可動間仕切のグリッドのとり方

正会員 内田 祥哉* 同 ○胡 占星**

可動間仕切の要件条件として挙げられることは、間仕切の可動性、互換性、と量産化によるコストダウンである。量産化にかせばパネルと部品の種類を少なくすることであり、可動性と互換性についてはモニントの設計である。これらの問題はすぐモデュラー・コーディネーションと密接な関係があるので、設計の際、まずモデュラに合ったグリッドのとりかたから考えていかねばいけない。このようなグリッドのとり方は大体次の三種類に分けて考えられる。

1. スイング グリッド システム（図1参照）
このシステムは間仕切面に接続することを主眼としたもので、L字型の二方向、T字型の三方向、または十字型の四方向に接続する場合は、一つのパネルをパネル厚の半分を差引いた特殊寸法のパネルにしなければならない。このような間仕切をパネル式間仕切と呼んでおり、取りつけ方は天井グリッドに関係なく、天井と床にてレールを装置すれば容易に間仕切パネルを取りつけられる。
パネルとパネル間の接合法は色々あるが主なものを取り挙げて見ると
i）ジョイナーを使う両側から挟む
例：岸記念体育会館、岡山県庁舎、東京天理教館
H & B ENTERPRISE CORPORATION
（SWEET'S CATALOG）
ii）ジョイナーを使用せず、パネル端部に多少加工されパネル同士で吸着させていく。この方式は木製間仕切に多く使われ、ローコストでよい。

例：成増電気鉄道、呉服橋ビル、鉄道労働科学研究所
2. ダブル グリッド システム（図2参照）
通称のスイング式間仕切であって、パネルの寸法統一を主眼としたシステムである。この方式では総のパネルとパネル間にスタッドを設け、他方向に接続する場合はスタッドが容易に接続することができる。パネル寸法を一種類に統一できることは大変きわめて、すべてのパネル間にスタッドを設けるのでコストは高い。
パネル同士の接合法は主として次の三つがある。
i）パネルを直接スタッドに接合
例：ユニヴォール型、日比谷電鉄ビル、日光河川公園事務所、ユニボール
ii）ジョイナーを用いて、両側から挟む
例：東京大林組ビル、東洋工業大阪支社、法政大学工学部小金井校舎
iii）分割スタッド式
例：パーティション エース、静岡県鉄局
3. 組合せシステム（図3参照）
前に述べた二つのシステムの長所を集めたシステムであって、間仕切が変換する場所のみにスタッドを設け、その他はパネル同士で接合する。したがって、コストはダブルグリッドシステムより少なくて、そしてその長所を兼ねののでよいと思う。設計例は少ないので省略する。
表1は各システムの長所、短所を比較したものをある、三者のビルディング、エレメントとしての性能はほとんど等しいと考えて差支えない。

表1

<table>
<thead>
<tr>
<th>システム</th>
<th>取付け部の接合方法</th>
<th>天井グリッドの影響</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>比較的</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>比較的</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>比較的</td>
<td></td>
</tr>
</tbody>
</table>

* 東京大学助教授・工博 ** 同大学院生