低強度コンクリート部材のせん断性能評価

EVALUATION OF SHEAR STRENGTH FOR LOW STRENGTH CONCRETE MEMBERS

低強度コンクリート、せん断強度、耐震診断、せん断補強筋比

Keywords:
Low strength concrete, Shear strength, Seismic evaluation, Shear reinforcement ratio

1. はじめに
1995 年の兵庫県南部地震により多くの被害報告から、既存不適格建築物の耐震性能不足が指摘され、1995 年に既存建築物の耐震診断改修を促す「耐震改修促進法」が制定された。これにより全国で既存建築物の耐震診断・改修が実施され、コンクリートの圧縮強度が設計基準強度をはるかに下回る低強度コンクリートの既存鉄筋コンクリート構造物の存在が明らかになっている。日本建築防災協会の「2001年改訂版既存鉄筋コンクリート構造物の耐震診断基準・同解説」1)では、コンクリート圧縮強度が13.5MPaを下回る場合については基本的に診断基準の適用範囲外としており、この場合は「検討が必要である」という記述にとどまっている。このような背景から低強度コンクリートの実用に関する研究や、実際に低強度コンクリートを作製して部材実験を行い、低強度コンクリート部材の構造性能を明らかにしようとする試みがなされている2)。その研究の多くは耐震補強により低強度コンクリート構造物の補強使用を目的とするもので、低強度コンクリートの性能については十分に解明されているとは言いがたい。低強度コンクリートと判定される場合の実際の耐震診断では、低強度コンクリート基準3)を外枠して用いたり、せん断強度に低減係数を乗じて安全な対応を行ったりしているが、データ資料蓄積と工学的判断の裏付けが不十分であり、既存建築物の耐震性能評価において特に影響が大きいものとして考えられるのはせん断強度評価である。現行の耐震診断基準に用いられている大野・荒川基準4)は引張強度比、コンクリート強度、シアスパン比、せん断補強筋比、軸力比などの複数の変数で構成された実験式であり、低強度コンクリート部材に対して適用可能であるか、また各構造因子の及ぼす影響はその実験式と同じ傾向であるのか不明である。

本研究では、柱・梁部材のせん断性能に注目し、低強度コンクリートが現行の耐震診断基準の各変数に与える影響を解明することを目的とする。また、実験結果から耐震診断基準を修正し、既往の実験データを用いて比較・検討することにより提案式の検証を行う。

2. 実験概要
2.1 試験体諸元
試験体は梁 9 体、柱 6 体の計 15 体である。表 1 に試験体諸元を示す。梁試験体は断面 200×280mm、内法スパン 840mm で、せん断補強比 0.00

<table>
<thead>
<tr>
<th>試験体名</th>
<th>軸力比</th>
<th>b×D (mm)</th>
<th>コンクリート強度</th>
<th>シアスパン比</th>
<th>主筋比 (%)</th>
<th>せん断補強筋比 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N134-00</td>
<td>0.15</td>
<td>200×280</td>
<td>Fc18</td>
<td>p=1.34</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>N134-15</td>
<td>0.15</td>
<td>200×280</td>
<td>Fc18</td>
<td>p=1.34</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>N134-30</td>
<td>0.15</td>
<td>200×280</td>
<td>Fc18</td>
<td>p=1.34</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>L134-00</td>
<td>0.15</td>
<td>200×280</td>
<td>Fc18</td>
<td>p=1.34</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>L134-15</td>
<td>0.15</td>
<td>200×280</td>
<td>Fc9</td>
<td>p=0.76</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>L134-30</td>
<td>0.15</td>
<td>200×280</td>
<td>Fc9</td>
<td>p=0.76</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>L076-00</td>
<td>0.15</td>
<td>200×280</td>
<td>Fc9</td>
<td>p=0.76</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>L076-15</td>
<td>0.15</td>
<td>200×280</td>
<td>Fc9</td>
<td>p=0.76</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>L076-30</td>
<td>0.15</td>
<td>200×280</td>
<td>Fc9</td>
<td>p=0.76</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>N15-15</td>
<td>0.15</td>
<td>300×300</td>
<td>Fc18</td>
<td>p=1.13</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>L15-15</td>
<td>0.15</td>
<td>300×300</td>
<td>Fc9</td>
<td>p=1.13</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>L15-30</td>
<td>0.15</td>
<td>300×300</td>
<td>Fc9</td>
<td>p=1.13</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>L15-45</td>
<td>0.15</td>
<td>300×300</td>
<td>Fc9</td>
<td>p=1.13</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>L10-30</td>
<td>0.15</td>
<td>300×300</td>
<td>Fc9</td>
<td>p=1.13</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>L20-30</td>
<td>0.15</td>
<td>300×300</td>
<td>Fc9</td>
<td>p=1.13</td>
<td>0.30</td>
<td>0.30</td>
</tr>
</tbody>
</table>

* \(\eta = N\left(\frac{\alpha_0}{B}\right) \) (N: 軸力，\(\alpha_0 \): コンクリート圧縮強度)

1) 構橋大学工学部システム情報工学研究科 助教・博士（工学） (〒305-8573 北海道札幌市中央区本郷) 2) 構橋大学大学院工学研究科 教授 (〒305-8573 北海道札幌市中央区本郷) 3) 大成建設㈱ 修士（工学）
スパン比はすべて1.5である。実験因子はコンクリート強度（Fc9, Fc18）、引張鉄筋比p。 (1.34%、0.76%)、せん断補強筋比p。 (0.00%、0.15%、0.30%)であり、試験体名はコンクリート強度の記号、引張鉄筋比、せん断補強筋比の順となっている。主筋は5-D13 (SD390、降伏強度496MPa)、3-D13 (SD295、降伏強度385MPa) とし、せん断補強筋にはD6 (SD295、降伏強度425MPa) を用いた。

柱試験体は断面300×300mm、主筋8-D13 (SD390、降伏強度430MPa)、せん断補強筋2-D6@141 (SD295、降伏強度306MPa)、せん断補強筋比0.15%である。実験因子はコンクリート強度（Fc9, Fc18）、せん断スパン比 (1.0、1.5、2.0)，軸力比 (0.15、0.30、0.45)であり、試験体名はコンクリート強度の記号、せん断スパン比、軸力比の順となっている。なお、本実験ではせん断強度を評価するために、せん断補強筋の間隔は1971年以前の RC 規準で設計された既存 RC 造建物を想定し、端部は135°フックとした。

表2 調合計画

<table>
<thead>
<tr>
<th>目標強度</th>
<th>部材材料</th>
<th>水</th>
<th>細骨材</th>
<th>粗骨材</th>
<th>混和剤</th>
<th>Φ/C</th>
<th>細骨材率</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fc9</td>
<td>195</td>
<td>215</td>
<td>959</td>
<td>827</td>
<td>1.17</td>
<td>110</td>
<td>55</td>
</tr>
<tr>
<td>Fc18</td>
<td>269</td>
<td>215</td>
<td>892</td>
<td>835</td>
<td>1.61</td>
<td>80</td>
<td>53</td>
</tr>
</tbody>
</table>

表3 材料試験結果

<table>
<thead>
<tr>
<th>目標強度</th>
<th>樹脂強度 (MPa)</th>
<th>鋼材強度 (MPa)</th>
<th>柱長 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fc9</td>
<td>10.3</td>
<td>1.27</td>
<td>16.4</td>
</tr>
<tr>
<td>Fc18</td>
<td>19.5</td>
<td>1.99</td>
<td>25.5</td>
</tr>
</tbody>
</table>

2.2 加力・計測方法

柱、梁ともに逆対称モーメントによる正負交番繰返し載荷を行った。計測項目は水平荷重、鉛直荷重、両スタブ間の相対変位、主な位置における主筋とせん断補強筋のひずみ値である。

2.3 使用材料

使用したコンクリートの調合計画を表2に、材料試験結果を表3に示す。粗骨材の最大粒径は20mm、スランプ18cmとし、目標圧縮強度9MPaは水セメント比を110%とし、目標圧縮強度18MPaは水セメント比を80%とした。

3. 実験結果

3.1 梁試験体の荷重－変形関係

図1に梁試験体のせん断力－部材角関係を示す。図中に最大荷重時と限界変形角を示している。なお、限界変形角は最大荷重到達以後、せん断力が最大荷重の80%に至った点での部材角としている。

N134-00、N134-15、N134-30、L134-00、L134-15、L134-30、L076-00 およびL076-15の8体がせん断破壊であり、L076-30は曲げ降伏後の付着割裂破壊である。低強度コンクリートの試験体は普通強度コンクリートの試験体より最大荷重は低下するが、最大荷重後の耐力低下が緩やかになり、部材角1/25radにおける残存耐力はほぼ等しくになっている。また、引張鉄筋比が小さい試験体ほど最大荷重が若干小さくなり、ピーク後の耐力低下勾配が緩やかになっている。しかしながら、せん断破壊に至った低強度および普通強度コンクリートの試験体の限界変形角は同程度であり、コンクリート強度が低く

図1 梁のせん断力－部材角関係

140
なるほど変形能が大きくなるといえぬ。また、せん断補強筋比 0.15%の試験体のポストピーク挙動は、せん断補強筋のない試験体と同じ傾向を示し、せん断補強筋が少なく低強度コンクリートの場合にはせん断補強筋による構造変形が小さいと考えられる。

3.2 柱試験体の荷重－変形関係

4. せん断強度の検討

本章では、実験結果と既往の強度評価式の関係について検討する。

特に、耐震診断基準の各構造因子に対して、低強度コンクリートのせん断強度に与える影響について明らかにする。なお、検討対象の試験体は、耐震診断を考慮して曲げ降伏したL76-30を除き、せん断および付着破壊した計14体とする。

4.1 既往の算定式による検討

本実験の最大荷重と既往算定式によるせん断強度計算値を表4および図3に示す。せん断強度の算定には、荒川 mean式、耐震診断基準式、山本式を用いる。

<table>
<thead>
<tr>
<th>試験体名</th>
<th>実験値</th>
<th>荒川 mean式</th>
<th>耐震診断基準式</th>
<th>山本式</th>
</tr>
</thead>
<tbody>
<tr>
<td>N134-00</td>
<td>86.1</td>
<td>74.5</td>
<td>1.16</td>
<td>58.0</td>
</tr>
<tr>
<td>N134-15</td>
<td>108.7</td>
<td>104.8</td>
<td>1.04</td>
<td>88.4</td>
</tr>
<tr>
<td>N134-30</td>
<td>124.3</td>
<td>117.4</td>
<td>1.06</td>
<td>100.9</td>
</tr>
<tr>
<td>L134-00</td>
<td>57.5</td>
<td>56.2</td>
<td>1.02</td>
<td>43.8</td>
</tr>
<tr>
<td>L134-15</td>
<td>69.4</td>
<td>68.5</td>
<td>0.80</td>
<td>74.1</td>
</tr>
<tr>
<td>L134-30</td>
<td>89.2</td>
<td>99.1</td>
<td>0.90</td>
<td>86.7</td>
</tr>
<tr>
<td>L076-00</td>
<td>57.3</td>
<td>50.0</td>
<td>1.15</td>
<td>38.9</td>
</tr>
<tr>
<td>L076-15</td>
<td>67.2</td>
<td>80.3</td>
<td>0.84</td>
<td>69.3</td>
</tr>
<tr>
<td>N15-15</td>
<td>191.9</td>
<td>157.5</td>
<td>1.22</td>
<td>136.4</td>
</tr>
<tr>
<td>L15-15</td>
<td>135.7</td>
<td>129.8</td>
<td>1.05</td>
<td>113.1</td>
</tr>
<tr>
<td>L15-30</td>
<td>156.1</td>
<td>142.3</td>
<td>1.10</td>
<td>125.6</td>
</tr>
<tr>
<td>L15-45</td>
<td>175.1</td>
<td>154.8</td>
<td>1.13</td>
<td>138.1</td>
</tr>
<tr>
<td>L20-30</td>
<td>177.8</td>
<td>176.2</td>
<td>1.01</td>
<td>152.0</td>
</tr>
<tr>
<td>L30-30</td>
<td>127.6</td>
<td>124.4</td>
<td>1.03</td>
<td>111.6</td>
</tr>
</tbody>
</table>

表4 実験結果およびせん断強度計算値
準式(1)の耐震診断基準式にコンクリート強度による安全係数を乗じた山本式(2)を用いた。逆対称モーメントを受ける部材において対応が良いとされる荒川式では、梁実験体が耐震側の評価になる傾向があり、柱実験体では概ね良い対応を示した。耐震診断基準式では、荒川式よりも安全側評価となっているが、梁実験体において実験値が計算値よりも小さくなっている試験体が見られる。耐震診断基準式に低減係数を乗じた山本式では、全ての試験体で安全側評価となっている。ただし、試験体は限られた実験データを対象として低減係数を導出しており(3)、コンクリート強度による低減係数が耐震診断基準式の全体に乗じられている点や低強度コンクリートの及ぼす影響の範囲という点において考察が不十分であると考えられる。そこで、次節以降では低強度コンクリート、せん断スパン比、引張鉄筋比、軸力、コンクリート強度、せん断補強筋量に与える影響について検討する。

4.2 せん断スパン比の影響

せん断補強筋比と軸力の影響を除いたせん断強度実験値mµとせん断スパン比の関係を図4に示す。mµは文献6を参照して式(1)より算出した。図10-30、L15-30、L20-30の結果は、荒川式による値とほぼ同値となっており、せん断スパン比の増大に伴う強度低下率も同じ傾向を示している。実験値を回帰計算すると、荒川式の係数と等しくなり、曲線が一致した。これより、コンクリートが低強度であることで、せん断スパン比が部材のせん断強度に与える影響はないと考ええる。

\[m\mu = \frac{Q_{\text{max}}(b - j) - 0.85 P_{\text{m}} - \sigma_{\text{y}} - 0.1\sigma_0}{k_s k_p (18 + \sigma_y)} \] （式1）

ここで、\(Q_{\text{max}} \): せん断強度実験値、\(b \): 試験体幅、\(j \): 転心中心間距離、\(P_{\text{m}} \): せん断補強筋、\(\sigma_{\text{y}} \): せん断補強筋の降伏強度、\(\sigma_0 \): 軸方向応力、\(k_s \): 断面寸法による補正係数、\(k_p \): 引張鉄筋比(%)による補正係数(=0.82p_{\text{m}}^{0.5})、\(\sigma_{\text{y}} \): コンクリート圧縮強度

4.3 引張鉄筋比の影響

せん断スパン比とせん断補強筋比の影響を除いた実験値mµと引張鉄筋比の関係を図5に示す。mµは文献6を参照して式(2)より算出した。図10-30、L15-30、L20-30の結果は、荒川式による値とほぼ同値となっており、せん断スパン比、せん断補強筋比、軸力を考慮して、せん断補強筋のないL134-00、L076-00、N134-00について比較検討した。低強度コンクリート試験体の実験値は、荒川式に比較した計算値と概ね良い対応を示しており、既往の実験式で同様に評価できることが伺える。また、N134-00においても同様な傾向を示していることから、コンクリートが低強度であることによって、引張鉄筋比がせん断強度に与える影響はないと考えてよい。

\[m\mu = \frac{Q_{\text{max}}(b - j) - 0.85 P_{\text{m}} - \sigma_{\text{y}} - 0.1\sigma_0}{k_s k_p (18 + \sigma_y)} \] （式2）

ここで、\(M/Qd \): せん断スパン、\(d \): 有効帯

4.4 軸力の影響

柱試験体のせん断強度実験値(\(Q_{\text{max}}b \))からコンクリート負荷分とせん断補强筋の負荷分を差し引く、これを軸方向応力が負荷するせん断強度\(\tau_0 \)を同様に図示したものが図6である。図中に荒沢・荒川式(4)の計算値を破線で示している。軸力比の異なる試験体L15-15、L15-30、L15-45の軸力分布せん断強度は、直線的に増大しており、既往の評価式と同様な傾向を示している。回帰計算による直線の傾きは0.14となり、傾きが大きく変わっているもののばらつきの範囲内と考えられ、コンクリートが低強度であっても、軸力が部材のせん断強度に与える影響は普通強度コンクリートと同様である。

4.5 コンクリート強度の影響

せん断スパン比、せん断補强筋比、軸力の影響を除いたせん断強度実験値mµとコンクリート圧縮強度の関係を図7に示す。mµは文献6を参照して式(3)より算出した。図10-30、L15-30、L20-30の結果は、荒川式に0.8倍した値を一点鎖線で示している。検討対象とした梁試験体は、コンクリート強度の異なる試験体L15-15とL15-30を比較することとした。梁試験体および柱試験体は、軸応力がほぼ等しいN15-15とL15-30を比較することとした。梁試験体および柱試験体は、荒川式の計算値とよく対応しており、コンクリート強度が大きくなることによるせん断強度の増大傾向は普通強度コンクリートを用いた既往の実験結果ともほぼ一致している。さらに、本実験値は荒川式の計算値を0.8倍して低減させた値より大きくなくなっていることから、コンクリート強度による影響は耐震診断基準式において安全側に評価できると考えられる。そのためにコンクリートが低強度であることにより、せん断強度に与える影響は小さいと考えられる。

\[m\mu = \frac{Q_{\text{max}}(b - j) - 0.85 P_{\text{m}} - \sigma_{\text{y}} - 0.1\sigma_0}{k_s k_p (18 + \sigma_y)} \] （式3）

4.6 せん断補強筋量の影響

せん断補強筋の負担するせん断強度とせん断補強筋量の関係を図
8 に示す。せん断補強筋の負担強度は、せん断補強筋比、\(\rho_s = 0.15\% \)と0.30%の実験データのせん断強度から、せん断補強筋のない試験体のせん断強度を差し引いて、これでせん断補強筋の負担せん断強度を把握することができる。図には荒川 mean 式による計算値を破線で示している。普通強度コンクリートを用いた実験では、荒川 mean 式の計算値と概ね対応しており、増加傾向も近似している。一方、低強度コンクリートを用いた実験では、荒川 mean 式の計算値より著しく下回っており、\(\rho_s = 0.1\% \)においても普通強度コンクリートの半分程度の値で、せん断補強筋が強度を負担できていないことが確認できる。そのため、コンクリート強度が低強度である場合、せん断補強筋によるせん断強度への寄与が小さくなるように低減させる必要があると思われる。コンクリートが低強度になると、主筋の付着性能が顕著に低下することに起因してトラス機構が形成しにくくなることや、せん断ひび割れ後の圧縮応力伝達能力が低下していることなどが考えられる。詳細なメカニズムの検証については今後の検討課題である。

5. 低強度コンクリートに対応した耐震診断基準式の提案

5.1 コンクリート強度による低減係数

前章での検討により、低強度コンクリートの試験体ではせん断補強筋負担分のせん断強度への影響が大きく、既存の定式化ではせん断補強筋の補強効果を過大評価してしまっている。そこで、耐震診断基準式におけるせん断補強筋負担分の強度に対して、コンクリート強度に関連させた低減係数を導入することで、低強度コンクリートに対応した耐震診断基準への提案を行う。せん断補強筋負担分を修正し、耐震診断基準式との整合性を保つため、式 (4) により回帰計算を行うこととした。

\[
\tau_m' = \alpha_L \cdot \left[\tau_p - \sigma_{WP} \right] \tag{4}
\]

ここで、\(\rho_s \): せん断補強筋比、\(\sigma_{WP} \): せん断補強筋の降伏強度

図 8 に普通強度コンクリートを用いた実験値を最小二乗法により回帰計算した結果を一点鎖線で、低強度コンクリートを用いた実験値を回帰計算した結果を実線で示している。普通強度コンクリート (\(\sigma_s = 19.5 \text{MPa} \)) ではせん断補強筋負担分の係数は 0.734 になり、低強度コンクリート (\(\sigma_s = 10.3 \text{MPa} \)) では 0.434 になった。このせん断補强筋負担分の係数をコンクリート圧縮強度の関数で表現することとし、コンクリート圧縮強度が 0 のときにせん断補強筋の負担強度がなくなるように直線回帰した。せん断補強筋負担強度の係数とコンクリート圧縮強度の関係および直線回帰した結果を図 9 に示す。なお、耐震診断基準式との関連性からせん断補強筋の負担強度の係数は 0.85 を上限とし、以上より、低強度コンクリートに対応したせん断補強筋の負担強度の係数は下式で表現できる。

\[
\alpha_L = 0.038\sigma_p \leq 0.85 \tag{5}
\]

ここでは、\(\sigma_p \): コンクリート圧縮強度 (MPa)

5.2 提案式の検討

本研究で提案する低強度コンクリートに対応した耐震診断基準式を以下に示す。また、実験値と提案式による計算値の比較を図 10 に示す。実験値/計算値の平均値は 1.38、変動係数 7%である。

(1) コンクリート圧縮強度 \(\sigma_s \leq 22 \text{MPa} \)の場合

\[
Q_m = \left[0.053p_s^{(23)}(18 + \sigma_p) \cdot \frac{M(Q - d) + 0.12}{Q} + 0.038\sigma_p \cdot \sigma_{WP} + 0.1\sigma_p \right] \cdot b \cdot j \tag{6}
\]

(2) コンクリート圧縮強度 \(\sigma_s > 22 \text{MPa} \)の場合

\[
Q_m = \left[0.053p_s^{(23)}(18 + \sigma_p) \cdot \frac{M(Q - d) + 0.12}{Q} + 0.038\sigma_p \cdot \sigma_{WP} + 0.1\sigma_p \right] \cdot b \cdot j \tag{7}
\]

既往の柱および梁試験体の実験結果を用いて、本提案式によるせん断強度の適性を検証する。検証に使用した試験体は、柱が 89 体（51-279体）、梁が 55 体（24-70体）の計 144 体である。検証対象とした試験体概要を表 5 に、せん断強度の実験値と計算値の比較を図 11 に示す。本提案式との比較のために、耐震診断基準式 4 による計算値、耐震診断基準式の全体に低減係数を乗じた山本式 5 による計算値との比較も行った。提案式は、安全側で評価することができ、全体試験体の実験値/計算値の平均値は 1.33、変動係数は 27%である。柱試験体では平均値 1.28、変動係数 31%であり、梁試験体では平均値 1.41、変動係数 19%となっている。また、実験結果を過大評価する試験体は、提案式では 22 体（不適合率 15%）、耐震診断基準式では 72 体（不適合率 50%）、山本式では 38 体（不適合率 26%）となっており、本提案式の不適合率は耐震診断基準式の半分以下に抑えられている。耐震診断基準式のせん断補強筋負担強度をコンクリート強度
図11 せん断強度の実験値と計算値の比較

に応じて低減させた本提案式は、低強度コンクリート部材のせん断強度を過大に評価せず、耐震診断基準式および山本式よりもばらつきがなく適切に推定している。

6. まとめ

低強度コンクリート部材のせん断破壊実験を行い、コンクリートが低強度であることに、各構造因子のせん断強度を与える影響について検討した。検討の結果、低強度コンクリートにおけるせん断スパン比、引張鉄筋比、曲げ強度に及ぼす影響を、普通強度コンクリートと同様であったが、せん断補強筋の負担強度は低強度コンクリートでは大きくなることを示した。

また、得られた実験結果から、低強度コンクリートに対する耐震診断基準式を提案し、既往の実験結果を用いて提案式の検証を行った。新たな耐震診断基準式のせん断補強筋負担強度をコンクリート強度に応じて低減させた提案式を提案し、提案式による計算値は既往の提案式よりもせん断強度を過大に評価せず、ばらつきもなく適切に評価できることを確認した。なお、本実験の主は異形鉄筋を用いているが、既存建物の多くは丸鉄が使用されているため、主筋が丸鉄である低強度コンクリート部材のせん断強度に対して本提案式が適用できるかは今後の検討課題である。

参考文献

1) 日本建築学会: 2001年改訂版 既存鉄筋コンクリート構造物の耐震診断基準 2001.10
2) 日本コンクリート工学会中国支部 : 低強度コンクリートに関する特別研究委員会報告書 2002
3) 日本建築学会：鉄筋コンクリート構造計算基準同解説 一許容応力度設計法一 1999.11
4) 谷口耕夫、八島卓雄、荒木秀夫：低強度コンクリート RC 枠の耐力評価に関する実験的研究、コンクリート工学年次論文集、Vol.30、No.3、pp.265-270、2008.7
5) 山本喜春：地盤と補強一耐震改修における低強度コンクリートの問題点、第30回建築士協会全国大会講演大会編、pp.77-91、2005.9
6) 荒川幸：鉄筋コンクリートパッケージせん断耐力に関する実験的研究、日本建築学会大会学術講演会昭和52年、構造系、pp.891-892、1969.7
7) 広沢靖雄、後藤浩一：補強鉄筋を用いる鉄筋コンクリート部材の強度と耐震、日本建築学会大会学術講演会昭和50年、構造系、pp.817-818、1971.11
8) 坂井秀俊、増田安彦、田中行一：低強度コンクリート RC 枠の耐力に関する研究、コンクリート工学年次論文集、Vol.30、No.2、pp.1243-1248、2008.7
9) 横口喜男、川村裕作、高橋泰男、南部一：10mm2級の低強度コンクリートを用いた RC 枠のせん断破壊応力、日本建築学会大会学術講演会昭和53年、構造系、pp.1129-1134、2008.7
10) 山本喜寛、南條景文、若田正義、増田安彦：低強度コンクリート RC 枠の耐力に関する研究、コンクリート工学年次論文集、Vol.30、No.3、pp.1129-1134、2008.7
11) 坂口喜男、藤原昌宏、高橋泰男、南部一：低強度コンクリートを用いた RC 枠のせん断破壊応力、コンクリート工学年次論文集、Vol.29、No.3、pp.157-162、2007.7
12) 藤原昌宏、椚容治、沢崎洋：多数の converge で低強度コンクリート RC 枠の補強効果、日本建築学会大会学術講演会昭和52年、構造系、pp.97-104、2007.3
13) 永野実、佐藤実、中居誠行、丹澤洋也、増田安彦：低強度コンクリートを用いた SRC 及び RC 枠に対する耐震補強研究、(その1～その3)、日本建築学会大会学術講演会昭和52年、構造系、pp.367-374、2006.9
14) 永山吉也、大川善宏：コンクリートが特有に低強度的な RC 枠のアスファルトコンクリートによる巣付き補強に関する研究、日本建築学会大会学術講演会昭和52年、構造系、pp.357-378、2006.9
15) 永山裕也、東野正光、大川善宏：極低強度コンクリートを用いた RC 枠の耐力と耐震性に関する実験的研究、日本建築学会大会学術講演会昭和52年、構造系、pp.157-166、2005.9
16) 高田寛司、山川浩二、井戸喜多、飯田誠：PC 鋼棒にプレストレンを導入して応答を把握した RC 枠の耐震改修実験、日本建築学会大会学術講演会昭和52年、構造系、pp.492-493、2001.9
17) 坂口喜男、福本健、藤原昌宏、西尾俊彦：低強度コンクリートの RC 枠のせん断耐力に関する実験的研究 (その1～その2)、日本建築学会大会学術講演会昭和52年、構造系、pp.15-16、1999.7
18) 坂口喜男、榊木隆一、知久知、竹本高志、黒木正博：地震による損傷を受けた軽量コンクリート造建築物の柱間上部の曲げせん断強度、日本建築学会大会学術講演会昭和52年、構造系、pp.407-408、1999.7
19) 中村秀明、佐藤洋也、清木春一：鉄筋コンクリート短柱の崩壊防止に関する総合的研究 (その34～その46)、日本建築学会大会学術講演会昭和53年、構造系、pp.1501-1502、1977.10
20) 王子光儀、石渡利幸、藤本一郎：補強付き鉄筋コンクリート柱の挙動に関する実験的研究、日本建築学会大会学術講演会昭和53年、構造系、pp.1433-1434、1976.8
21) 鈴木紀雄、青森隆之：変形補強材受ける鉄筋コンクリート柱の耐元力特性、日本建築学会大会学術講演会昭和52年、構造系、pp.1361-1362、1981.9
22) 岩崎茂光、野口信一、伊藤利明、南條景文：鉄筋コンクリート柱のせん断強度に関する実験的研究、日本建築学会大会学術講演会昭和52年、構造系、pp.787-790、1971.9
23) 藤原昌宏、谷口耕夫、荒木秀夫：低強度コンクリートを用いた RC 枠の耐力特性、コンクリート工学年次論文集、Vol.29、No.3、pp.931-936、2007.7
24) 山本喜春、谷村昭生、松野正勝：変形補強工法による低強度コンクリート造建築物の耐震改修に関する研究 (その1)、日本建築学会大会学術講演会昭和52年、構造系、pp.1119-1120、1975.8
25) 藤原昌宏、谷口耕夫、荒木秀夫：低強度コンクリートを用いた RC 枠の耐力特性、コンクリート工学年次論文集、Vol.29、No.3、pp.931-936、2007.7
26) 永山吉也、東野正光、大川善宏：極低強度コンクリートを用いた RC 枠の耐力と変形、コンクリート工学年次論文集、Vol.26、No.2、pp.361-366、2004.7
27) 坂口喜男、藤原昌宏：鉄筋補強された低強度コンクリート柱のせん断耐力に関する研究、コンクリート工学年次論文集、Vol.23、No.1、pp.1057-1062、2004.7
28) 芦沢幸也、加藤信夫、山本喜春、野村英文：正負方向を受ける鉄筋コンクリート柱のせん断破壊に関する研究、日本建築学会大会学術講演会昭和53年、構造系、pp.713-714、1972.9
29) 大野和男、荒川卓雄、三輪、阿部信悟：新耐震法による鉄筋コンクリート柱のせん断破壊抵抗力に関する研究、日本建築学会研究報告、第38号、pp.36-41、1957.8