] \right]
\]

\[
N_0 = \frac{E \pi}{24 \sqrt{3}} \cdot 2 \frac{r_1}{S} \kappa \left[(c_1 - c_2) \cos \kappa x + (c_1 + c_2) \sin \kappa x \right]
\]

\[
N_S = -\frac{E \pi}{24 \sqrt{3}} \kappa \left[(c_1 - c_2) \cos \kappa x' + (c_1 + c_2) \sin \kappa x' \right]
\]

\[
+ \frac{E \pi}{2 \sqrt{3}} \kappa \left[(c_1 - c_2) \cos \kappa x + (c_1 + c_2) \sin \kappa x \right]
\]

但し上式中の c_1, c_2, c_3, c_4 は未定係数を表し、K は \[
K = \frac{E \pi}{12} \]

とする。

IV. 計算例

$r_1 = 4.00 \text{m}, t = 0.08 \text{mm}, \varphi = 60^\circ$

境界条件

1. シェルの不連続点をビンと仮定。

2. シェルの不連続点に於ける夫々のシェルの水平変位量が等しい。即ち $dX = dR = dr_1$

3. シェルの不連続点に於ける応力の静面方向成分が alcoholic。リリングの重荷を考慮する時もこの事が必要であるが、設計荷重にふくめてあると考えて以後の計算には用いない。

以上の条件よりシェル I, II に於ける計算を以下に記述する。

— 342 —
第5図
連続点に作用するものを示し、\(\alpha = \alpha' \) に対して \(S \) の増加する側の断面に作用するものを、又 \(\theta \) はシェル番号を表す。

即ち、\(C_{i} = -\frac{2\sqrt{3}}{EF't^2} N''_{SB} \), \(C_{i} = 0, Q''_{S} \)
従って \(N''_{SB} \) 及び \(Q''_{S} \) は
\[
N''_{SB} = \frac{1}{2\sqrt{3}} S \frac{1}{3} \left(\frac{1}{2S} \sin \varphi + \frac{t}{2\sqrt{3}} \cos \varphi \right) N''_{B} \]
\[
Q''_{S} = K\cdot 2c_{i} \frac{1}{2\sqrt{3}} N''_{B} \]

故にシェルIの不連続点に於ける \(N''_{SB}, Q''_{S} \) による水平方向の応力成分は
\[
\left(\frac{1}{2S} \sin \varphi + \frac{t}{2\sqrt{3}} \cos \varphi \right) N''_{B} \]
反対に
\[
\frac{r_{1}^{2}}{E} \left[\frac{1}{2S} \sin \varphi + \frac{t}{2\sqrt{3}} \cos \varphi \right] \frac{N''_{B}}{N''_{M}} \]

然に、\(r_{1}\frac{1}{E} = 6.6, t_{s} \frac{1}{S_{t}} = 2.71 \text{m}^{-2} \)
\(S_{t} = 1.64 \text{m}^{-1} \) 又 \(\frac{t}{S_{t}} = \lambda_{i} \) とすれば \(\lambda_{i} / \lambda_{i}' = \frac{1}{4} \) より
\(\lambda_{i} = 0.4775 \text{m} \) となる。従って境界条件を解くことにより、\(N''_{B} = -9.42 \varphi r_{1}, \frac{N''_{M}}{N''_{B}} = -5.96 \varphi r_{1} \)を得る。又リング応力は
\[
- \frac{r_{1} \frac{1}{E} \left[\frac{1}{2S} \sin \varphi + \frac{t}{2\sqrt{3}} \cos \varphi \right]}{N''_{SB}, N''_{B}} \]

以下同様な計算操作を行えば良いのでこれを次の結果を
上に表示する。（又リング応力の最終決定は前記の如く
行えば良いのでこれも表示して示す。）なおリングは
すべて等価断面を用いて計算したが、実際には引張力を受
けるリングに於てはコンクリートの亀裂発生後を対象と
して断面決定をしなければならないので、今の場合

\[N_{S} = N_{SB} + x' N_{SB} + x N_{B} \]

合計等価断面をとって亀裂発生以後の事は考えなかった。
以下計算結果を示すにあたって \(N_{S}, Q_{S} \) の \(N_{S}, M_{S} \) の値の代入決定に及ぼす影響に比して微小でない
ので数値の表示を省略する。

<table>
<thead>
<tr>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r</th>
<th>m</th>
<th>N''_{SM}</th>
<th>N''_{SB}</th>
<th>N''_{S}</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.00</td>
<td>15.59</td>
<td>15.17</td>
<td>15.22</td>
<td>14.76</td>
</tr>
<tr>
<td>1.05</td>
<td>1.66</td>
<td>1.60</td>
<td>1.55</td>
<td>1.50</td>
</tr>
<tr>
<td>12.00</td>
<td>11.50</td>
<td>11.00</td>
<td>10.50</td>
<td>10.00</td>
</tr>
</tbody>
</table>

合計等価断面を計算した結果を \(r \) に関して表示すれば

\[M_{S} = x' M_{SB} + x M_{SB} \]

<table>
<thead>
<tr>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x'</th>
<th>M_{SB}</th>
<th>x</th>
<th>M_{SB}</th>
<th>M_{S}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.13</td>
<td>2.67</td>
<td>2.37</td>
<td>1.73</td>
</tr>
<tr>
<td>0.062</td>
<td>0.056</td>
<td>-0.019</td>
<td>0.145</td>
<td>-3.84</td>
</tr>
<tr>
<td>2.15</td>
<td>2.73</td>
<td>2.35</td>
<td>1.19</td>
<td>0.72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>
シエル III \((3r \geq 2r_t) \)

<table>
<thead>
<tr>
<th>(r) m</th>
<th>12.00</th>
<th>11.28</th>
<th>10.57</th>
<th>9.86</th>
<th>9.14</th>
<th>8.43</th>
<th>8.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{SM})</td>
<td>3.46</td>
<td>3.25</td>
<td>2.94</td>
<td>2.76</td>
<td>2.65</td>
<td>2.44</td>
<td>2.31</td>
</tr>
<tr>
<td>(N_{SB})</td>
<td>5.20</td>
<td>4.89</td>
<td>4.58</td>
<td>4.14</td>
<td>3.97</td>
<td>3.66</td>
<td>3.46</td>
</tr>
<tr>
<td>(N_{B})</td>
<td>-23.10</td>
<td>-17.38</td>
<td>0</td>
<td>1.57</td>
<td>0.10</td>
<td>-0.32</td>
<td>0</td>
</tr>
<tr>
<td>(M_{B})</td>
<td>-0.004</td>
<td>-0.44</td>
<td>-0.84</td>
<td>0.22</td>
<td>0.66</td>
<td>13.77</td>
<td></td>
</tr>
<tr>
<td>(N_{B})</td>
<td>-17.90</td>
<td>-2.83</td>
<td>4.14</td>
<td>4.87</td>
<td>4.29</td>
<td>6.44</td>
<td>17.23</td>
</tr>
</tbody>
</table>

単位: \(\text{g} \cdot \text{m} \)

シエル II \((2r \geq 2r_t) \)

<table>
<thead>
<tr>
<th>(r) m</th>
<th>8.00</th>
<th>7.415</th>
<th>6.83</th>
<th>6.245</th>
<th>5.66</th>
<th>5.075</th>
<th>4.49</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{SM})</td>
<td>-2.31</td>
<td>-2.41</td>
<td>-1.98</td>
<td>-1.80</td>
<td>-1.65</td>
<td>-1.47</td>
<td>-1.30</td>
<td>-1.16</td>
</tr>
<tr>
<td>(N_{SB})</td>
<td>-3.46</td>
<td>-3.21</td>
<td>-2.96</td>
<td>-2.70</td>
<td>-2.48</td>
<td>-2.20</td>
<td>-1.94</td>
<td>-1.73</td>
</tr>
<tr>
<td>(N_{B})</td>
<td>20.70</td>
<td>15.88</td>
<td>0</td>
<td>-1.61</td>
<td>-0.89</td>
<td>0.29</td>
<td>0.19</td>
<td>0</td>
</tr>
<tr>
<td>(M_{B})</td>
<td>-0.12</td>
<td>0.02</td>
<td>-0.08</td>
<td>0.18</td>
<td>0.68</td>
<td>-2.00</td>
<td>-5.96</td>
<td></td>
</tr>
<tr>
<td>(N_{B})</td>
<td>17.24</td>
<td>12.22</td>
<td>-2.94</td>
<td>-4.19</td>
<td>-3.19</td>
<td>-1.25</td>
<td>-3.76</td>
<td>-7.69</td>
</tr>
</tbody>
</table>

単位: \(\text{g} \cdot \text{m} \)

シエル I \((r \geq 2r_t) \)

<table>
<thead>
<tr>
<th>(r) m</th>
<th>4.00</th>
<th>3.59</th>
<th>3.18</th>
<th>2.77</th>
<th>2.36</th>
<th>1.95</th>
<th>1.54</th>
<th>1.13</th>
<th>0.72</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{SM})</td>
<td>1.16</td>
<td>1.03</td>
<td>0.92</td>
<td>0.80</td>
<td>0.68</td>
<td>0.65</td>
<td>0.49</td>
<td>0.33</td>
<td>0.21</td>
</tr>
<tr>
<td>(N_{SB})</td>
<td>1.73</td>
<td>1.56</td>
<td>1.38</td>
<td>1.20</td>
<td>1.02</td>
<td>0.88</td>
<td>0.67</td>
<td>0.49</td>
<td>0.31</td>
</tr>
<tr>
<td>(N_{B})</td>
<td>-9.42</td>
<td>-3.02</td>
<td>0</td>
<td>0.64</td>
<td>0.41</td>
<td>-0.13</td>
<td>0.02</td>
<td>-0.018</td>
<td></td>
</tr>
<tr>
<td>(N_{B})</td>
<td>-7.69</td>
<td>-1.44</td>
<td>1.38</td>
<td>1.84</td>
<td>1.43</td>
<td>0.72</td>
<td>0.67</td>
<td>0.51</td>
<td>0.29</td>
</tr>
</tbody>
</table>

単位: \(\text{g} \cdot \text{m} \)

以上の数値を表すダイヤグラムに示す。（第6図）

V. 設計応力及配筋

長さ \(f = 1.6 \text{t/m}^2 \), 長さ \(f = 45 \text{kg/cm}^2 \)

\(r_t = 4.00 \text{m} \), \(g = 0.5 \text{t/m}^2 \), \(t = 0.08 \text{m} \)

（第 7 図）

以上の折曲円錐形に対する考察を進めたのであるが、計

—344—