強制排水が排水立て管システム能力へ及ぼす影響把握のための基礎研究

大塚雅之 ——*1
南 裕介 ——*2
繁田和穂 ——*3

キーワード:
コンバージョン、強制排水システム、排水能力、器具平均排水流量

Keywords:
Conversion, Forced drainage system, drainage capacity, Average flow rate of sanitary fixture

1. はじめに

最近の集合住宅では、高齢者の介護用に新たにトイレを増設することやキッチンをアイランド型とすること、更にはリビングルームに隣接した眺望の良い位置に浴室を設けることなど水まわりの配置に関する居住者のリクエストも多様化し、それらに対応できる設計が求められている。その際に問題となるのが、排水配管の設計である。それは、専用部の衛生器具からの排水は重力排水方式が一般的であるため、先の要求に対応するには床と床の高さが不足し、充分な配管する配が確保できないことである。その対策として、床と床の高さを従来よりも大きくしたSI住宅が普及しつつある。しかし、既設住宅はもちろん、SI住宅でも対応できないケースに対して、排水配管のこう配を確保することなく円滑に排水できる強制排水方式が注目されており、その可能性が開かされている。一方、既存のオフィスビルでは、住宅などの他の用途へ転用される、いわゆる「オフィス・コンバージョン」が話題となっており、その場合にも同様の問題が発生するため、筆者も圧送排水ポンプユニットを用いた強制排水方式を実際の物件に導入し、その排水性能評価を行っている。これは、専用部配管に関する検討であるが、実際の衛生器具からの排水を強制排水方式で用いて排水する場合には、重力排水方式の場合は排水特性が異なるため、排水立て管システムの排水能力に及ぼす影響を把握しておくことが必要となる。しかしその点を実験的に検討した事例は報告されていない。本研究では、今後、開発される様々な強制排水方式を用いた場合の排水負荷が、排水立て管システムの排水能力に及ぼす影響を系統立てて整理することを最終目的とした。本報では、供試衛生器具として大便器をとりあげ、それに帯電の圧送排水ポンプユニットを設置し、圧送排水方式（以下、圧送排水方式と呼ぶ）を適用し、従来の重力排水方式を用いた場合との排水性能への影響の違いを比較した。

BASIC STUDY WITH RESPECT TO GRASP OF THE IMPACT OF THE FORCED DRAINAGE SYSTEM ON THE DRAINAGE CAPACITY OF THE DRAINAGE STACK SYSTEM

Masayuki OTSUKA ——*1
Yusuke MINAMI ——*2
Kazuhiro SHIGETA ——*3

The purpose of this study is to grasp the impact of the forced drainage system on the drainage capacity of the drainage stack system. This paper focused on the performance evaluation of the forced drainage system of water closet and carried out the comparison with the conventional gravity drainage system in terms of the impact on the drainage capacity. As a result, the basic data with respect to the characteristics and the performance evaluation of the same drainage system were collected.

2. 実験方法

(1) 流す排水方式の排水特性

供試大便器は、サイホン式(T社製、型式CS6708P、ロータン洗浄水流量9L)を用いた。その大便器を重力排水方式とすることで、汚水・雑排水専用の圧送排水ポンプユニット（以下、C型圧送ユニットと呼ぶ）による圧送排水方式とした場合での排水特性を把握した。C型圧送ユニットはフランス製で、内部には小型排水ポンプと、污物やトイレットペーパーを破砕するカッターが設置されている。重力排水方式、圧送排水方式の排水特性値は、図1(1)、2(3)に示す3つの排水配管を用い、端部に設置した大型排水溝下の水圧変動を排水流量変動Qa[l/s]に換算して求めた。その詳細は、参考文献6)で述べた。図1(1)は、重力排水方式の実験で供試大便器に長さ1m、管径75[(実内径75mm)]の排水横枝管を設置した場合を示した。図2(2)、(3)は圧送排水方式の実験で、前者には圧送排水ポンプユニットに長さ1mの排水横枝管を、後者は天井配管を想定した立ち上げ配管を設置した。排水管と通気管の管径は、20A(実内径19mm)で明暗化バイパスを用いた。実験では、排水管基部に排水流量Qa[l/min]、排水管基部最大水圧H(m)、通気管内圧力Pn[Pa]、通気管内風速V[m/s]をそれぞれ測定する。測定結果の詳細を表1に示した。また、C型圧送ユニットの操縦曲線は、メーカー同様において示されたものではなく実験室で測定したものである。抵抗曲線は、排水管基部に閉閉バルブを設置し、開度を任意に調節し大便器排水を行った時のQaとHの実測値をプロットし求めた。

(2) 排水立て管システムの排水能力への影響

実験は、写真1に示す関東学院大学建築環境設備シュミュレーショ
3. 結果及び考察

(1) 压送排水方式の排水特性

図4に、図1(1),(2),(3)の各方式を用いて排水した場合に、増幅
排水までに測定したQwの変動を示した。压送排水ユニットの通気管
(以下、ユニット通気管)端部には全開とした。これより、重力排水方
式と压送排水方式では、排水流量曲線の見解は瞬時最大排水流
量値に差違は見られない。しかし、压送排水方式ではポンプの発行
による変動が見られる。压送排水(天井配管)では、瞬時最大排水
流量値が他に比べて小さい。これをもとに、器具排水特性値を算出
し表2に示した。ユニット通気管の開度を全開にし、図2(2)と図2(3)
の結果を比較すると図2(2)の方が器具平均排水流量値qtd値が大き
くなるので、図1(2)についてはユニット通気管の開度を調整した場
合のqtdの変化も調べた。その結果、全開時のqtd値は全開時に対し
38%に低下することが確認できた。また、図5に図1(2),(3)の排水
管基部に開閉バルブを設置し、その開度を任意に調整した時のQw
tとqtdの値を用いて描いた抵抗曲線を示した。図上の運転点での排
水流量は図2(2)の場合で68[L/min]（1.13[L/s]）、図2(3)の場合
で15.7[L/min]（0.75[L/s]）となり、図2(3)の場合で図2(2)の実測
点である、若干差が生じたが、実測値は26[kPa]である図2(3)の立ち上
がり点の静水圧が約2.5[m]となるため静水圧力に換算しても両者
はほぼ一致しており実用上は有効な測定が行われたものと判断した。

表1 測定項目と方法

<table>
<thead>
<tr>
<th>测定項目</th>
<th>测定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>测定圧力</td>
<td>P_ha, P_vw, H_min, H_max</td>
</tr>
<tr>
<td>测定流量</td>
<td>Q_min, Q_max</td>
</tr>
<tr>
<td>测定温度</td>
<td>温度センサを設置し測定</td>
</tr>
</tbody>
</table>

図1 器具排水特性装置

図2 供送排水立管システム
～1.13[L/s]程度の負荷が加わるものと推察できる。以降の排水管モノシステムの排水能力実験では厳しい負荷条件となる図1(2)の配管を用い、重力排水方式の図1(1)の場合と管内圧力を指標に比較した。また、図1(3)のような天井配管を行うことで瞬時最大排水流量やqdも低く抑えられるため排水管モノシステムの負荷は低減できることがわかった。

2) 排水管システムの排水能力への影響

1) 重力排水方式と制御排水方式(清水排水)の比較

図6は、重力排水方式の場合と圧送排水方式の場合での伸頂通気管内通気量変動Qnと、管内圧力変動Pmin(5箇所)を示したものである。合流排水管は8,7,6箇所とされた場合の結果である。ユニット通気管は全開とした。重力排水方式の場合には、通気量変動の最大値Qmaxと管内圧力変動の最小値Pminの発生時刻がほぼ一致していた。それに対し、圧送排水方式の場合には、排水ポンプの発足の状態によって図4(1)の重力排水方式の場合のように排水量変動は一つの大きなピークを生ずるのではなく、図4(2)のように幾つかのピークが生じ、その影響が表われたためQmax、Pminの発生時刻が若干ずれたものと推察した。図7と図8は、システム最大・最小値(Qmax、Pmax)を排水箇所ごとに示したものである。これより、同一排水箇所数で比較すると、Pmaxは圧送排水方式の方が、重力排水方式に比べ排水箇所数が1箇所では60.7 Па、2箇所では65.5パ、3箇所では85.5パほど緩和された。Pmaxは、排水挙動主ビームがストレート配置のため、差違はほとんど生することなく、+100パまでにおさまった。また、Qmax値は圧送排水方式の各排水箇所数で5～110[L/s]程度低く抑えられた。SHASE-Sの圧力ギリヒシン基準(±400Pa以内)をもとに結果を評価すれば、圧送方式ともに2箇所排水管までは判定基準を満たしたが、圧送方式の場合には重力排水方式で550Pa、圧送排水方式で460Paとなり、圧送方式ではよいことが発生管の大きな大便器数は2箇所までとなり両方式とも同じと見なせる。

2) 通気管抵抗の影響

図1(2)の圧送排水方式で、ユニット通気管の開度を変化させた場合の器具排水特性値の変化を表2に示した。図9は、ユニット通気管開度をPmax、Pminの比較(圧送、清水)に示した。
管の開口の違いがPmin、Pmaxへ及ぼす影響を比較したものである。同一排水口数において同じ程度と、開口が小さくなるほどPminは低下し、全閉時と全開時の差は40[(Pa)]で、3箇所で73, [1(Pa)]ほど緩和された。3箇所の場合で比較するとユニット通気管が全閉時で479[(Pa)]、50%開閉で451[(Pa)]、全閉時で406[(Pa)]となり、通気の有無によらず判定基準を超える結果となった。ただし、全開時と全開時の差はわずかであり、図2で示した46箇所の低下の影響は排水能力へは顕著にあらわれなかった。

3) トイレットペーパーの破砕効果

図10に、重力排水方式、圧送排水方式の2つの大便器にトイレットペーパーを混入させて排水した場合の便所通気管内の通気流量変動QaとPminの生じた箇所内圧力変動P2(5箇所)の測定結果の一例を示した。但し、ユニット通気管は全開である。図11は、各圧力変動のPmaxとPminを用いて描いた圧力分布である。圧送排水方式では、重力排水方式に比べPminが313[(Pa)]程度が多く、Pmaxは全開の平均で約50[(Pa)]程度緩和された。これは、圧送排水方式では圧送排水ユニットに破砕機があるため、便器が混入する場合、混合された排水が排水を合流して流下するのにに対し、重力排水方式では、便器が大きな量の排水をもとに流下し各箇所で合流するので、大きな合流抵抗を生じたものと推察される。図12は、トイレットペーパーを混入させた場合の重力排水方式、圧送排水方式の排水箇所数とPmin、Pmaxを比較した結果である。これより、Pminは3箇所と同様に比較すると1箇所で105[(Pa)]、2箇所で217[(Pa)]ほど緩和される。同図には、圧送排水方式の排水水圧の結果も載せたが、便器が混入した時の圧送排水方式をほとんど同じ値を示した。これは先に述べたようにパーキングが破砕され、清水排水に近い流れ性状で流下しているためであると考える。よって、トイレットペーパーなどが混入する実際の排水に対して圧送排水方式は、重力排水方式に比べ排水能力に及ぼす影響は小さいものと推察される。

4.まとめ

重力排水方式と圧送排水方式の各方式で大便器排水を行った場合の排水立管管システムの排水能力への影響の違いをSHAPE-S 218の判定基準に基づき比较した結果、以下の知見を得た。

(1)便器器具と排水管を接続する排水管材配管長が水平に1[m]程度の器具配管条件下では、清水排水において、圧力と流量をみた排水負荷を検出する。但し、圧送排水方式では、天井配管を行うことで瞬間最大排水流量、器具配管排水流量も低減できるため、排水管立管への排水負荷は緩和できるものと推察できる。

(2)圧送ポンプユニットの通気が全開の場合便器器具平圧排水流量は全閉時より低下するが、(1)と同様に排水可能な箇所数（大便器数）を器具排水時の排水能力とみなして判断すれば、通気の有無は、ほとんど影響しない。

(3)圧送排水方式では、圧送ポンプユニット内に破砕用のカッタが内蔵されているためトイレットペーパーが破砕され排水されるので、排水能力は清水排水と排水能力への影響度は同等とみなせる。また、トイレットペーパーを混入させた場合は、重力排水と圧送排水方式の比較では前者の方が、排水能力に対し著し
それによる排水体制の拡大化の可能性についても検討する。

謝辞
実験を手伝って頂いた本学研究者の豊意味君に感謝の意を表します。本研究の一部は文部科学省平成13年度革新的技術開発研究推進事業補助金(都市基盤の整備・再生推進)の補助金によって実施するものである。実験の実績に関しては、文部科学省平成13年度学術ウィンティア推進事業として選定された「都市・建築の再生を目的とした環境共生技術の戦略的開発研究」(関東大学)の支援を受けた。

付注1
本研究では、圧送排水方式の排水特性を測定するために、図1(2)⑶に示す接続口径が20Aの専用接続管を用いたのに対し、排水立方計システムの排水能力への影響を確認する際には図3(2)のようにJIS-LT接続管(75A×100A)に設置した20Aの接続口へ挿入した。その理由は、以下のごとである。付注写真1(1)⑶の圧送排水方式は、明らかに付注写真1(2)の圧送排水より間接的に構成する排气回路は大きく、流量部の抵抗は大きいものと推察される。図1(2)⑶の専用接続管図3(2)とは形状が異なるため正確さは欠かず、接続管の口径が20Aであるため、排水立方計への流入状況は図3(1)の場合に比べ付注写真1(2)に近くなることも確認しており。すなわち、図3(1)では間接間断面が閉塞されやすい流入状況になるのに対し、図3(2)では小口径からの噴射状の流れとなり、圧送排水特性の流れ状態を再現できたものと判断した。よって、排水立方計システムの排水能力への影響を評価するには図3(2)の接続口形状のもので代表せよ。

しかし、特に合流部に流れる数が増えると図6の通気流速 \(q_a \) と管内圧力 \(P \) の関係をも変わるように圧送排水方式では、両者のピークの発生時間が必ずしも一致しないこと、排水流量に関する諸数値 \(q_{max}, q_d \) などの両方式で大差がないため、複数箇所の合流によると、混合され同様な流れ状態になり両方式に差が生じない可能性もあることなど、通気抵抗値を用いて比較するには、まだ検討の余地を残す。よって、本稿では詳細に通気抵抗の大小を論するには課題もあると考えあげて記載することにした。

都市基盤整備公団 総合研究所研究報告書(2003,3)
2) 大塚雅之：コンパージョンにおける強制排水システムの活用と課題、第36回2004建築設計技術協議会テキスト,P7-3-1〜10(2004,2)
3) 塚越信行他：高層排水システムの開発及び実用化研究(第3報)、高層排水立方計システムの排水能力、空気調和・衛生工学会学術講演会講演論文集、P.9813〜9816(2003,9)
4) 大塚雅之他：SI 住宅排水横管システムの性能評価と設計方法に関する研究、第1報 - モデル配管システムでの排水性能の実験的検討 -、空気調和・衛生工学会論文集、No.82, P111〜120(2001,7)
5) 空気調和・衛生工学会学会規格：SHASE-S 218-1999「集合住宅の排出立方計の排水能力実験方法」(1999)
6) 著書、ベターリピング：優良住宅部品性能試験方法書、便器・BLT WC:2000③、(2001)

【2004年4月20日原稿受理 2004年7月29日採用決定】

参考文献
1) KSI 住宅対応排水設備の設計・維持保全に関する研究(その2)、