評論

本研究で作成されているモデルは、混雑状態の中、出口、改札口、段階等へ向かっての人間の移動行動をシミュレートする。メッシュ型の歩行行動モデルである。メッシュの形状は、直径3mの円に内接する六角形が用いられ、各トランザクション（この場合はメッシュを移動していく人）は、改札口などの収支メッシュに向かえ、そこまでのメッシュ数が最小になるような経路を通って移動する。ただし現在メッシュから目的地への最短経路が複数ある場合には、隣接メッシュの中から混雑の少ない（密度の少ない）メッシュを選んで移動するアルゴリズムになっている。このようなモデルは、建築物の防災評定に用いられる避難計算にとってかわるものとして有効である。同じ活動能力、同じ目的指向を持った人々が、できるだけ短時間に出口に向かって移動しようとする行動を扱ったモデルである。今後、この種のシミュレーションモデルに望まれるのは、人に道を譲ったりする行動、高齢者や幼児、障害を持った人々に配慮する行動など、心にゆとりを持った人間の歩行行動のモデル化と、そのような行動を換算させる施設計画を行うための規範型（normative）のモデルである。

評論

このシュミレーションシステムの特徴は次の諸点であろう。
1. 通路平面上を、歩行者一人一人個別に、一定の行動判断のルールに従って歩かせながら、その個別の行動の統計、総体としての群集流動状況をつくり出すことに成功している。
2. メッシュ構造の単純明快さと言語、ハードウェアの進歩がこれに役立っている。目的に相応している限りモデルは単純なほど良いと言える。
3. メッシュが六角形で、隣接するメッシュ間の移動距離が通路のどの部分、どの方向でも等しくなる点が好ましい。ただしこれを歩行者実験した立場から、通路の方向によっては、単純な直進がジグザグ歩行になってしまうのではないか、ちょっと気になる。
4. メッシュ内の歩行密度が2.5人/程度以上にならないように移動速度を設定しているのは、取り扱い難い高密度の出現を避けた賢明な工夫である。ゆとりと節度を持った群集の歩行を前提とすれば、これでよいと思われる。
5. 以上の特性の持つことから、このシステムは3mモデルの平面格子上に表されるようなスケールの大きな歩行空間の計画の検討に適用するものと考えられる。

なお、2節の中でふれられている文献9のシュミレーションモデルは、鉄道駅等のスケールの歩行空間に適用されるもので、現在さらに改良されてJR等で使われており、ここでのふれられ方はちょっと違う。