天然ゴム系積層ゴムの限界性能に関する研究
その2 高面圧領域における追加試験

坂口 達 ——*1 高山峯夫 ——*2

キーワード：
免震構造、横層ゴム、面圧依存性、限界特性、接線剛性、座屈応力度

Keywords:
Seismic isolated structure, Laminated rubber bearing, Stress dependence, Ultimate capacity, Shear stiffness, Buckling stress

1. はじめに

前報1)では、天然ゴム系積層ゴム支承について、鉛直剛性や水平剛性の歪み依存性、面圧依存性さらに変形性能を含む力学特性に関する実験結果を報告した。この報告で着目した性能を保証限界を提案し、さらに面圧依存性や変形性能を試験形式の妥当性を検証した。本報では、より高い面圧領域となるσ=35〜60(MPa)の試験を追加したのでその結果を報告する。

限界性能限界における座屈現象は、水平方向の復元力を失った点、すなわち変形領域下での負側発生点とする場合、あるいは面圧依存性により変形領域での水平剛性(接線剛性)が0になる点として捉えることができる。前報で報告した試験では、変形領域において復元力を失う負側現象は実験的に把握できたものの、後者の面圧依存性により変形領域が0になる現象は実験的に確認できず、低面圧下での実験結果の推定に制限されたものであった。そこで、本報では、さらに高い面圧領域での試験結果をもとに、より明確な復元力特性の性状の把握を主な目的とした。

さらに、面圧剛性の評価方法についても、前報ではせん断ひずみγ=±1.0のひずみ領域で評価していたが、高面圧下での履歴曲線では負側発生する領域も変動することが判明したので、その評価方法についての検討結果も示す。

最終的に既往の限界領域に求められる限界領域に対して、高面圧状態での積層ゴムの復元力特性を反映させた領域を追加で示す試験を提案する。

2. 試験体

試験体は、図1と表1に示すように実大試験体(Φ800)を使用し、合計9体である。試験体のパラメータは2次形状係数(S2=3.5, 4.0, 5.1)、ゴムせん断弾性率(G=0.40, 0.47, 0.50MPa)とする。また1次形状係数はS1=41で一定とした。尚、せん断弾性率の呼称は、前報同様に面圧σ=5(MPa)、せん断ひずみγ=±1.0時の試験結果の面圧剛性Khより逆算にて求めた値となっている。

表1 試験体諸元

有効外径 D(mm)	800
内径 d(mm)	20
内部鋼板厚 ts(mm)	4.4
ゴム層厚 tr(mm)	4.8
ゴム層数 n	48 42 33
ゴム断面係数	S1 41
一次形状係数	S1*(a)
二次形状係数	S2*

*1 S1=(D-d)/4tr
*2 S2=D/ntr

3. 実験結果

今回の試験体は全て前報の試験体を実施した後の試験体であるため、大変形による発生傾向を受けている。そこで、試験を実施する前に、基本特性試験であるγ=±1.0時の中性面剛性を確認し、傾向の低下率が10%程度であることを確認した。この発生傾向と限界性能への影響を確認するため、上記9体の試験体以外にキャリブレーション

図1 試験体図(S2=5.1の場合)

The ultimate capacities of natural rubber bearings are defined by compressive stress, shear strain, and stabilized restoring force. The experimental study about these capacities was reported in the previous paper. In this report, the experiments were additionally conducted under the higher pressure for rubber bearing. Considering with the added results, the ultimate capacities were more clarified. Based on test results, the added ultimate capacities of rubber bearings for designing was proposed.

*1 Engineering Dept. Industrial Products Div. The Yokohama Rubber Co., Ltd.
*2 Prof., Faculty of Eng., Fukuoka Univ., Dr. Eng.
用の試験体を1体追加した。試験体の1次形状係数は$S_1=41$、2次形状係数は$S_2=5.1$、ゴムのせん断弾性率は$G=0.47$（MPa）相当とした。

3. 試験方法
3.1 試験の概要
使用した試験機は前報同様、鉛直荷重32（MN）、水平荷重±10（MN）、水平変位±1000（mm）の加振ができる大型二軸試験機を使用した。試験状況の写真を写真1に示す。

写真1 試験状況

3.2 加力方法
試験方法は、鉛直荷重に荷重制御にて規定の荷重を加え、水平方向へは変位制御にて規定の変位を加振加振する。
試験の加力パターンを各3次形状係数毎に図2に示す。$S_2=5.1$、4.0、3.5のそれぞれに対して最大面圧を60、50、40（MPa）まで設定した。○印が前報での加力パターンで△印が本報における高面圧下での加力パターンである。
水平方向への加振残り返し回数は、各の値毎3サイクルとし、荷重履歴の影響を極力少なくするよう、低圧領域から面圧を上げていき最大面圧載荷後に歪みレベルを使っていく試験を実施した。

図3にキャリプレーション用の試験体の試験条件を示す。
本試験体の加力パターンは、大変形による変形履歴の影響をなくし、せん断ひずみ$\gamma=0.5$〜3.0、面圧15〜60（MPa）まで加力する。また、加振サイクルは3サイクルとするが、面圧のパターンは少なくなった。

4. 試験結果の評価方法
4.1 接線剛性の評価方法
高面圧化が進行するにつれて、変形量は原点近傍にて負偏配が発生する。そこで、接線剛性の算出方法を以下に示し、その変曲点を求める。
（1）小変形領域内の接線剛性としてせん断ひずみ$\gamma=\pm0.1$間の値を求める。
（2）変曲線上で変曲の正負が変わる変曲点を求める。その変曲点での変曲の評価方法を求める。
（3）前報①と同様にせん断ひずみ$\gamma=\pm1.0$間の値を求める。

図4 接線剛性の定義

図5に示すように、面圧依存から接線剛性が0になる面圧を座屈応力とし4.1項の3通りの接線剛性に対して各座屈応力度を求め、高、$\gamma=\pm1.0$間、変曲点間、$\gamma=\pm0.1$間それぞれから求まる座屈応力度の平均値を最大面圧変曲率を加えて評価した。すべて○印が試験体の試験状況を示す。
屈応力度を \(\sigma_{0} \), \(\sigma_{p} \), \(\sigma_{f} \) とする。

5. 試験結果
5.1 高面圧下の履歴曲線

高面圧状態における各試験体の水平方向の荷重履歴曲線を図6に示す。各グラフは、各2次形式係数とせん断弾性率を示し、面圧とひずみを示した履歴曲線を示す。尚、グラフは各面圧に原点をずらして併記している。

ここに、S2=5.1は \(\sigma=35, 45, 55 \) (MPa)を示し、S2=4.0は、\(\sigma=30, 40, 50 \) (MPa)を示し、S2=3.5は、\(\sigma=30, 40 (\gamma=1.0), 35 (\gamma=2.0) \) (MPa)である。また、ひずみは \(\gamma=\pm 1.0, \pm 2.0, \pm 3.0 \) の履歴曲線を示す。

面圧が高くなるに従い面圧性の変形されずの負荷圧が発生する現象がみられる。この情勢は、高面圧化する程大きさの負荷圧に、面圧依存性による面圧性の低下は負荷圧によっても正荷応用と同様傾斜であることがわかる。さらに、負荷圧発生領域は、\(\gamma=\pm 0.3 \sim 0.5 \)の範囲で面圧に比例して増加していることがある。一方、面圧ひずみが大きくなると、面圧性の負荷圧及び負荷圧発生領域は面圧依存に比較して大きな影響はない。

また、\(\gamma=\pm 2.0 \)以上の応力曲線にてS2=5.1は、ゴムのハーデニングによる負荷圧から正荷圧への回復現象が顕著であり、S2が大きくなる程、この性状が著しくなると考えられる。

さらに、ゴムのせん断弹性率による本現象の違いは顕著にみられ

図6 高面圧下の履歴曲線
5.2 接線剛性の評価法について

接線剛性の違いにおける面圧依存性の評価結果の一例を図7に示す。図7は、せん断弾性率 $G=0.5$ MPa の $\gamma=1.0$ 加振時の結果に対して面圧5 (MPa) で基準化した依存性を示している。

$\gamma=\pm0.1$ 間 (α_σ) 変曲点間 (α_σ) の順に接線剛性の低下率を大きく、座屈応力度は、$\delta\alpha_\sigma=\alpha_\sigma\Rightarrow\alpha_\sigma$ の関係になることがわかる。すなわち接線剛性の変定領域が減少されるにつけ座屈応力度は低下することになる。この傾向は、$\gamma=\pm1.0$ 加振時ののみでなく他の加振条件である $\gamma=\pm2.0,\pm3.0$ においても同様の傾向がみられる。

これは、面圧化するにつれてゴムの歪み増加に伴うハードニングが影響しているのではないかと推定される。既往の理論式は、このハードニングを考慮したものではなく、線形計算に基づくものである。そこで、本報告ではより理論計算に合致した座屈応力度を算定するべく、線形領域での剛性を評価していると考えられる $\gamma=\pm0.1$ 間の接線剛性より求まる座屈応力度 α_σ を評価することとした。

![図7 面圧依存性の評価方法の違い (G=0.5)](image)

6. 面圧依存性と座屈評価

$\gamma=\pm0.1$ 間接線剛性にて面圧 $\sigma=5$ MPa を基準にした面圧依存性の結果を図8に示す。まず、座屈応力度と2次形状係数S2又はせん断弾性率Gの関係は、正負配置間時と同様にS2が大きくなる程、Gが大きくなる程、座屈応力度 α_σ は大きくなる。しかしその寄与率は、S2の方が大きいと云える。

一方、加振ひずみの違いによる座屈応力度は、高ひずみ加振になるにつれて低下する傾向にあるが、大きな相違は認められない。

また、正負配置間内で接線剛性の変化率は、正負配置領域からの変化率とは相違なく、正負配置領域で設定した近似式と同様に面圧 σ の2次関数で表すことができる。ここで、前報同様に水平剛性と座屈応力度の関係を示す理論式を準じて補正係数 α を算出し各条件下での座屈応力度を計算する。

$$K_h(\sigma) = 1 - \left(\frac{\sigma}{\sigma_\alpha} \right)^2$$

(1) 式

$$= 1 - \alpha \sigma$$

上記にて算出した座屈応力度 α_σ を表2に示す。

表2の結果で、α_σ と α_σ を比較すると、α_σ が $\gamma=\pm1.0$ にて30%程度低下することになる。

![図8 面圧依存性と座屈応力度](image)

![図9 面圧依存性](image)
7. 荷重履歴依存性的キャリブレーション
図3に示す加力パターンで実施した試験体の結果と大変形無荷重履歴時の試験体（試験条件\(a=30, \gamma=\pm 4.0\)）の荷重依存性の比較結果を図9に示す。接線剛性の評価は、どちらも\(\gamma=\pm 0.1\)間の接線剛性を算出している。本試験結果より、荷重履歴の試験結果は、荷重履歴無試験結果とはほぼ同じ結果となり、座屈応力度の算定に大きな差がない事が確認できた。

8. 座屈応力度と限界荷重
全ての試験体に対して、座屈応力度\(\Delta \sigma_0\)、\(\sigma_{cr}\)と前報1で求めた大変形時の負勾配より求まる座屈応力度\(\sigma_{cr}\)を示す。図10に示す。尚、大変形時の座屈応力度は、負勾配が発生したひずみとその面圧（\(\Delta \sigma_0\)）で算出される。

図10 限界荷重と座屈応力

図10の結果より、以下の事が判明できた。

① 理論式 \(\sigma_{cr}(2)\) と座屈応力度 \(\sigma_{cr}, \sigma_{cr}\) について

理論式 \(\sigma_{cr} = \eta \cdot G \cdot S_1 \cdot S_2 \cdots (2)\)

\(G:\) せん断弾性率
\(\eta:\) 体積弾性係数
\(S_1, S_2: 1\)次形状係数
\(S_3: 2\)次形状係数

理観式は、ゴムの無荷重剛性、積層ゴムの1次の形状係数、2次形状係数と補正係数 \(\eta\)にて定義されていて、せん断ひずみ \(\gamma=0\)時の座屈応力度を求める。

\(\sigma_{cr}\)の関係は、\(\sigma_{cr}(\text{印}) > \mu_{cr}(\text{印}) > \sigma_{cr}(\text{印})\)の関係にあり、\(\sigma_{cr}\)は理論式よりも小さい座屈応力度になることがわかる。一方、\(\sigma_{cr}\)のひずみに対する低下率は、\(\sigma_{cr}\)や理論式 \(\sigma_{cr}\)に比較して大き

② 2次形状係数の影響について（理論式と実験結果 \(\sigma_{cr}\)の相違）
2次形状係数が大きくなる程、理論式と実験結果の相違が大きくなる傾向がある。理論式が \(S_2\)の影響を過大に評価していると考えられる。既往の理論式に対し \(S_2\)の依存度を考慮する必要があると考えられる。

③ せん断変形率 \(G\)の影響（理論式と実験結果 \(\sigma_{cr}\)の相違）
せん断変形率 \(G\)の違いについては、その限界荷重と座屈応力度の相違で大きな影響はみられない。

今回の実験結果を観みると、積層ゴムの限界荷重は従来の大変形領域で評価していた負勾配だけでは充分でないと云える。小変形領域での接線剛性の評価を加える事により、積層ゴムの限界特性はより明確になると考える。そこで、前報1で論じた限界荷重に対して小変形領域での接線負勾配による限界荷重を新たに設定した場合の限界荷重を図11に示す。

図11 積層ゴムの性能

9. まとめ
本報告では、未知の領域であった荷重荷重の実験を実施することにより、前報1以上の精度の良い積層ゴムの座屈特性を評価することことができた。積層ゴムは、大変形状態となく大変形領域で負勾配が発生し復元力特性の耐圧形態が安定化することが判明した。

さらに、この負勾配を座屈と定義した場合には、図10で示すように理論式の座屈応力度と異なることがわかった。一方、接線剛性的評価方法も大変形領域では線形が維持できず、より低歪み領域での厳密な接線を評価する必要があることがわかった。今後、より適切な耐圧限界荷重を設定するためには、ハードニング特性を含めたゴム材料の影響など考慮した限界現象の解明が必要と考える。本報告が座屈現象に関して正確な積層ゴムの限界性能を提示し明確にできたことで、設計の良い設計判断材料になれば幸いである。

参考文献
1) 友口 俊、島田 優、川西一郎、高山真：天然ゴム積層ゴムの限界性能に関する研究、日本建築学会技術報告集第19号、85-90、2004.6
2) 島田 優他：天然ゴム積層ゴムの圧縮せん断特性その1～その3、日本建築学会学術発表集21219-21221、2004.8
3) 日本建築学会/安藤構造設計指針、2001.9

[2005年4月12日原稿受理 2005年7月22日採用決定]