木材の接着
（木材の微細構造と接着機構について）

I. まえがき

木材が接着するには、木材の分子と接着剤の分子とが互いの分子引力によって結合すると同時に、木材が多孔性なために細胞内腔に接着剤が入り、その機械的投著作用にもよりるものである。言うまでもなく、木材自体の着剤を含む接着剤が接着剤に影響を及ぼすにもかかわらず、木材の接着には細胞内の細胞内腔が大きく、その常温の状態を示すと接着剤に影響を及ぼさない。従って木材面の接着に及ぼす効果は、細胞内腔のような巨大な多孔性によるものではなく、むしろ多孔微細なる組織への水透水によ

本研究は、木材を溶剤型接着剤と乳剤型接着剤を以

II. 接着面の微細構造と接着剤の分子

木材の細胞壁は、巾1,000 Å程度の微小繊維（fibrils）の集合から出来ており、更にそれがセルロース分子の結

田原田技師

第2図 A：微小繊維、B：微小繊維

第3図 ポリ酢酸ビニール乳剤型の電子顕微鏡写真

第1図 木材細胞の微小繊維の電子顕微鏡写真

（農林省林業試験場原田技師撮影より）

*千葉大学助教授

第1000 Å、平均約50 Åで、細胞の間隔が10-100 Å、平均約50 Åである。故に微細構造として、木材の接着に及ぼす効果を検討しようとする企画である。

ポリ酢酸ビニール乳剤型（Polyvinyl acetate

ウレア（animal glues）の分子

POOCH，POOCH，POOCH

\[\text{R} \to \text{CH} = \text{CH} \to \text{CH} \to \text{CH} \to \text{CH} \to \text{CH} \to 10.4 \text{ Å} \]

\[\text{R} \to 2.8 \text{ Å} \to \text{p} \]

(図1、図2参照)

\[\text{R} \to 10 \text{ Å} \]

\[\text{p} \to 5.0 \text{ Å} \to \]

表680: 1000 Å

(図3参照)
溶剤型接着剤の溶液は一種のコロイド溶液であり、糸状分子は互に絡み合わせて微細な規則をなすことが考えられるが、溶液中に分散している状態では強い結合は行われない。従って糸状分子の先端及び側鎖は断層のこと、糸状分子の途中の部分でもミセル間隔内に浸された様子までは示し得ることが考えられる。一方乳剤型接着剤の分子は巨大な球状であり、このような分子はミセル間隔内に入り得ないのであることから容易に想像される。

アルミニウムの陽極酸化処理による多孔性は、後で詳述するが、孔の径が平均 1,000 Å である（第 4 図参照）。これは約ミセル間隔の半分より大きく、溶剤型接着剤の分子は容易に入り得るが、乳剤型接着剤の分子はこれよりも更に大きく、殆ど入り得ないであろう。

III. 実験方法

A. 木材と木材との接着

木材試験片は、かば材（乾燥比 0.7、乾燥状態のもの）を用い、接着面は銅割りとした。試験片の寸法は 10×25×90 mm とし、接着面積は 25×25 mm の平行滑脱型である。（第 5 図、A、JIS 規格）。

B. 木材とアルミニウムとの接着

木材とアルミニウムとの接着には主として大体試験法に基づきした方法である。アルミニウム試片の寸法は、1×28×95 mm とし、接着面積は 25×25 mm の平行滑脱型である（第 5 図 B）。このアルミニウム試片片の接着面は次の三種類とした。

（a）水分ドアーパーで研磨した面。
（b）疎性ソーソー溶液で脱脂した面。
（c）陽極酸化処理を施した面。

（a）は粒度 200 のサンドペーパーを用いて軽く研磨したものである。（b）は 3 ％疎性ソーソー溶液を用い、波温 70℃に於て 2～3 分間浸漬し、これを取出して清水で洗浄後乾かしたものである。（c）は（b）の脱脂処理後、塩酸 1％によって Al₂O₃ の皮膜をつくり表面を多孔性としたものである。疎性 3 ％の塩酸溶液をビーカーに取り、これにアルミニウム試片片二枚を垂下した後、波温 30℃に保ちながら交流電圧を初めに 50 V、逐次 10 V づつ上げて最終を 100 V となるように加えたもので、この間、電流密度を 5～20 A/dm² に保ち、一時間処理したものである。（第 6 図参照）。このようにして得られた Al₂O₃ の皮膜は、その厚さは凡そ 200,000～300,000 Å、孔径は凡そ 300～1,800 Å、平均 1,000 Å、孔の数は凡そ 0.6～7.2×10¹⁰/cm²（表面積の赤んどう 1/2 に当る）である（第 4 図参照）。向この孔の内面は平滑ではない頑な屈曲しているものである。

接着剤は前述のものと同じである。接着方法は金属の熟膨脹を避けるために冷圧法とした。その他凡て木材と木材の場合と同じである。

IV. 実験結果及び考察

木材と木材との接着強度は次表の如くである。

<table>
<thead>
<tr>
<th>接着剤</th>
<th>平均剪断強度 (kg/cm²)</th>
<th>破断状態</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 素 膠</td>
<td>70</td>
<td>木部破断</td>
</tr>
<tr>
<td>(2) ポリ塩酸ビニール溶液型</td>
<td>70</td>
<td>同上</td>
</tr>
<tr>
<td>(3) ポリ塩酸ビニール乳剤型</td>
<td>50</td>
<td>木材—接着剤間面破断</td>
</tr>
</tbody>
</table>

木材とアルミニウムとの接着強度は次表の如くである。

— 150 —
第2表 かば材とサンドペーパー研磨
アルミウムとの接着強度

<table>
<thead>
<tr>
<th>接着剤</th>
<th>平均剪断強度（kg/cm²）</th>
<th>破断状態</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 獣 膠</td>
<td>32</td>
<td>アルミウム——接着剤界面破断</td>
</tr>
<tr>
<td>(2) ポリ酪酸ビニール溶剤型</td>
<td>50</td>
<td>同上</td>
</tr>
<tr>
<td>(3) ポリ酪酸ビニール乳剤型</td>
<td>45</td>
<td>同上</td>
</tr>
</tbody>
</table>

第3表 かば材と脱脂処理アルミウムとの接着強度

<table>
<thead>
<tr>
<th>接着剤</th>
<th>平均剪断強度（kg/cm²）</th>
<th>破断状態</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 獣 膠</td>
<td>40</td>
<td>アルミウム——接着剤界面破断</td>
</tr>
<tr>
<td>(2) ポリ酪酸ビニール溶剤型</td>
<td>70</td>
<td>木部破断</td>
</tr>
<tr>
<td>(3) ポリ酪酸ビニール乳剤型</td>
<td>50</td>
<td>木材——接着剤界面破断</td>
</tr>
</tbody>
</table>

第4表 かば材と硫黄酸化処理アルミウムとの接着強度

<table>
<thead>
<tr>
<th>接着剤</th>
<th>平均剪断強度（kg/cm²）</th>
<th>破断状態</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 獣 膠</td>
<td>70以上</td>
<td>木部破断又はアルミウム引張破断</td>
</tr>
<tr>
<td>(2) ポリ酪酸ビニール溶剤型</td>
<td>70以上</td>
<td>同上</td>
</tr>
<tr>
<td>(3) ポリ酪酸ビニール乳剤型</td>
<td>50</td>
<td>木材——接着剤界面破断</td>
</tr>
</tbody>
</table>

第1表の値は普通に行われる木材同志の接着強度である。1), 2) は共に溶剤型の接着剤で、70 kg/cm²の強度を示しているが、これは接着剤の分子が木材の微小纖維間の凹みとミセル間隙に浸透しているからであると思われる。このような接着条件では破断は直後に接着剤と木材との境界以外の部分で行われたとされる。実験では木部破断が起こっている。ここに接着剤分子は木材の微小孔に浸透して木材分子の官能基と結合すると言うことは、接着面積の增大を意味していること無論であるが、これはまた極めて微細な接着剤の微細な部分を含むと考えられる。

(3) のポリ酪酸ビニール乳剤型のものその値が低く50 kg/cm²程度である。破断は木材と接着剤との界面に於て起こっている。これは乳剤状物の直径が大で、ミセル間隔の凡そ100倍、微小纖維間の凹みの凡そ3倍であるから浸透は殆ど行われていないものと思われる。

第2表の値は一般に第1表の値よりも低い。これはアルミウムの表面を単にサンドペーパーで研磨して、表面の吸着物質を除去した程度の不完全な処理のものであるからである。従って破断は強くアルミウムと接着剤との界面に於て起こっている。元来浸透は無孔性の木材に対してはあまり接着性がよくないために、(1)は32 kg/cm²程度の値となっている。しかしビニール系の接着剤は、カルボキシル基(COOH)による金属面への分子内力があるために接着性が優れ、(2) は50 kg/cm²、(3) の乳剤型のものも45 kg/cm²の値を示している。

アルミウムの表面を脱脂処理すると、単なるサンドペーパー研磨剤より接着力が向上し、第3表の如き値となって来る。ここに(1) の木部は大して向上せず40 kg/cm²程度で、破断はアルミウムと接着剤との界面に於て起こっているが、(2)，(3) のポリ酪酸ビニール溶剤型のものでは接着性は非ず良好で、接着力は70 kg/cm²程度を示し、木部破断を起こしている。

一方(3) の乳剤型のものではアルミウムと接着剤の接着性は良好と思われるが、木材への浸透が不充分であるために接着力は50 kg/cm²止まりであり、破断は木材と接着剤との界面に於て起こっている。

アルミウムの表面を硫黄酸化処理と木孔を弱めること、接着剤に於て接着性が一変する。第4表の値は70 kg/cm²以上で、破断は木部破断か、またはアルミウムの引張破断である。従に浸透を何しては金属面への接着は不可能とされていたが、金属面を微細な多孔性とし、接着剤を浸透して完結する接着性が現実されたのである。これは硫黄酸化処理を施した微細孔（平均直径1,000 Å）の中に接着剤が自由に浸透し、それが微細な間をついて機械的役割を果たしているものと推定される。

(2) のポリ酪酸ビニール溶剤型の場合は、アルミウムに対する接着性が良好である上、微細孔への浸透による機械的役割も果たしているものと考えられる。

しかし木部と同じ程度の接着力であるのとこの点で木部破断を起こすか、またはアルミウムの引張破断を起こしているためであり、正確なる値の測定は困難である。

(3) の乳剤型の場合は、乳剤粒子の平均直径（3,000 Å）が巨大で、アルミウムに硫黄酸化処理を施した微細孔の直径の凡そ3倍に達しているので、接着剤の浸透は殆ど行われていない。従てアルミウムに対する接着力は減少し、他方木材に対する接着力は不変であるので、第4表第3)も、第1表第3)および第3表第3)の如く50 kg/cm²程度であり、破断は木材と接着剤との界面に於て起こっている。

V. 結論

以上の実験は凡ての種類の接着剤によって行われたものでないが、しかし一般的な接着方法として、溶剤型の接着剤にあたっては木材細胞壁の微細纖維間の凹み及びミセル間隔に浸透して強力な接着を示すものであり、乳剤型の接着剤にあたっては細胞内腔には充分入り込めて微細孔には浸透し得ず、接着は単に結晶領域の表面のみに止まるために弱い接着力を保持するものである。而して平滑なる金属面に対しても微細纖維間の凹み極度の微細孔を設けた場合には、接着剤の如きものでも完全に強力なる接着が可能であるということがある。未完

— 151 —
すれば、活性剤接着剤は、微細孔の巾が数十 Åの範囲にあつては、その中に分子の一部または大部分が入り、孔の内部に於て相互の分子引力によって結合すると同時に、接着剤の微細なる間をつくって若千の機械的抵抗作用の要素をも持つと言うこと、更に微細孔の巾（直径）が数百万 Åの範囲となると、多数の接着剤分子が自由に入り得、一層機械的抵抗作用の要素を増して来ると云うことである。

以上の結論に基づいて次の二の場合を検討して見ると、木材の細胞内腔は、針葉樹材では26〜40 μ、広葉樹材では、4〜26 μ、広葉樹材の導管の内径は、30〜340 μである。一般に接着強度は接着剤の厚さが薄か20 μより薄いもの程よく、これより厚い場合は接着剤の発散のために接着剤自体が弱体化する傾向にあると、巨大な管内では接着剤の収縮のために管壁に接触せぬ部分が出来るが、また空洞をつくることもあり得る。従って機械的抵抗作用は低下するものと思われる。針葉樹材の細胞の巨大なるものの、または広葉樹材の導管の巨大で多数存在するものにはこの意味に於て接着不良である。これと同じく、木材の接着面に凹凸を与えて粗面とすることも有害無益であろう。若しも100％固形分接着剤、例えば玉キビ樹脂（epoxy resin）等を用いると、巨大細胞の内腔を完全に充填し、接着剤は細胞内腔壁の微細孔にも充分滲透して強力な接着が期待され得る。尚ゴム醋酸ビニール乳剤型のものの、空隙充填性（gap filling）は良好であるので、これに水溶性の接着剤、例えばゴムビニールアルコール（poly vinyl alcohol）の少量を混入すれば、滲透性の欠陥を補って強力な接着が出来る筍である。木材の含有抽出成分のうちには接着力を低下させるもののがある。例えば接着剤と親和力のない、しな材中の蠟分、また材中の松脂分、樟材中の樟腦及び樟腦油分の如きものがある。これらの成分は細胞壁中にも含まれていると思われるから、当然接着剤の滲透が妨げられるために接着不良の原因となるのである。

木材面を高温の熱源で温めると接着力が低下する。これは高温によって接着領域の表面がOH基を失い、またミセル間隔壁のOH基が互に結合して接着領域を拡張すること、も一つ木材表面が高温のために軟化するために熱盤で抑されたとき微繊維間の凹凸が平面化すること等の原因で、接着力がよく行われない結果であると思われる。

その他接着剤の濃度又は粘度の大小、加熱接着に於ける加熱が接着に及ぼす影響等は、木材の微細構造への滲透と言う点で説明がつけられないよう。

【引用文献】
（2）千葉大学工学院、入江講師。
（3）藤江光雄：高分子化学通論、p.174, 222 (1953)。
（4）島村俊一郎: 化学通論、p.208〜228 (1955)。
（5）小久保定次郎: アルミ＝ウム合金の表面処理法、p.78 (1939)。
（6）岩村英男、大沢真人: アルミ＝ウム陽極酸化皮膜の電子顕微鏡写真、軽金属研究会誌、p.96〜99 (1952)。
（7）Delmonte J. : Technology of Adhesives, p.339 (1949)。
（8）農林省林業試験場：木材工業便覧、p.84〜86 (1953)。
（9）De Bruyne N.A.、Houwink R. : Adhesion and Adhesives, p.75 (1951)。
（10）Delmonte J. : Technology of Adhesives, p.359 (1949)。
（11）橋本喜代太：木材の接着理論、木材工芸学会誌、4 p.103 (1956)。
（12）右田伸彦：木材化学（基礎編）、p.45 (1950)。
（13）小原二郎、岡本一：古材の研究、古文化財の科学、11 p.15 (1955)。