せん断破壊型炭素繊維シート補強 RC 柱の靭性能評価に関する解析的検討

1. はじめに
既存鋼コンクリート（以下、RCとする）構造物の耐震改修においては柱や部材の耐力を向上し、さらに変形能力を向上させする補強工法として炭素繊維シート（以下、CFシートとする）巻き付け工法が実用化されている。この工法は材料が軽いため取り扱いやすく、作業性に優れているため主にせん断破壊型曲げ破壊に先行して発生するせん断柱のせん断補強に多く用いられている。本論では非線形有限要素解析を用いてCFシート補強柱の靭性能について解析的に検討を行う。

2. 研究の背景
耐震補強設計においては事前に行われた耐震診断によって明らかになっている建物各階の現況の耐震保有性能から、目標とする耐震性能に対して必要な補強量を決定する。この必要な補強量を決定するプロセスにおいて、補強部材の補強後の部材性能を評価することが必要である。現行のCFシートによる補強設計に用いるマニュアル類にあっては、この補強後の部材性能を各種部材実験により安全側で耐力評価式および性能評価式を定めている。これらのマニュアル類による性能評価に共通している点は、せん断補強により部材せん断耐力を高くする部材の破壊モードをせん断に富んだ曲げ型にするという点である。しかし、部材のプロポーションによって元々曲げ耐力が大きい場合や、材料もしくは施工の要因により使用されてい るコンクリート強度が著しく低い場合においては、CFシート補強によっても曲げ耐力までせん断耐力を高めることができずにせん断破壊型とならない場合が想定される。CFシート補強をした場合は部材破壊モードがせん断の場合はも耐性は改善されるため実験的にも、また著者らの解析的検証において明らかになっているが、現状の耐震診断基準における補強工法を考慮・パラメータに1.0から1.27の範囲で耐性指標が定義される。その場合においては、CFシートでせん断補強をすることにより得られる、終局せん断耐力に達した後の変形性能改善効果を合理的に評価できているとは言えないものと考えられる。
本論では部材のCFシート補強により建物耐震補強を行う場合において、解析的手法によって定めた補強後の部材性能を用い、CFシート補強により得られる耐力上昇効果に加え、終局せん断耐力に達した変形性能改善効果も補強効果として合理的に構造性能評価に反映する方法を提案することを目的としている。

1.2 CFシートによる耐震補強
CFシートによる耐震補強は、耐震診断基準において曲げ耐力に対してせん断耐力が不足しているせん断柱が主な補強対象となる。せん断柱とされている場合の多くは、壁や柱が取 り付くことによる短柱化で曲げ耐力が大きくなっている場合、または実験的にも、また著者らの解析的検証において明らかになっているが、現状の耐震診断基準において補強工法を考慮・パラメータに1.0から1.27の範囲で耐性指標が定義される。その場合においては、CFシートでせん断補強をすることにより得られる、終局せん断耐力に達した後の変形性能改善効果を合理的に評価できているとは言えないものと考えられる。
本論では部材のCFシート補強により建物耐震補強を行う場合において、解析的手法によって定めた補強後の部材性能を用い、CFシート補強により得られる耐力上昇効果に加え、終局せん断耐力に達した変形性能改善効果も補強効果として合理的に構造性能評価に反映する方法を提案することを目的としている。

1.2 CFシートによる耐震補強
CFシートによる耐震補強は、耐震診断基準において曲げ耐力に対してせん断耐力が不足しているせん断柱が主な補強対象となる。せん断柱とされている場合の多くは、壁や柱が取り付くことによる短柱化で曲げ耐力が大きくなっている場合、また
は、せん断補強筋が不足している場合である。この場合の耐震補強に当たっての耐震改修設計指針 29) における基本的な考え方は強性部材の排除であり、壁壁ガラスは貫通スリットを取り、または CFシート補強によるせん断耐力を増大を図り、部材の破壊モードを「曲げ柱」へと移行させることが一般的に考えられる。図 1にせん断補強による破壊モード移行の例を示す。この際、CFシート補強効果は、せん断耐力増加として部材の強度指標（C値）と、補強後のせん断耐力値と曲げ耐力値の比によって定まる強性指標（F値）の増大によってF値に反映されることになる。そこで図2に示すよう、コンクリート強度が低い場合や壁壁の場合などにおいて、CFシート補強によっても破壊モードを曲げ柱に出来ない場合というケースを考える。この場合にはC指標についてはCFシート補強量を増やすことによってせん断耐力が増大するので補強効果が得られるが、補強によるせん断耐力増加効果も上限があるため、耐力は頭打ちとなることが考えられる。また耐震解釈基準法は、破壊モードがせん断柱の場合にはF値が最大で1.2と評価され、既往の実験結果などによれば、CFシート補強による耐震補強効果は耐力の増大のみならず、変形性能の改善にも寄与することが指摘されており、ここで示した「CFシートでせん断補強されたせん断柱」のケースでは、CFシート補強による変形性能改善（強性指標改善）効果を適切に評価することができ、部材の補強効果を過小評価してしまうと考えられる。

2.2 「CFシートでせん断補強されたせん断柱」の性能評価
耐震補强基準における曲げ柱について、せん断耐力と曲げ耐力の比が大きくなるほど変形性能である強性指標F値が大きくなるもの。逆に言えば、F指標はせん断補強量を増やすことで大きくすることができる。CFシートでせん断補強されたせん断柱にあっては、補強量に応じて変形性能が改善することが期待され、この効果をF値に反映させることで、補強部材の部材性能を合理的な外観耐震性能評価が可能になる。そこで本論ではCFシートでせん断補強された柱の最大耐力および荷重変形関係は解析的に算定できるという前提の下に、コンクリート強度・シアスパン比・軸力比をそれぞれ変化させた解析モデルにおいてCFシート補強量を変化させ、補強筋による部材性能への影響を解析的に検証する。なお、ここで用いる解析モデルは著者らが市販のFEM解析プログラムを使用して実験結果の再現性の検討を行った解析モデルである 3)。

3. 解析モデル
想定したモデルは階高3.1m、柱断面600×750mmで3～4階建でRC建築の1階柱相当である。加力方向に対して平行な切断面の1/2モデルとした。柱シアスパン長は耐震設計基準 1) の付1.3-2)式におけるh0/D>0.2および3.0のケースにほぼ対応している。
解析モデルは対象とする柱断面の上下に加力用の梁をモデル化したものの上下の梁の平行を再現するために平行維持用の要素をモデ
表1 解析ケース一覧

<table>
<thead>
<tr>
<th>解析ケース</th>
<th>モデル</th>
<th>ϕ (N/mm²)</th>
<th>M/QM</th>
<th>$\phi\sigma_u$</th>
<th>1200</th>
<th>1211</th>
<th>1680</th>
<th>1682</th>
<th>1800</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC1シリーズ</td>
<td>MCIC-08-L</td>
<td>18</td>
<td>0.1</td>
<td>1682</td>
<td>0.8</td>
<td>1.82</td>
<td>968</td>
<td>1276</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCIC-10-L</td>
<td></td>
<td>1.0</td>
<td>4.50</td>
<td>1211</td>
<td>1276</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCIC-12-L</td>
<td></td>
<td>1.2</td>
<td>8.40</td>
<td>1453</td>
<td>1276</td>
<td>1.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC1シリーズ</td>
<td>MCIC-08-H</td>
<td>27</td>
<td>1.53</td>
<td>1682</td>
<td>0.8</td>
<td>4.26</td>
<td>1345</td>
<td>1935</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCIC-10-H</td>
<td></td>
<td>1.0</td>
<td>9.86</td>
<td>1682</td>
<td>1935</td>
<td>1.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCIC-12-H</td>
<td></td>
<td>1.2</td>
<td>17.78</td>
<td>2018</td>
<td>1935</td>
<td>1.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC3シリーズ</td>
<td>MCIC-04-L</td>
<td>18</td>
<td>0.3</td>
<td>1211</td>
<td>0.8</td>
<td>0.85</td>
<td>968</td>
<td>1935</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCIC-04-H</td>
<td></td>
<td>1.0</td>
<td>2.89</td>
<td>1211</td>
<td>1935</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCIC-12-H</td>
<td></td>
<td>1.2</td>
<td>6.12</td>
<td>1453</td>
<td>1935</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC1シリーズ</td>
<td>SCIC-00-L</td>
<td>18</td>
<td>0.1</td>
<td>1211</td>
<td>0.9</td>
<td>1.21</td>
<td>1089</td>
<td>1864</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCIC-09-L</td>
<td></td>
<td>1.0</td>
<td>2.21</td>
<td>1211</td>
<td>1864</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCIC-14-L</td>
<td></td>
<td>1.2</td>
<td>5.11</td>
<td>1453</td>
<td>1864</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC1シリーズ</td>
<td>SCIC-09-H</td>
<td>27</td>
<td>1.05</td>
<td>1211</td>
<td>0.9</td>
<td>3.26</td>
<td>1514</td>
<td>2038</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCIC-10-H</td>
<td></td>
<td>1.0</td>
<td>5.50</td>
<td>1682</td>
<td>2038</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCIC-12-H</td>
<td></td>
<td>1.2</td>
<td>11.70</td>
<td>2018</td>
<td>2038</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC3シリーズ</td>
<td>SCIC-00-L</td>
<td>18</td>
<td>0.3</td>
<td>1211</td>
<td>0.9</td>
<td>0.9</td>
<td>1103</td>
<td>2327</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCIC-09-L</td>
<td></td>
<td>1.0</td>
<td>3.28</td>
<td>1150</td>
<td>2327</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCIC-10-L</td>
<td></td>
<td>1.2</td>
<td>11.13</td>
<td>2121</td>
<td>2327</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※表上左に設けた補強板の有無を示す。 1）ϕ 値（N/mm²） 2）M/QM 3）$\phi\sigma_u$ (N/mm²) 4）1200 5）1211 6）1680 7）1682 8）1800 9）2000 10）27N/mm² 11）2000 12）2000 13）2000 14）2000 15）2000

<table>
<thead>
<tr>
<th>モデル名</th>
<th>SC-MC1L/M-AQd=1.53</th>
<th>SC-MC1L/M-AQd=1.53</th>
<th>SC-MC1L/M-AQd=1.53</th>
<th>SC-MC1L/M-AQd=1.53</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.004</td>
<td>0.006</td>
<td>0.008</td>
<td>0.010</td>
</tr>
<tr>
<td>β</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
</tr>
</tbody>
</table>

4. CF シート補強板の決定

無補強(RC)解析モデルを元に、CF シート補強板（$\Sigma p_{x} \cdot \sigma_{y}$）を変えて解析を行う。補強指数 F を大きくするためには、通常の補強設計においては、補強板を増大させて計算上のせん断耐力を大きく取ればよい。ただし、CF シート補強板を増大させていくと理論上の上限強度に達しにくくなることが予想されるため、ここでは以下のようにせん断補強板のパラメータを決定する。

CF シート補強板の効果を計器するためには、CF シートの強度を考慮した変更を行っている。

加力柱上部に設けた加力用スラブに軸力を加えた後、加力構柱の制御強度変位をえた。モデル図および断面諸元を図3に示す。

5. 解析結果

各解析によって得られた荷重変形関係を図4～図6に示す。

<table>
<thead>
<tr>
<th>軸力比</th>
<th>0.3</th>
<th>0.6</th>
<th>0.9</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1）軸力比</td>
<td>0.3</td>
<td>0.6</td>
<td>0.9</td>
<td>1.2</td>
</tr>
</tbody>
</table>

この解析結果によれば、MC1シリーズによって、せん断補強板
による耐力増大効果が顕著に見られているが、その他の解析シートについては無補強試験体と比較しての耐力増大効果は大きくならない。一方で、最大耐力以降の変形能に着目すると、無補強試験体に対しては補強することにより改善効果が明らかに各解析ケースに現れている。

6. 解析結果による鉄筋性能の評価

6.1 耐性率の評価方法

前項の解析により、CF シートでせん断補強されたせん断柱についても CF シート補強により変形能増大が期待できるものと考えられる。本項では、解析結果から繊維補強耐震改修設計指針における F 値を算定する手法を示す。

繊維補強耐震改修設計指針では CF シートで補強された独立柱の耐性率以下の式で定義される。

\[
F = \frac{\sqrt{2u-1}}{0.75(1+0.05\mu)} \quad \text{かつ} \quad F \leq 3.2 \quad (1)
\]

\[
\mu = 10\left(\frac{Q_{su}}{Q_{mu}} - 0.9\right) \quad \text{ただし} \quad 1 \leq \mu \leq 5 \quad (2)
\]

ここで \(\mu\) は部材の耐性率であり、降伏変形 Dyに対する終局変形 Du の比である。

図7に現行の建築基準法における耐震基準における耐性設計された曲げ破壊型部材の耐性率の定義を示す。この場合にあっては、耐性率は主筋降伏による曲げ降伏後の変形能力の指標であり、塑性変形 Du は特に部材の主筋量や幅力比、せん断耐力などに影響を受けると推測される。一方、耐震診断は耐性に対して重要で、有段の対応のない旧耐震基準で設計された部材を想定しており、塑性変形能力を一意に定義するのは困難であるため、実験結果の整理を元にせん断余裕度 Qsu/Qmu の関数として変形能を耐性率ではなく耐性率として定義している。このため、部材のせん断耐力が曲げ耐力に対して大きいほど耐性率 \(\mu\) は大きいか値をとるようになっている。

本論で対象としている CF シートでせん断補強されたせん断柱の場合には、Qsu/Qmu ≈ 1.0 でせん断破壊先行型であるため式 (2) の適用範囲外となってしまい、破壊モードのみで耐性指標が決定される。しかしその結果をも明らかにCF シートでせん断補強された場合にあっては、無補強の場合と比較して最大耐力以降の変形能は向上しているため、その変形能力向上効果を制限指標に反映できれば、より合理的な評価となるものと考えられることで、この変形能を反映する耐性を指標に反映させると、既に前項に検討を行なってきた解析モデルを利用した次のような耐性の定義を提案する。

算定手法

図9に以下の手順による解析における耐性率の定義モデルを示す。

1) 無補強試験体と補強試験体の解析を実施する。
2) 無補強試験体が最大耐力時までに吸収したエネルギー Ee を
基準として定義

3）補強試験体が最大耐力を経験して、無補強の最大耐力に低下するまでに吸収したエネルギー E_p を定義。これと、無補強
割をより上方に部分的にも面積に算入する。

4）2）3）の比率より節約率を算定

診断基準による節約率の定義を変位を基準としているのに対し
て、この方法は面積比（一種のエネルギー比）により算定している
ことになる。比率であり単位は無次元で同じであるが、耐震診断基準の節約率は変位を基準としているのに対し、本論で定義した節約率は面積で算定されているので、耐震診断基準のF値算定式
で直接求めることができない。よって、面積比で求めた節約率を以
下のように変位で求めたものと等価となるように補正をする。

面積定義の場合

\[\mu = \frac{Q}{C} = \frac{(E+e)E}{E} \]

\[= \frac{(2Du-Dy)}{Du-Dy} \]

\[= \frac{2Du-Dy}{\mu} \]

\[= \frac{(\mu + 1)}{2} \]

"節約率"を定義

2）3）の変位より算定し、節約率より定義した節約率と面積より定義
した節約率の関係を表すのである。なお、この関係を簡潔に表現
するため、E_p を求める際、Q_y を上回している部分
は算入していない。

終局耐力以降の変形性能評価にあたっては、例えば実験結果において終局耐力の8割までに耐力を低下したところを変形性能の限界値 Du とする方法が慣例的
に行われているが、本方法では無補強時の最大耐力を
基準としている。加算モデル上は本方法においても
補強後の変形性能として最大耐力の8割低下状態におけ
る定義も可能であるが、本解析モデル上、単調載荷で
あり最適化による耐力劣化が考慮されていないこと
や、解析におけるポストピーク域の解の信頼性につい
ては現時点では研究途上であるため、本研究においては
無補強時の耐力を基準とすることにした。

6.2 節約率の影響要因の検討

6.1で算定した節約率を、影響を与えていると考えられる各種要因について検討を行う。以下の図10〜図12において節約率は面積定義（E_p）および変位定義（$E_p(Du-Dy)$）両方併記している。

(1) セン断耐性度 Qsu/Qmu
耐震診断基準において節約率 μ はセん断耐性度
(Qsu/Qmu) の関数で表される。

図10にセん断耐性度を変化要因として横軸にした場合の節約率の変化を示す。今回の検討で対象としている「CF シートでセん断補強したセん断柱」の場
合、現状の方法では $\mu < 1$ となり対応できない。繊維
補強耐震改修設計指針 3) の方法によれば、セん断耐性
度が1より大きくなるところから、節約率が線形に大きくなるが、本検討で対象としているようなセん断破壊形の柱にあっては、セん
断耐性度が1未満の領域で補強量に応じて節約率改善が得られ
る。ただし、セん断耐性度が1に達するまでに頭打ちの現状となる。

(2) CF シート補強量 $\Sigma p_a \cdot a_{sw}$

図11に CF シート補強量を変動要因として横軸にした場合の節
約率の変化を示す。

繊維補強耐震改修設計指針 3) によるセん断強度式によれば、CF シート
によるセん断強度有上限（10N/mm²）を設けており、補強効果に
頭打ちの可能性があることが示されている。解析結果によれば、
$\Sigma p_a \cdot a_{sw}$ が 5N/mm²を超えると、節約率向上については頭打ちと
なる。

(3) CF シート補強量 $\Sigma p_a \cdot a_{sw}$ を上限強度で規格化

図12に CF シート補強量 $\Sigma p_a \cdot a_{sw}$ をセん断の上限強度で規格化した$\Sigma p_a \cdot a_{sw}$ を上限強度要因として横軸にした場合の
節約率の変化を示す。

トラスおよびアーチ機構を仮定したセん断強度理論において、上限
強度はトラス機構圧縮束の有効圧縮強度により決定される。補強
量 $\Sigma p_a \cdot a_{sw}$ を増加させても、セん断耐力に頭打ちが生じるのはコ
ンクリートが有効圧縮に達しているためである。横軸にセん断補
強量を有効圧縮強度で規格化した$\Sigma p_a \cdot a_{sw}$ を上限強度を取ると、
比が1.0を境として明らかに靭性率向上は頭打ちとなっている。

6.3 CFシート補強材と靭性率保証値

6.2において、3つの評価尺度を組み合わせ、靭性率に及ぼす要因の検討を行なった。いずれの評価尺度によっても、無補強の状態にCFシート補強を行なうことで補強材に応じて直線的に靭性率は向上するが、ある補強材を持って頭打ちとなる性状が見られた。直線的に増大する変化量のある尺度によってモデル化できるほど、多くの解析パラメータを設定しておらず、また今回設定した解析パラメータの中あっても、増大率の変化率にばらつきがある。一方で、頭打ちとなる領域においては下限値に安全率を考慮することで推定値とすることが出来そうである。横軸にせん断補強材とせん断限上強度の比をとると、この比が1.0を超えると靭性率が頭打ちとなることが分かる。この比が1.0を超える領域は耐性理論上のトラス機構間圧コンクリートの有効強度を超えるせん断補強材であり、この補強材を超えると計算上のせん断耐力も頭打ちとなる領域である。靭性率についてもこの補強材で頭打ちとなっているが、下限値としては本例においては2.0以上確保できるものと考えられる。

図13に靭性率と靭性指標F値の関係を示す。F値は靭性率μが1から3の範囲で1.27から3.2まで変化する。仮に補強限界まで補強した場合の解析から定まる靭性率の下限値をとるとすると、対応するF値は2.10となり、無補強時のせん断柱F値1.27の1.65倍となる。本論では、断面形状について1種類しか行わなかったため、また考慮されていないパラメータも有るため、4/3倍の安全率を考慮してμ=1.5まで厳しくしたとしても、F値は1.75まで補強効果としてとることができることができ。同図において補強基準法における構造特性係数Ds値と靭性指標との関係を合わせて示す。Ds値とF値の関係は図表1に示された補強材の有効強度に応じて、

Ds=0.6/F

の関係にある。せん断補強材のみで構成される建物であればF=1.0でDs=0.6相当となり、現行の建築基準法とはほぼ対応する。F値を1.0から1.75まで変化させると、対応するDsは0.35まで下がり必要保水率耐力が約4割減じることになる。

7.まとめ

本論ではせん断補強対象部材のうち、CFシート補強をしても破壊モードを曲げ型にできないようにRC柱の補強後の靭性能力改善効果の評価方法を確立するため解析的検討を行なった。

耐震診断上は、せん断柱に対してはの靭性指標評価は1.0-1.27と定められているが、CFシートでせん断補強をしてもせん断柱となってしまうような場合には、実際に静力および変形性能が改善しているにも関わらず破壊モードおよびクリアランス比により部材F値が安全側に決まるため、CFシートの補強有効性を耐力上昇の点で評価できず、合理的に建物構造耐震指針に反映することができない。そこで、本論ではCFシートによりせん断補強をしてせん断破壊しないRC柱を対象に、著者の提案によると解析モデルを用いてCFシートで補強柱のパラメトリックスタディーを行ない、せん断補強による靭性率の改善効果について検討を行ない以下の知見を得た。

参考文献

1) 日本建築耐震協会：2001年度版既設鉄筋コンクリート造建築物の耐震診断基準・同解説，2001
2) 日本建築耐震協会：2001年度版既設鉄筋コンクリート造建築物の耐震改修設計指針・同解説，2001
3) 日本建築耐震協会：建築耐震・補強設計指針，1999
4) 日本建築学会：鉄筋コンクリート造建築物の鋼性保証を耐震設計指針・同解説，1999
5) 日本建築学会：鋼構造用耐震補強設計基準，2002
7) 余波幸春，後藤康明，越 攻：高素総耐震シートでせん断補強されたRC梁のせん断抵抗能力に関する非線形有限要素解析，コンクリート工学年次論文集，Vol.28，No.2，pp.1105-1110，2006

[2007年10月19日原稿受理 2008年1月8日採用決定]