1. はじめ

本研究の目的は、空洞プレストレスコンクリート床板(空洞PC床板)の耐震性を評価することを目的としている。空洞PC床板は、側面にプレストレスを加え、その効果を最大限に発揮することができる。この床板は、従来のコンクリート床板に比べて、耐震性が向上し、軽量化が可能である。

2. 平面静荷重を受けた床板に作用する面内せん断力

平面静荷重を受けた床板に作用する面内せん断力は、図1に示すように、床板および接合部に応じて負担される。従って、床板および接合部は、XおよびY方向に作用する面内せん断力Q_{XY}に対して十分な耐力を持つことが必要である。なお、以下に示すように、床板および接合部の設計は、せん断力Q_{XY}を考慮しなければならない。

\[Q_{XY} = Q_{XY,LEF} \] （1）

この中で、X方向に作用する面内せん断力Q_{XY,LEF}は、図1に示すように床板の短辺方向に作用するせん断力Q_{XY}の1/2ユニットの床パルスに等しい。
板に対して，スラブ自体の地震時層せん断力係数を $C_p=1.0$ とした。

式2は地震荷重で，ℓ_p は1ユニットの床パネルの短辺方向長さ，L_y はX方向スパン長さ，L_z はY方向スパン長さである。尚，ここで，長，短辺方向というのは，空洞PC床板パネル単体の長辺，短辺方向という意味である。但し，(2)，(3)式はあくまで単純構造におけ るせん断力，耐震設計などでいて実板に集中応力を生じる場合には，せん断力は別途に計算する必要がある。

一方，床スラブ側面に支持部材から伝達される地震力 Q_{Ey} に対し，PCa構造に応じる構造特性係数として $0.5(\ell_y/2)^2$ の値を採用すると，短期荷重レベル ($C_p=0.2$) 相当の設計せん断力は $Q_{Ey}=2.5(\ell_y/2)^2$ と表される。従って，各接合部において，(1)式を満足するように，床板，および接合部を設計しなければならない。

\[
Q_{Ey} = 2.5Q_{Ey,2}
\]

ここで，Q_{Ey} は構造建物によって相関構造に生じるせん断力の差であり，次式と表される。

\[
Q_{Ey,2} = \left(Q_0 - Q_{Ey} \right) (i = x,y)
\]

ここで，$Q_0(i=x,y)$ は図1に示すように，構面左側架構骨組から伝 \(\text{達された地震力}(C_p=0.2)$ で，$Q_{Ey}(i=x,y)$ は構面右側架構骨組から伝 \(\text{達された地震力}(C_p=0.2)$ である。

- また，式1及び式2左項のせん断伝達耐力 Q_0 に対して，場所打ちコンクリートを持つRCスラブでは，コンクリートと一体化するため，多くの設計では，水平方向の内側剛性を無限大と仮定して，内面せん断耐力のチェックを通常省略する。この基準床工法はRCスラブ構造と比較して，各板間に接合部が存在するので，内面せん断耐力上接合部が弱点になることが懸念される。この面内せん断耐力をとして，a)床板－床板短辺方向のせん断抵抗，b)床板－床板長辺方向のせん断抵抗，c)床板から梁へのせん断伝達（短辺・長辺方向）が考えられる。本基準床工法における空洞床板相互の接合方法および床と梁との接合に関して以下に示す。

短辺方向における「床－床」接合：空洞部の端部が切り欠かれた2枚の空洞PC床板を梁（支持材）の上部に敷設し，梁を跨いでカップリング筋を配置し，切欠き部および梁上部に場所打ちコンクリートを充填し，両者の接合を図る。（図2）

長辺方向における「床－床」接合：図2に示すように，空洞PC床板の端面相互の接合部にコンクリートを充填し，隣接した床板の長辺方向における接合を形成する。両者の接合を向上させるために床板側面の上部にシアーキーが設けられている。

図2 床－床における接合イメージ

図3 床－梁（鉄骨梁）における短辺方向の接合

図4 床－梁（RC梁）における短辺方向の接合

図5 床－梁（RC梁）における短辺方向の接合

図6 外端部におけるカップリング筋の定着

「床－梁」接合：床－梁接合は，支持材の梁は鉄骨梁，RC梁及びPC梁によって，図3～5に示すように，「床－床」接合部と梁とは頭付ステッキール脚もしくはかんざし筋によって接合する。また，短辺および長辺の端部に敷設された床と梁の接合は，カップリング筋，ジョイントコンクリート，および頭付ステッキール（鉄骨梁の場合），もしくはかんざし筋（RC梁及びPC梁の場合）によって構成されている。

また，支持材は鉄骨梁及びPC梁の場合，外端部における床－梁接合部に，図5，6に示すように，カップリング筋が十分のせん断力を提供するように，梁に十分の定着長さを有しなければいけないと考えられる（但し，外端部の設計上はピンとして扱い，配筋されたカップリング筋は鉄骨荷重による曲げモーメントを負担しないことが多い）。

各接合部におけるせん断抵抗を確認するために，連続空洞床板をモデル化して局面的に取り出して，実験を行った。また，実験結果に基づいて，各学問式と比較すると，せん断伝達耐力設計式が提案する。

3. 空洞PC床板床板間のせん断伝達能力

3.1 床－床（短辺方向）のせん断抵抗 \(Q_d \)

空洞PC床板短辺方向の端部において（図2），端面加工部及び空洞PC床板床面側に鉄筋を配置した後にコンクリートを充填して形成
した接合部の水平せん断伝達能力を検証する目的で、面内せん断実験を行った。試験体は、図7に示すように、二枚の空襲PC床板間の接合部（Sタイプ）と目地部を含む四枚の空襲PC床板間の接合部（SMタイプ）に分けて、接合部を要素モデル化して製作した。Sタイプ試験体は、2枚の空襲PC床板の端部を2本の接合筋（カップリング筋）によって緊結し、幅200mmのジョイントコンクリートを充填した接合部で構成されている。一方、SMタイプ試験体は、4枚の空襲PC床板の端部を2本の接合筋によって緊結した。また、空襲PC床板目地部にも1本の接合筋を挿入し、空襲PC床板端部及び目地部にジョイントコンクリートを充填した十字形の接合部で構成されている。ここで、試験体の寸法の制限でカップリング筋の定着長さが確保できないため、鉄筋の端部にはナットによって締めている。試験体は、表1に示すように各2体ずつの計8体を製作した。

<table>
<thead>
<tr>
<th>試験体</th>
<th>鉄筋</th>
<th>接合部</th>
<th>試験体</th>
<th>鉄筋</th>
<th>接合部</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-16-1</td>
<td>2D16</td>
<td>宇二PC</td>
<td>S-16-1</td>
<td>3D16</td>
<td>厚床接合目地部有り</td>
</tr>
<tr>
<td>S-16-2</td>
<td>中空PC</td>
<td>宇二PC</td>
<td>S-16-2</td>
<td>3D16</td>
<td>厚床接合目地部有り</td>
</tr>
<tr>
<td>S-19-1</td>
<td>2D19</td>
<td>宇二PC</td>
<td>S-19-1</td>
<td>3D19</td>
<td>厚床接合目地部有り</td>
</tr>
<tr>
<td>S-19-2</td>
<td>宇二PC</td>
<td>宇二PC</td>
<td>S-19-2</td>
<td>3D19</td>
<td>厚床接合目地部有り</td>
</tr>
</tbody>
</table>

| 表1 | 床−床（短辺方向）にせん断力実験における試験体一覧表 |

| 表2 | Sシリーズ各試験体強度特性 |

<table>
<thead>
<tr>
<th>試験体</th>
<th>空脇PC床板</th>
<th>最大せん断面積</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-16-1</td>
<td>30.0</td>
<td>31.9</td>
</tr>
<tr>
<td>S-16-2</td>
<td>30.0</td>
<td>31.9</td>
</tr>
<tr>
<td>S-19-1</td>
<td>30.0</td>
<td>31.9</td>
</tr>
<tr>
<td>S-19-2</td>
<td>30.0</td>
<td>31.9</td>
</tr>
</tbody>
</table>

使用した空脇PC床板のコンクリート強度及び充填コンクリートの圧縮強度は、それぞれ55.1N/mm²及び50.67N/mm²で、接合筋はSD390の周辺鋼筋を使用した。

加力方法として、図8に示すように、3MNの大型アクチュエータから構成された構造物試験機を用いて、4点加力による逆対称曲げモーメントを与え、接合部に対してせん断力を単調載荷で作用させた。測定方法として、荷重はロードセルで計測し、接合部のすべり変位は高感度変位計によって計測した。また、接合部には、接合筋周端部及び接合面近傍に鋼管ゲージを貼り付け、接合面に生じるひずみ変形を測定した。

実験結果：試験体の接合部に生じるせん断力とすべり変位の関係を図9に示す。いずれの試験体も接合面に沿ってひび割れが発生した後、カップリング筋が崩壊して、最大せん断力に達した。その後、接合部において、鉄筋ひび割れの急速化増強、耐力が低下し、すべり変位が7mmを越えると耐力はほぼ一定になることが認められる。この最大せん断力以降の耐力は、カップリング筋のダウエル効果とせん断摩耗効果によるものと考えられる。また、最大耐力時のせん断応力は、1.15倍の値で、2.57N/mm²で、300kgF/cm²を越えることが確認されている。

空脇PC床板が地震力による面内せん断力を受けるとき、床−床接合部（短辺方向）のせん断抵抗要素として、①カップリング筋によるせん断抵抗ηQo、②空脇加工部に充填されたコンクリートによるシアーせん断抵抗ηQcの2つの抵抗要素を考えられる。これより、本構造システムの接合部におけるせん断抵抗を考え、文献の鉄直接合部のせん断耐力式（①）を基に以下の式

\[
\tau \geq \frac{\sigma_{cm}}{2(2.57N/mm²)} \leq \frac{\sigma_{cm}}{300kgF/cm²}
\]

を導入する。
ここで、F_{c}はジョイントコンクリートの圧縮強度、A_{sc}は空鋼脚シアキーのせん断面積の総和、α_{f}は、鉄筋の降伏強度、Σ_{a}はカッティング筋の全断面積、せん断抵抗の累加式(6)を用いて各試験体におけるせん断伝達能力を計算した結果と実験結果の比較を表2に示した。これより、実験結果は、計算結果に対して、安全側評価の傾向が見られるが、良い適応性を示していると考えられる。従って、床-床(短辺方向)接合のせん断耐力Q_{b}は、次式のように書き表される。

\[Q_{b} = Q_{b0} \times \frac{1}{1 + \sigma_{f} / \sigma_{u}} \times \sum_{a} \]

(7)

ただし、カッティング筋は設置時に面内せん断に抵抗すると同時
に、長期降伏荷重による曲げモーメントを負担しているので、式上の\(\sigma_{f} \)は構造解析点強さから降伏荷重によって生じる応力を差し引
いた値を用いる。

3.2 空鋼 PC床板-床板(短辺方向)のせん断抵抗Q_{b}

図10に示すように、空鋼 PC床板における短辺方向接合部は、ジョイントコンクリートとPC床板ユニットの側面に設けられたシアキーからなり、接合筋は存在しない。従って、Y方向の面内せん断耐力を受け、そのせん断抵抗は、シアキーによる抵抗要素に依存する。そこで、床板-床板接合部の一部を取り出した要素モデルを用いて直接せん断実験を行った。試験体は、相対する二枚空鋼 PC床板の短辺方向の側面に2個の菱形JPC-C-1TYPEまたは円形のシアキー(JPC-C-2TYPE)を設置し、それ間に形成されるU字形の溝にジョイントコンクリートを充填する。試験体数はJPC-C-1 TYPE各2体づつで4体製作した。試験体の詳細図を図10に示す。実験を行ったジョイントコンクリートの圧縮強度を\(\sigma_{c} = 31.7 \text{N/mm}^2 \)として、耐荷方法として、図11に示すように空鋼部にPC鋼棒を挿入し、これ
を充填コンクリートによって空鋼 PCユニットと一体化を計った。

このPC鋼棒を取付け装置に接着して、1MNのオーバージャッキによ
って一方向単調加力を与え、直接せん断実験を行った。

実験結果：各試験体には滑り変位が0.01～0.13mmで初びび割れが発生し、その後、0.01～0.2mmの極めて小さな変位で最大荷重に達し、耐力が急激に劣化するせん断破壊性状を示す。接合部のせん断耐力は、長辺方向シアキー及び円形シアキーの間で殆ど違いは見られないが、前者の方が若干大きく発現していることが認められた。

せん断抵抗機構：実験結果と実験の短直接断耐力式(5)を比較し、した結果(文献16)に示す(6)式の第2項の値を表3に示す。この表によると、実験結果に対して、実験値と計算値の比\(Q_{b}/Q_{b0} \)はやや1.0より低い、シアキーが接合面に偏か配置しているためと考えられる。1.0直立床実験では、安全側として、下限係数\(c = 0.8 \)を採用して、\(Q_{b}/Q_{b0} \)の比較を表4に示した。平均的に1.25の値が得られ、実験結果とよく対応していると考えられる。従って、床板-床板(短辺方向)接合のせん断耐力Q_{b}は、次式のように書き表される。

\[Q_{b} = \phi_{b}Q_{b0} = 0.08F_{c}A_{sc} \]

(8)

ここで、F_{c}はジョイントコンクリートの圧縮強度、A_{sc}は空鋼 PC床板の短辺方向に設置したシアキーのせん断面積の和、シアキーが円形の場合、せん断面積A_{sc}は図12に示すように、シアキーの断面積を等価換算すると、下式で表される。

\[A_{sc} = \pi \times d \times d \]

(9)

4. 床-梁(支持材)のせん断抵抗Q_{b}

空鋼 PC床板による組立床組造システムにおいて、水平荷重を受けて、生じた床内のせん断力は、周辺の接合部に伝達される。後に、このせん断力は耐荷部分に溶接された頭付スタッドを介して鋼梁に伝達される。従って、頭付スタッドは、床板に作用する水平せん断力を鉄骨梁に伝えさせる必要で十分な能力を保有していることが重要である。ジョイントコンクリート内にある頭付スタッドの両側に床板が接合されているか、あるいは片側だけに床板が接合されているか、また、頭付スタッドの上部に配設されているか等によって頭付スタッドに対する拘束効果が変化する大きな影響を
受ける。そのため、床-梁接合部のせん断耐力を確認するために、X,Y 方向の水平力を受ける床-梁接合部を取り出して、以下のよう
にモデル化して三つのシリーズ試験体を製作した。

a. 両側に床板を持つ接合部の押し抜き試験体（A シリーズ）
試験体は、短辺方向の床-梁接合部を要素モデル化したもので、図
13(a)に示すように、2 枚の空鋼 PC 床板は接合筋および厚さ 200mm
のジョイントコンクリートから成る床構造システムを厚 16mm の 2
本頭付スタッドによって両側で接合された H 型鋼から構成されて
いる。

b. 片面に床板を持つ接合部の押し抜き試験体（B シリーズ）
試験体は、片面のみに床板が接合されている短辺方向接合部を要
素モデル化したもので、図13(b)に示すように 1 枚の空鋼 PC 床板、
接合筋およびジョイントコンクリートからなる床構造システムを
厚 16mm の 2 本の頭付スタッドによって接合された H 型鋼から構
成されている。

c. 片面に床板を持つ接合部の直接せん断試験体（C シリーズ）
試験体は、長辺方向の端部接合部を要素モデル化したもので、図
13(c)に示すように、空鋼 PC 床板は、接合筋およびジョイントコン
クリートから成る床構造システムを厚 16mm の 1 本の頭付スタッド
によって H 型鋼上部に接合されている。

試験体の一覧及び変動要因を表4に示す。

加力方法として、A,B シリーズ試験体は、図14に示すように、空
鋼 PC 床板の上部に鉄骨治具を配し、PC 鋼棒によって緊結し、テス
トフロアに固定した。3000 kN アクチュエータによって鉄骨梁を
加圧し、試験体に対して押し抜き加力を与えた。測定は鉄骨梁の中
央部に垂直方向に高感度変位計を設置し、鉄骨梁とジョイントコン
クリート接合筋の間の相対変位（すべり変位）を計測した。また、
水平方向に高感度変位計を配置して、接合部と空鋼 PC 床板との間
に生じる目聞き変位を測定した。C シリーズ試験体では、図11に示
す 3.2 節の JPC シリーズ試験体と同じように、鉄骨梁及び空鋼 PC
床板に PC 鋼棒を取付け治具に緊結して、1MN のオイルジャッキに
よって一方向単純加力を与え、直接せん断実験を行った。

実験結果：各試験体における最大荷重を表5に示す。A,B シリー
ズ試験体に対して、空鋼 PC 床板とジョイントコンクリートによる
接合筋との界面に初期ひび割れが発生し、その後ひび割れが荷重の増
加とともに拡大する。せん断力の増大によって、鉄骨に配された頭
付スタッドのダウエル作用によって支圧応力が生じ、頭付スタッド
部の接合部に斜めひび割れが発生し、これがせん断破壊まで進展
することによって最終破壊に至る。接合筋径 D16 と D19 の違いによ
る影響を見ると、前者の最大荷重が後者のものよりも少し高く発現し
ているが、せん断伝達の違いは殆ど見られない。

C シリーズ試験体ジョイントコンクリートによる接合部と接骨梁

図13 床-梁接合部における試験体図

図14 A,B シリーズ試験体における加力図

表4 床-梁接合部における試験体一覧表

<table>
<thead>
<tr>
<th>シリーズ</th>
<th>試験体</th>
<th>空鋼PC床板</th>
<th>接合筋</th>
<th>ステー</th>
<th>モデル</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SSB-16</td>
<td>厚さ幅×長さ 200×400×700 (4枚)</td>
<td>4-D16</td>
<td>4-16</td>
<td>短辺方向(両面持つ)</td>
</tr>
<tr>
<td>A</td>
<td>SSB-19</td>
<td>厚さ幅×長さ 200×400×700 (4枚)</td>
<td>4-D19</td>
<td>4-16</td>
<td>短辺方向(両面持つ)</td>
</tr>
<tr>
<td>B</td>
<td>SBB-16</td>
<td>厚さ幅×長さ 200×400×700 (2枚)</td>
<td>4-D16</td>
<td>4-16</td>
<td>長辺方向(片面持つ)</td>
</tr>
<tr>
<td>C</td>
<td>CPC-16-1</td>
<td>200×243×300 (1枚)</td>
<td>1-D16</td>
<td>1-16</td>
<td>長辺方向(片面持つ)</td>
</tr>
</tbody>
</table>
の界面に沿ったひび割れが最初に確認され、続いて空軋 PC床板と接合部の界面に沿ってひび割れが発生した。最終的に、荷重の増大によって、すべり変位が大きく進展し、頭付スタッドが破壊して最終破壊に至ったことが判った。

せん断抵抗機構：空軋 PC床板に水平力が作用すると、床面せん断応力が床板内に生じ、周辺のジョイントコンクリートから形成される接合部に伝達される。そのせん断応力は、フランジ上部に溶接された頭付スタッドを介して、鉄骨梁に伝達される。コネクタ合成構造において、頭付スタッドのせん断抵抗力をコンクリートと頭付スタッドの支持圧による伝達と考えると、下式で表される。

\[
Q_s = 0.5 a_s \sqrt{F_e} E_t
\]

(10)

ここで、\(a_s\)は頭付スタッドの断面面、\(F_e\)はジョイントコンクリートの圧縮強度、\(E_t\)はジョイントコンクリートのヤング係数。式(10)と実験結果との比較を図5に示す。この表によるCシリーズ試験体に対して、\(Q_0/Q_s\)は0.6よりも大きいが、A. Bシリーズに対して、\(Q_0/Q_s\)はやや1.0より低い値となった。このため、設計補正強度を参考にして、この頭付スタッドによるせん断抵抗、\(Q_0\)を頭付スタッドのダウエル作用と頭付スタッドのせん断摩耗効果によるせん断耐力の総和として次式のように提案する。

\[
Q_{pp} = \phi \sigma_{cp} \left(0.5 d_s^2 \sqrt{\sigma_{cp} \sigma_{bob} + 0.7 a_s \sigma_{bob}} \right)
\]

(11)

\(\phi = 0.8\) 頭付スタッドが両側床パネルの間に配置
\(\phi = 0.7\) 頭付スタッドが片側床パネルの間に配置
ここで、\(d_s\)は頭付スタッドの直径、\(\sigma_{cp}\)は頭付スタッドの降伏点強度、\(\sigma_{bob}\)はジョイントコンクリートの圧縮強度、\(\sigma_{bob}\)は低温度係数である。実験結果との照合は、表5に示すように、実験結果に対してやや安全側で、よく対応していると考えられる。

また、空軋 PC床板はRC支持材(板)上に敷設する場合、図4に示すように、水平せん断力はRC梁に埋め込みかんざし筋を介して梁に伝達すると考えられる。そのときのせん断伝達耐力は式(6)の第2項によって、次式のように示す。

\[
Q_{pp} = \sum a_n \sigma_{cy}
\]

ここで、\(a_n\)は、RC梁に埋め込みかんざし筋の全断面積、\(\sigma_{cy}\)はかんざし筋の降伏強度である。

5. まとめ
空軋 PC床板構造は、床板および接合部に作用する床面せん断力に対して十分なせん断伝達能力を有しなければならない。これに対応する設計手法として、実験結果に基づいて提案した各接合部(床床および床梁接合部)のせん断耐力は、本研究の実工法に於いて、実用性があることが確認された。

本工法で提案された各接合部のせん断耐力に対して(特に9.10式)、低係数を採用することにより、本実験結果から安全側に設計されることが勝利とされ、今後実験を積重ねた上で、せん断耐力の精度を更に高めることが課題である。

参考文献
1) 日本建築学会: プレストレスコンクリート(PP)合成床板設計施工指針・同解説 1994年, pp.34～36
2) 日本建築学会: 壁式プレキャスト鋼筋コンクリート造設計基準-同解説, pp.70
3) 日本建築学会: 各種合成構造設計指針-同解説
4) 日本建築学会: 「プレキャスト鉄筋コンクリート構造の設計と施工」pp.175～190
5) 日本建築捜査会議: 鉄筋コンクリート構造物の耐震診断基準/改修設計指針・解説, 2001年
6) 望月隆, 槇渕み, 井原健枝: 壁式プレキャスト鉄筋コンクリート造施工合せのせん断耐力, 日本建築学会構造系論文集, 第424号, pp.11～22, 1991.6
7) 齋藤, 槇渕み, 井原健枝: 多用及び頭付用のPCa構造接合部のせん断耐力, 日本建築学会構造系論文集, 第534号, pp.113～119, 2000.8
8) 薫口克己, 津田康司, せん断補強筋のないRC柱部材の斜め圧縮力伝達能力, 日本建築学会構造系論文集, 第534号, pp.113～119, 2000.8
9) 齋藤, 槇渕み, 井原健枝, 内藤隆治: 十数を基として接合した連続空軋プレストレスコンクリート床板に関する実験研究(その1, その2), 日本建築学会大会講演要覧(開関, pp.93～96, 2001.9
10) 齋藤, 槇渕み, 井原健枝, 横山雄二: 鉄筋プレストレスコンクリート床板の面内せん断挙動とその耐力をに関する研究, 日本建築学会構造工学論文集, pp.129～137, 2002.3

[2004年4月20日原稿受理 2004年7月29日採用決定]

表5 床・梁支持材における実験結果と計算結果の比較

<table>
<thead>
<tr>
<th>シリーズ</th>
<th>試験体</th>
<th>最大荷重 (Q_0) (kN)</th>
<th>合成指針 (Q_s)</th>
<th>(Q_0/Q_s)</th>
<th>提案式 (Q_{pp}(kN))</th>
<th>(Q_{pp}/Q_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SSB-16-1</td>
<td>280.4</td>
<td>286.4</td>
<td>0.98</td>
<td>226.7</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>SSB-16-2</td>
<td>264.2</td>
<td>286.4</td>
<td>0.92</td>
<td>16.7</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>SSB-19-1</td>
<td>239.0</td>
<td>286.4</td>
<td>0.83</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>SSB-19-2</td>
<td>239.7</td>
<td>286.4</td>
<td>0.84</td>
<td>1.07</td>
<td>1.07</td>
</tr>
<tr>
<td>B</td>
<td>SB-16-1</td>
<td>227.8</td>
<td>286.4</td>
<td>0.8</td>
<td>198.4</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>SB-16-2</td>
<td>246.1</td>
<td>286.4</td>
<td>0.86</td>
<td>1.24</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>SB-19-1</td>
<td>219.4</td>
<td>286.4</td>
<td>0.77</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>SB-19-2</td>
<td>205.8</td>
<td>286.4</td>
<td>0.73</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>C</td>
<td>SPC-16-1</td>
<td>84.6</td>
<td>84.1</td>
<td>0.81</td>
<td>71.7</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>SPC-16-2</td>
<td>98.0</td>
<td>84.1</td>
<td>1.17</td>
<td>1.37</td>
<td>1.37</td>
</tr>
</tbody>
</table>

\(Q_s=0.5 a_s (Fe \cdot Ec)\)

114

NII-Electronic Library Service