1. 概要 鋼材は高温になると機械的性質が劣化する。しかしそ火災時における鉄骨構造はその鋼材の耐熱、耐火に依存する高温の程度によって、かなりの安全率の低下をきたす。

柱は現在の防火規則の鋼材温度制限では火災中に崩壊する危険があることが判明し、設計には鋼材温度制限と併行して火災時座屈係数を用いる必要がある。

はりは、鋼材温度およびたわみ量の制限があるが火災時の許容鋼材温度・許容たわみ量の存在応力の値如何によって大きく変動するため、現状の規定では必ずしも鉄骨の耐熱性を保証したことにはならない。

2. 鋼材の高温における機械的性質の変化
S. Cuomo の研究による鋼材 St. 37（イタリー）の高温における機械的性質の変化を第 1 表に示す。この St. 37 は日本の SS 41 と同じ材質で、同様に変化を考察したため、ここで論ずる鉄骨構造の鋼材の高温時の降伏点と弾性係数は表に示す比率で低下するものと考える。

第 1 表 St. 37 の高温による機械的性質の変化

<table>
<thead>
<tr>
<th>温度</th>
<th>降伏点</th>
<th>弾性係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>88.8</td>
<td>90.5</td>
</tr>
<tr>
<td>200</td>
<td>76.3</td>
<td>107.1</td>
</tr>
<tr>
<td>300</td>
<td>66.8</td>
<td>117.1</td>
</tr>
<tr>
<td>400</td>
<td>57.7</td>
<td>129.2</td>
</tr>
<tr>
<td>500</td>
<td>47.7</td>
<td>141.4</td>
</tr>
<tr>
<td>600</td>
<td>37.3</td>
<td>153.6</td>
</tr>
</tbody>
</table>

3. 高温時の鉄骨柱の座屈応力度
常温時の座屈応力度は通常下式で示される。

長柱（弾性座屈）:
\[\sigma = \frac{\pi^2 E}{l^2} \]

短柱（塑性座屈）:
\[\sigma = \frac{\sigma_y}{\pi^2 E/4 + \pi^2 E} \]

高温時の座屈応力度は弹性座屈域では E の低下に、塑性座屈域では \(\sigma_y \) と E の低下に関係して低下する。

降伏点 2700 kg/cm² の鋼材の高温時の座屈応力度は第 1 図に示す。図において 350℃以上の大半の座屈応力度が

* 建設省建築研究所 工博

長期許容座屈応力度を下限点が存在する。このことはこの鋼材では350℃以上になると短期設計荷重に耐えることが出来ず崩壊する柱の生ずる可能性のあることを示す。

上述の崩壊の危険の生ずる部分は長期許容座屈応力度に対する安全率 1.0 以下の部分である。鋼材温度に制限を加え、その温度の時の鉄骨柱の安全率が 1.0 以上になるように火災時座屈係数を決定して設計の際に考慮すれば、少なくとも想定した規模の火災時に鉄骨柱の崩壊する危険はなくなると考えてよい。

4. 鉄骨はりの耐火限度
一般に単純ばかりの中央たわみは下式となる。

\[\delta = C \cdot \frac{\sigma_y \cdot l}{d} = C \cdot \frac{\sigma_y \cdot l}{d} \]

(C: 荷重形式による定数)

鋼材の温度が上昇すると E および \(\sigma_y \) がすなわち低下するが \(\sigma_y \) の低下率の方が大きくなるため降伏時温度 \(\sigma_y \) は減少する。鉄骨はりに生じている塑性 \(\sigma_y \) が \(\sigma_y \) に達した時に降伏現象を示し、塑性変形を開始するのであるから、塑性変形を起さないためのののはりの許容たわみ限度は下式となる。

\[\delta = K_x \cdot \frac{l}{d} \]

(\(K_x \): 荷重形式と鋼材温度による定数)

最大大準応力が 200, 400, ... kg/cm² の単純ばかりが火災を受けて鋼材温度の上昇して行く場合を考えると、夫々のはりの中央たわみは第 2 図に示すような経過をたどり \(K_x \) の曲線上で塑性変形をおこし崩壊に至る。

火災時生じるのはりのたわみの許容値は \((K_x - K) l/d \) で示される。この値はより明らかに如く存在応力に応じて大きく左右されるもので、この値を制限することにより鉄骨はりの耐熱性を確保することは困難である。

長期荷重時分の存在応力 \(\sigma_a = 1600 \text{ kg/cm}^2 \) のはりの崩壊しないための許容鋼材温度 300℃ をもって鉄骨構造はりの耐火限度をとることができるもの。