The present paper describes the evaluation of Free Cooling System by analyzing its operating data from the factory constructed in cold region. Result from this evaluation, the most appropriate way of the operating system is proposed. It is based on past operating data and the weather information. Moreover, after the system has been operated by this method and the result is examined, the accuracy of the selected procedure will be increased by tuning parameters. It is expected that this operating method will be more effective for the facility management and also Free Cooling System will become popular in cold region.

The following is a table showing the construction data of the factory.

<table>
<thead>
<tr>
<th>物件名</th>
<th>セイコーユニゾン株式会社千歳事業所</th>
</tr>
</thead>
<tbody>
<tr>
<td>建設地</td>
<td>北海道千歳市美々</td>
</tr>
<tr>
<td>建物用途</td>
<td>工場</td>
</tr>
<tr>
<td>構造階数</td>
<td>鉄骨造/地上7階</td>
</tr>
<tr>
<td>敷地面積</td>
<td>160,529.83 m²</td>
</tr>
<tr>
<td>建物面積</td>
<td>20,497.65 m²</td>
</tr>
<tr>
<td>延床面積</td>
<td>82,971.62 m²</td>
</tr>
<tr>
<td>最高高さ</td>
<td>32.04m</td>
</tr>
<tr>
<td>クリーンルーム</td>
<td>9,000 m²×3層（3000 m²を実装）</td>
</tr>
<tr>
<td>基本設計</td>
<td>竹中工務店</td>
</tr>
<tr>
<td>増改工年度</td>
<td>2004年6月30日</td>
</tr>
</tbody>
</table>

1) Masahiro UOZUMI —— *1
2) Hisashi HANZAWA —— *2
3) Assoc. Prof., Dept. of Architecture, Hokkaido Institute of Technology
4) Prof., Dept. of Architecture, Hokkaido Institute of Technology, Dr. Eng.
3. 熱源システム

3.1 熱源機器構成

本施設の熱源設備フローを図1に、主冷熱障壁器を表2に示す。

主冷熱障壁器、ターボ冷却機（冷凍能力1,429kW×3基）と、開放式冷却塔1基（冷凍能力5,198kW×6セル分割）で構成している。

フリーリングシステム（以下FCと記す）設備は、プレート型熱交換器を介して冷却塔を冷凍機と兼用し、システムの合理化を図っている。

開放式冷却塔には、送風機の正逆運転による垂直分野の完全冷却防止や飛散水の冷水濃度制御等の冬期冷暖防止対策をとっている。冷凍機は、全てインバータ制御を行い、負荷変動および、冷水送水温度の変動に対して、経済的な運転を可能とする。

3.2 熱源設備の運転モード

本施設の熱源システムは、初冬の「冷凍機単独運転」、冬期の「FC単独運転」および中間期の「冷凍機+FC併用運転」の3つの運転モードを有している。「冷凍機+FC併用運転」モードは、FCで製造可能な冷蔵温度が想定する冷水上限温度を上回る場合の冷凍機冷却能力の最小化を図る。

3.3 熱源設備の導入状況

FCの稼働可能な条件は、冷凍機冷却能力の50%～100%を想定する冷水温度条件を設定し、冷凍機の冷却温度範囲により、FCF一次側温度（図1:7）5℃以上とする。

ただし、冷水温度が5℃以下となる可能性のある冬期は、FCでの冷凍熱負荷を考慮し、冷水送水温度におけるFC運転が制約される状況は現状では発生していない。

4. フリーリングシステムの運転評価

4.1 システム総合効率

FCと冷凍機の稼働が混在する中間期の代表値の成績係数（FC-COP、R-COP）を示す。外気温（環境温度℃）を図2に示す。

本報における"COP"は、特記を除き、冷凍機発生熱量を示した熱源機器全ての消費電力量で除したシステム総合効率（システムCOP）とする。本システムのボンプ群はインバータ制御を行っているが、冷凍機の冷凍能力が変動するため、以下の式(1)の"COP"には、冷凍二次ポンプ（CP-102）を含むものとする。

\[\text{FC-COP} \text{ or } \text{R-COP} = \frac{\text{FC 取得熱量}}{\text{FC 冷凍機発生熱量}} / (\text{R+CT} + \text{CP} + \text{CDP} + \text{FPC} \text{消費電力量}) \]

中間期のFC-COPは、外気温（環境温度℃）が-12℃以下においては、+5℃で9℃以上であり、同時期の冷凍機の効率（R-COP）3.5以上に比べて高い値となっている。施設冷熱負荷と冷水温度条件を充足する限り、FC運転期間の伸長は省エネルギーに極めて有効となる。
4.2 外気温度とフリーケーリング冷水温度
図3に中間期における外気温度変動とFC出入口温度の週間変動を示す。FCは外気条件に冷水製造能力を依存しているため、負荷の変動への追随性が懸念されるが、本システムは、FC熱交換器入口側温度の変動に対して、冷熱源として安定した水温を維持している。

図3 外気温度とFC出入口冷水温度の変動（2008/12）

4.3 外気温度と施設冷熱負荷
図4に外気温度と施設冷熱負荷の月変動、図5に夏期・中間期・冬期における代表月の外気温度と施設冷熱負荷の関係を示す。

図4 外気温度と冷熱負荷の月変動（2006〜2008年）

外気温度と冷熱負荷（2008/2, 8, 10）
施設冷熱負荷は、外気処理の負荷が大きい夏期には乾球温度との相関が大きいが、中間期から冬期にかけては、外気負荷が減ることで、相関的に内部発熱負荷の処理が大きな比重を占めるため、冷熱負荷の変動幅が小さくなり、FC運転にとって有利となることがわかる。

4.4 外気跟球温度とフリーケーリング取得熱量
中間期（11月、4月）における1時間毎の外気跟球温度とFC取得熱量の関係を図6および図7に示す。FCによる取得熱量は、外気温度に影響を受けるため、図6において、外気跟球温度が高い11月上旬と低くなる同月下旬では、両者の相関に異なる傾向がみられる。これは跟球温度が低くなる下旬には、FC能力が施設側の冷熱負荷を上回るため、FC取得熱量を3〜4MJ/h程度に送水温度制御しているためである。

図6 中間期における外気跟球温度とFC取得熱量（2008/11）

5. 冷水負荷とフリーケーリング能力の予測
前節までに述べたように、本施設において、「施設冷熱負荷と外気温度」、「FC取得熱量と外気跟球温度」との関係に相関がみられる。
したがって、外気跟球温度から、冷熱負荷の予測およびFC運転による取得可能熱量と冷水出入口温度を求めることが、中間時における熱源選択モードを推定するための指標としてと考えられる。
時刻毎の乾球温度の予測は、日常的な施設管理を想定し、現場で入手可能な気象報道（日最高・最低温度）から求めるものとする。図8に示すように、FC運転を想定する中間期から冬期にかけては、外気の相対温度が高く、乾球温度と跟球温度に高い相関がみられる。
図9に乾球温度と跟球温度の相関から求めた跟球温度計算値と、実測した跟球温度の関係を示す。FC運転を想定する中間期から冬期は、乾球温度のみならず一定の精度で跟球温度を求めることができる。

図7 中間期における外気跟球温度とFC取得熱量（2009/4）

図8 乾球・跟球温度の相関

図9 跟球温度計算値と実測値
外気温度の予測から、冷熱負荷、FC取得熱量の推定および熱源選択に至るフローを図10に、出力制御のモデルを図11に示す。
このモデルでは、日単位の最高・最低温度を設定することで、時間別の外気温変動を想定し、冷熱負荷・FC取得熱量を求め、FC運用によって日冷熱負荷を充足可能か判断することを目的としている。
時刻別各要素の生成方法及び参照する関係を以下に示す。

1) 外気温度…最高・最低予想気温および同発生時刻の設定から時刻別外気温度（乾球温度）を求める。

2) 湿度温度…(1)で生成した外気温度と、参考年の当該月の外気温度と外気湿球温度の間（図8）から求める。

3) 冷熱負荷…(1)で生成した乾球温度と参考年の当該月の外気温度と冷熱負荷の関係（図9）から求める。

4) FC取得熱量…(2)で生成した湿球温度と参考年の当該月同旬の外気湿球温度とFC取得熱量の間（図6、7）から求める。

5) 冷水出口温度も同様に湿球温度から生成し、設定した温度範囲（5℃〜11℃）にあることを見ること。

6) FC取得熱量と冷熱負荷の差…(4)〜(3)として求める、日合計を「蓄熱可能量」として最下段へ示す。

6. まとめ

本報では、寒冷地におけるフリークーリングシステムの運転モード選択の手法について、実施例における運転データをもとに検討を行った。本施設のクリーンルームに対する空調制御、高い精度が求められるため、施設管理担当者の技術と経験に依存して通年24時間の人間の監視の下で行っている。今回提案する熱源選択フローは、施設管理の省エネルギー運転を求める目的を、現地で日常的に入手可能なデータ（気象予報値）から、冷熱負荷や熱源選択の適否を予測するものである。今後は本手法により実用化による検証、各要素間のパラメータの精度の向上を図り、熱源管理運用マニュアルの作成および熱源制御の自動化については計画を進める。

謝辞

本報の執筆にあたり、セイコーエプソン千歳事業所、竹中工務店、アサヒファニティズ、高砂熱交換機の関係者の方々から、運転データの提供はじめ、多くのご指導を頂きました。末尾まで、ここに記して謝意を表します。

参考文献

1) 金本英一、渋谷幸男、本郷大：セイコーエプソン（株）千歳事業所の空気調和設備、電気調和・衛生工学 第81巻 第9号 pp.62〜63、2007.9

注

注1) 本施設は、2007年に「セイコーエプソン（株）千歳事業所の空気調和設備」として、「第21回気調学会発表論文発表技術振興賞（北海道支部）」を受賞している。

注2) 寒冷地における開放式冷却塔を使用期間の凍結防止対策については、参考文献(1)等を参照。

注3) 本報における外気温（乾）温度は、現地で実測（測定器は施設屋上の日用用品に設置）したデータを用いている。

注4) 熱源選択は、最適冷熱温度と発生時刻から直接近似により算出しているが、今後多項式近似等を用い、推定の精度を高めるべき検討する。

[2010年2月18日原稿受理 2010年4月5日採用決定]