建設作業所の新しい安全標識「ステッカー標識」の開発

武藤 浩 ——*1

キーワード：建設作業所、安全標識、環境心理、デザイン評価、調査、安全管理

Keywords: Construction site, Safety sign, Environmental psychology, Design evaluation, Field survey, Safety management

1. はじめに

1.1 建設作業所における安全標識の役割と問題点

建設作業所（以下「作業所」と記す）では、作業員の安全を確保することが非常に重要である。1995年の統計によると、全産業の死傷者数（休業4日以上）にしめる建設業の割合は27.8%と、業種別でもっとも多い。そのため作業所では、作業内容の確認や指示、巡回による危険箇所や作業員の行動のチェック、落下防止ネットや手すりをはじめとする安全設置の設置など、さまざまな措置がとられている。

ところで作業所は、作業の進行に伴って環境が絶えず変化する。作業員が頻繁に入れ替わり、そのような特性を持つ環境である。安全標識（以下「標識」と記す）は、変化する環境に迅速に対応し、危険箇所などの情報を、新しい作業環境や不慣れな作業員にもわかりやすく伝えるために不可欠な設備である。

しかし、標識の設置をはじめとする安全管理に、作業所の管理者がかりの手間と時間をかけて得られないものが現状である。安全性を確保しながら、省力化を図ることが求められている。

1.2 本稿の概要と独自性

本稿では、安全設備としての性能を確保しながら、コストダウンと省力化を実現した、新しいタイプの「ステッカー標識」の開発経緯を報告する。ステッカー標識とは、シールのように裏面に接着剤が塗布されており、裏紙をはがすだけでなく壁に貼れる標識である。従来のものよりも安く、道具も不要で、最終仕上げ面にも貼れるなどの長所がある。これまでもに、資格者や作業主任者を示す小さなシールをヘルメットに貼ってはいたが、禁止・注意・指示などの標識全体に標準化したのは、建設業では初めてのことである。

さらに本稿では、現状の問題点を把握するための観察調査と、デザインを見直すための評価実験で、環境心理学的なアプローチをとっている。標識に関するこれまでの調査研究は、誘導・案内標識などのピクトグラム（絵文字）のデザイン評価に関するものが多い。それ以外には、公共標識の配置などから空間配置のわかりやすさを評価したものがある。これでは、作業所の標識を対象とした例事例および、環境心理的な視点から行った研究はほとんどない。

2. 現状の問題点の把握

標識の使用に関する現状の問題点を把握するため、約40箇所の作業所で職場調査を実施した。作業所の安全管理担当者や作業計画の専門家ともに作業所を巡回し、標識の設置位置や管理の状態を、視認性や誘目性といった環境心理的な観点で観察した。さらに、安全管理担当者へのヒアリングにより、管理・運営上の問題点を抽出した。その中から、ほとんどの作業所に共通するもので、デザイン、設置位置、管理・運営の3つの視点でまとめた（表1）。

①デザイン

同じ視野の標識にも、非常に多くのデザインの種類があるが、それらが作業所で統一されている。同じ作業所であっても、意味が同じ標識に異なるデザインのものが混在している場合も見受けられた（写真1）。建設業では、建設労働災害防止協会が指定した13種類の標識（建災防型）*2があるが（図1）、ほとんどの作業所でそれ以外の標識が使用されている。そのほかにも、意味が違う標識のデザインが似ている（図2）、文字が小さいなど、よく見ないと意味が理解できないものがある。

②設置位置

必要な場所にない。位置が悪い目立たないなど、標識が作業員に認識されない危険がある。必要な標識があるなど、標識への注意や関心が低下することも懸念される。

*: 森竹中工場技術研究所基礎研究部 研究員
*: Researcher, Fundamental Research Department, Research and Development Institute, Takenaka Corporation
3. 管理・運営

仕上げ面には直接取り付けられなかったこと、標識の移動が面倒なため不要になった標識が放置されることが、もっとも重要な問題である。利用頻度の高い、案内や誘導の標識の種類が不足している。保管場所が作業エリアの近くにないため対処に時間がかかる。コストが高いなどの問題もある。延床面積約50,000m²の事務所ビルの例では、全工事期間で使用された標識の枚数は約6,000枚。費用は約80万円にのぼっており、かかるコストは決して小さくない。

表1 問題点の例（右端の数字は3.1で述べる課題との関連を示す）

<table>
<thead>
<tr>
<th>表現</th>
<th>意味と同じ標識に異なるデザインのものが使用されている（注1）</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>作業所ごとに標識のデザインが異なる（注1）</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>意味の違う標識のデザインが似ている（注1）</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>図柄がとるべき行動を具体的に表現していない（注1）</td>
<td>3</td>
</tr>
<tr>
<td>色彩</td>
<td>JISに準じていない（注意は無く）</td>
<td>3</td>
</tr>
<tr>
<td>文字・図柄</td>
<td>文字だけでなく図柄がない</td>
<td>3</td>
</tr>
<tr>
<td>場所</td>
<td>必要な場所にない</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>目立つ場所にない</td>
<td>2</td>
</tr>
<tr>
<td>位置</td>
<td>明けて見えない</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>視線に垂直でなく、目立たない</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>途中隱れている</td>
<td>2</td>
</tr>
<tr>
<td>数</td>
<td>不要な標識がある</td>
<td>3</td>
</tr>
<tr>
<td>取り扱い</td>
<td>仕上げ面には直接取り付けられない</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>取り付けや移動が面倒である</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>不要な標識が放置されている</td>
<td>2</td>
</tr>
<tr>
<td>基準・ルール</td>
<td>案内や誘導の表示の種類が不足している</td>
<td>3</td>
</tr>
<tr>
<td>その他</td>
<td>保管場所が作業エリアの近くにない</td>
<td>1</td>
</tr>
</tbody>
</table>

写真1 意味が同じ標識に異なるデザインが混在している例

3. ステッカー標識の開発と標準化

3.1 開発の目的

表1をもとに、課題を以下3つに絞り込み、対策を立てた。表1の右端の数字は3に示す課題との関連を示す。これからの対策により、問題点の多くが解決できることがわかる。

① コストの低減

コストがかかるものの一つに、標識そのものの単価が高いことがあげられる。単価の低下を図るために、素材を従来のプラスチック板から塩ビ製のシートに変更した。

② 維持・管理の省力化

位置が悪い、不要になった標識が放置されることにいった問題は、標識の取り付けや移動に手間がかかりが原因と思われる。従来の標識の多くは、四隅の穴に針金やひもを通して、手すりなどに取り付けるため、針金などの材料やペンチなどの工具が必要である（写真2）。

一方、この取り付け方法が、仕上げ面に使用できない原因でもある。壁にガムテープや両面テープで貼るケースも多いが、仕上げを施した壁には（それを傷つけてしまうため）使用できない（写真3）。

そこで、道具のいらない取り付け方法の採用と、最終仕上げ面にも貼れる仕様を目標に、ステッカー方式を採用するとともに、最適な接着剤を選定した。

③ デザインの検討

標識のデザインが作業箇所で統一されていない、あるいは意味が瞬間的に理解できない標識が使用されているのは、多くのデザインの中から適切なものを選択する基準がないのが原因と考えられる。そこで、望ましいデザインの条件を明らかにするために、設計実験を行った。さらに、標識の組み合わせによる多様な表現を可能にするために、案内や誘導をはじめとする標識の種類を実装させ、サイズを統一した。

写真2 従来型標識の一般的な設置例

写真3 3F
3.2 コストの低減と維持・管理の省力化（課題①と③）

表記そのもののコストを低減するために、塗装製のフィルムを採用した。また、維持・管理の省力化を図るためにステッカー方式を採用し、それに適した接着剤を検討した。接着剤が強いかは問題にいくが、仕上げ面を傷つけてしまうおそれがある。逆に接着剤が弱いと、貼りつけにそれ自体が落下してしまう、強い接着剤が必要な屋外では、標準の移動が比較的少なく、従来型の標準でもあまり問題はない。そこで屋根での使用を念頭に、しっかりと貼りついて、取り外しとしても仕上げ面を傷つけない接着剤を目標とした。

最適な接着剤を決定するために、既製品の塗装フィルムから6種類の候補塗料から、性能試験をおこなった。25mm幅のサンプルを、建築材料として用いられることが多い、プラスチック・ビニールクロス、ペーパーコート、繊維製（EP−1）、モルタル平滑面に貼り付け、日本工業規格の20237「粘着テープ・塗着シート評価試験方法」における、粘着試験（180度引きはがし法）を行った。その結果、23℃、湿度65%の条件で、各サンプルの24時間後の接着力を測定した結果を示したものです。

実験の結果から、目標とする性能を満たす、すなわち接着面を破壊させず、それ自体も落下しない材料（大日本インキ化学工業製A2シリーズ、アクリル系接着剤を使用）を採用した。

さらに、採用した材料に関して、接着と剝離を繰り返した後の接着力、長期間使用後の接着力測定をした。数回の取り外しに耐えること、長期間にわたって接着力を維持することを確認した（表3）。

3.3 評価実験によるデザインの検討（課題②）

同じ意味の表記に、非常に多くのデザインの種類がある。適切なデザインの条件を探るために、カラーサンプルを用いた評価実験を行った。立停禁止や足元注意など、11の意味について、作業所でよく使用されている4種類（合計44枚）を選び、見た目の（間接的な）わかりやすさを評価してもらった。実験者は、作業員154名。（作業所未経験者）18名である。作業員には3段階尺度、一般者には5段階尺度を用いた。

図3は、その標識をわかりやすいと評価した人の割合（以後「理解度」と記す）作業員と一般者について求め、グラフ上に示したものである。図の右上に置られた標識は、作業員と一般人の理解度がどちらも高いものである。文字と図柄の両方で構成され、内容が具体的に表現されたもの、とくに建災防型の標識にも使用されている。ビクトグラム（絵文字）が用いられたものが多い。

一方、図の左下に置られた標識は、作業員と一般人の理解度がいずれも低いものである。図柄だけで文字説明のない標識や、図柄が内容と直接関係ない標識、表現が抽象的なものが多い。なお、図の右下に置られた標識は、作業員と一般人の理解度が低いものである。一般者からは、ローカルや呼びかけなどの情報を含めるため文字数が多く、一目で見ただけでは意味が理解しにくいと評価された。作業員の多くは、それらの標識が頻繁に用いられており、見慣れているため、わかりやすいと述べた。意味をよく理解してもらうためには、これらのデザインは適切とは言えない。

以上の結果をもとに、デザインを統一し、標識の種類を充実した。まず、禁止・注意・指示に関する標識の部分にビクトグラムを使用した（約20種類）。さらに、案内・誘導に関する標識を充実させ、施設名を記載した内標識および、矢印や工事内容・期間などを表す補助標識を増やした（約50種類、図4）。組み合わせたときの見栄えをよくするために、標識の縦横横の寸法を統一した。

4. まとめ

4.1 ステッカー標識の特徴

ステッカー標識の特長を以下に記す（写真4）。

写真4 ステッカー標識の設置例

NII-Electronic Library Service
①壁などに直接貼れる
従来型の標識は、針金やひもの結ぶ場所に取り付けられることが多く、壁にはガムテープなどで貼り付けられていた。ステッカー標識は、貼り付ける対象があれば場所を選ばず、必要な場所の最適な位置に取り付けられる。
②道具がいらない
従来型の標識は、針金などの材料やそれを切る工具などが必要であり、取り付けに手間がかかる。新しい標識は、裏紙をはがすだけで簡単に取り付けられ、標識を設置する労力を大幅に削減できる。
③簡単に貼り直せる
接着剤の表面が汚れていなければ、数回にわたって貼り直すことができる。簡単に貼り直せるので、作業環境の変化に迅速に対応できる。これまでの標識は、取り付けだけでなく、取り外しにも手間がかった。
④はがしたときに接着面を傷めない
躯体だけでなくクロスや木などの最終仕上げ面にも貼れる。仕上げ段階はほとんど、リニューアル工事にも適している。
⑤コストが削減できる
従来のプラスチック製のものに比べて、約40％安価である。
⑥組み合わせでいろいろな情報が伝えられる
案内標識および補助標識を増やし、複数の標識を組み合わせて情報具体的に伝えることが可能にした（図5）。図の左は、立入禁止の標識に工事内容（型枠支工件体中）や期間などを示す補助標識を組み合わせたもので、補助標識の内容が異なる場合にはそれだけを取り替えるだけで済む。これでは、工事内容ごとに別の標識を用意していた。施設への説明も、矢印の標識を取り替えるだけであらゆる方角に対応できる（図の右）。標識の縦や横の寸法をそろえたので、組み合わせたときの見栄えもよい。
①その他
コピー機で複写できるので、作業所でも気軽に標識が作成できる。

図5 標識を組み合わせた例

100%
50%
0%

作業者の理解度

図3 デザイン評価実験の結果（作業員と一般人の理解度）
注意標識の例

禁止標識の例

指示標識の例

案内標識の例

補助標識の例

図4 ステッカー標識のデザインと種類の例

4.2 現在の利用状況

ステッカー標識は、1996年8月現在160箇所の作業所で利用されており、最終仕上げ面に貼れるなど好評である。利用状況を数箇所の作業所で調査した結果でも、表1の問題点の多くが解決されており、対策の効果が確認できた。

また、屋外で使用したいとの声が多かったことから、1997年10月に接着力の強いタイプを導入した。コンクリートなどの躯体やタイルなどの外装材に適しており、室内タイプと同じように使用できる。

謝辞

多くのご指導をいただいた建設業労働災害防止協会と、研究のきっかけをいただいた建設省建築研究所のEdit Nagy客員研究員（当時）に対して、厚く感謝の意を表したい。また、ステッカー標識の開発は、（株）竹中工務店東京本店労働安全部の鈴木秀雄氏（当時）と総務科（現在）の協力なくしては実現できなかった。ここにお礼を申し上げる。なお、ステッカー標識の開発は、（株）つくし房と大日本インキ化学工業（株）の協力を得て実施したものである。

引用文献
1) 労働省労働基準局編：安全の指標、中央労働災害防止協会、1986.5
2) 小林愛子：図式集の必要と日本規格協会、pp.89〜108、1991
3) 丸川清：応用心理学講座 4 記号と情報の行動科学、福村出版、pp.145〜147、1994
4) 金賢淑ほか：公共信号の整備計画に関する研究 ー 東京都世田谷区における公共信号の課題と提案ー、日本建築学会計画系論文報告集、第415号、pp.67〜78、1990.9
5) 上井正ほか：大阪梅田地下街における案内地図および方向案内板の視認性評価 ー 高齢者に分かり易い視覚表示に関する研究ー、日本建築学会計画系論文集、第457号、pp.15〜80、1994.3
6) 中央労働災害防止協会：労働安全標識に関する調査研究委員会報告書、1993.3
7) 日本規格協会：JISハンドブック（粘着）、1995

本報に関連するこれまでの発表
1) 武藤浩：安全標識のデザインに関する一対比較データの解析、日本科学技術連盟第17回多変量解析シンポジウム、pp.9〜16、1993.11
2) 武藤浩：建築作業所における安全標識の改善に関する研究 ーわかりやすい安全標識のデザインー、第24回安全工学シンポジウム、1994.7
3) 武藤浩：建築作業所における安全標識の改善に関する研究 ーわかりやすい安全標識のデザインー、日本建築学会学術講演会概要集（環境工学）、pp.171〜172、1994.9
4) 武藤浩：建築作業所における安全標識の改善に関する研究 ー マニュアルの作成とステッカー標識の開発ー、第26回安全工学シンポジウム、pp.87〜90、1996.10
5) 武藤浩ほか：ステッカー標識の開発 ー 建築作業所における新しい安全標識ー、竹中技術研究報告、No.52、pp.57〜62、1996.12

【1998年3月26日原稿受理 1998年7月8日採用決定】