東京湾沿岸域における土地利用の総体的把握と分析システムの構築
大都市沿岸域における環境評価方法に関する研究

Tokyo Bay Coastal Zone: General Grasping of Land Use and GIS

1. 研究の背景と目的

大都市沿岸域は、産業構造の変革、職住網の変化を含む土地利用の変化が顕著である。特に、沿岸域の都市構造が複雑であり、地域間の連携が求められる。GIS（Geographic Information System）の活用とそのネットワークは、沿岸域の土地利用パターンの把握に不可欠である。

2. 研究方法

2-1. 大都市沿岸域におけるGISの構築

本研究では、GISツールを活用し、データを分析し、沿岸域の土地利用の状況と予測を行った。また、沿岸域の環境評価の手法を提案し、沿岸域の環境保全のための策定を図った。

3. 結果と考察

沿岸域の土地利用の変化を把握し、その動向を予測するための手法を提案した。また、沿岸域の環境保全策定のための手法を提案した。

【文献】

1. 日本大学工学部建築学教室 教授 工博
2. 日本大学工学部建築学教室 教授 工博
市まで、海岸線との実行方向には海岸線から約 5km から 10km とした。沿岸域という概念に明確な領域設定はなされていない現状において、海岸線から実行方向 5km 以内には海面、埋立地、内陸部と異なる機能を有した臨海部が含まれており、さらに内陸との関係性も把握できるよう、包括的な範囲設定を行った。　(Fig.-2)のメッシュが区切った地域が本研究対象領域を示す。　(Fig.-2)上の 1 メッシュは 1 辺 2,500m で 100m メッシュに換算して 725 メッシュに相当する。ceansは研究対象領域には含まれていないので、総メッシュ数 5 万 5,792 メッシュである。これで Excel97 の 1 ワークシートの横方向の最大メッシュ数 256 という限界から神奈川県部分 2 万 8,083 メッシュ、東京都部分 1 万 6,744 メッシュ、千葉県部分 1 万 8,155 メッシュの 3 枚のメッシュデータマップに分割する。

2.4. 大都市沿岸域の現状分析項目の分類設定

本研究における大都市沿岸域の土地利用を表現する指標として、実態としての土地利用現況、設定空間としての用途地域、都市の密度として人口密度、環境評価指標としての緑地アクセス距離、都市機能評価指標としての鉄道駅アクセス距離の 5 指標を上げる。これら大都市沿岸域の土地利用を表現する上での 5 指標を、沿岸域空間、歴史的過程、設定空間の視点から評価するために、近水界距離、埋立年代、用途地域の 3 指標を利用する。

これらの指標は GIS のデータレイヤー上では全て自問の 7 指標として取り扱っている。

2.4-1. 土地利用現況

国土土地院の総数数値情報を使用するも可能であるが、最新版 1994 年度のもので、変化・更新が著しい沿岸域の分析には対応できない。沿岸域特有のデータも必要であり、既存データに頼るわけにはいかない。また、データの相関を行う上では各データ位置の一貫性が重要になる。以上より、全てのデータを前で作成することにした。本研究では、土地利用現況を、工業用地、商業用地、農業用地、オープンスペース、公共用地、その他の 7 用途に分類した。また、メッシュ選定には、優先特性法を用いた。

2-4-2. 用途地域

都市計画法に基づく用途地域指定 12 用途と市街化調整区域、その他の 14 用途に分類。

2.4-3. 埋立年代

本研究対象領域における埋立地の造成完成年代を、昭和・大正期以前、昭和元年〜昭和 20 年、昭和 21 年〜昭和 40 年、昭和 41 年〜昭和 50 年、昭和 51 年〜昭和 60 年、昭和 61 年以降、非埋立地の 7 カテゴリに分類。

2.4-4. 駅アクセス距離

JR、私鉄、地下鉄へのアクセス評価・レーティング指標として、客駅への距離距離を求め、メッシュごとに分類を行う。

○直線距離利用の妥当性

直線距離を用いた対象物へのアクセス評価を、各研究者によってその妥当性が報告されている。例えば、山本新世子、森下忠治(1998)は、公共用地への直線距離と経路距離を計算し、関連性を調べた。その結果、決定係数 R2 が 0.96 以上であり、直線距離と経路距離の関係が著しく高いことが明らかで、経路距離
離は直線距離の1.2倍程度、よって直線距離をアクセスビリティ評価に用いることは妥当であるとしている。

○駅アクセス距離メッシュデータマップ作成方法
地形メッシュデータマップに、各駅の位置をプロットする。次に、駅アクセス距離メッシュデータマップ作成のためのサーチプログラムを作成する。作成に当たっては、対象メッシュに対する0～2000mの範囲での駅サーチサークルを設定し、該当する距離に駅が存在すれば、対象メッシュとその駅の直線距離について21種類のカテゴリに変換を行うアルゴリズムを用いる。研究対象地域全てのメッシュに対するサーチプログラムを実行する。尚、文末にサーチプログラムのアルゴリズムを示した。(Fig.-19)

2.4-5. 離地アクセス距離
公共緑地・公園を優先属性化によりメッシュ化し、その外縁メッシュからの直線距離を離地アクセスマス距離とする。メッシュデータマップ作成には駅アクセス距離と同様にサーチプログラムを使用する。

2.4-6. 人口密度
各メッシュにおける推計人口を、人口密度（人/mesh）として分類。各メッシュにおける推計人口は、各自治体が発表する地区丁目レベルの人口を該当メッシュ（20メッシュ程度）で除した値とした。

2.4-7. 海水線距離
海岸線（河川を含まない）からの直線距離を離地アクセス距離、駅アクセス距離と同様に求める。ただし、設定を6,000mまで拡張し、分類カテゴリも61カテゴリとする。

3.各分析項目の総体的関係性
（Fig.-3）に示すように、表計算ソフト上の一セルの値に別々の属性を持たせることによりメッシュデータをオーバーレイさせ、地理的空間を視点として臨水界距離を基軸にしたオーバーレイ分析、歴史的過程を視点として埋立年代を基軸にしたオーバーレイ分析、設定空間を視点として用途地域を基軸にしたオーバーレイ分析を行う。臨水界距離的側面における分析は、大都市沿岸域における地域空間構造（海域との地理的関係性）を、埋立年代の側面における分析は、地域空間構造の埋立造成年代別の組成割合・密度を、用途地域の側面における分析は、大都市沿岸域における都市計画上の公的形成空間と実態的空間の関係・各用途地域の地域空間に与える影響を、それぞれ把握できると考える。

3-1. 臨水界距離的側面（沿岸域空間的観点）
臨海部と内陸部で最も顕著な差となって表れるのは、工業用地占有率と住宅用地占有率である。よって、ここでは土地利用現況の内住宅用地と工業用地占有率を臨水界距離別に分類した。

Fig.3 Method of Over-Ray Analysis

Fig.4 Distance from Wateline and Existing Land Use

Fig.5 Distance from Wateline and Regional Planning

Fig.6 Distance from Wateline and Population Density

Fig.7 Distance from Wateline and Railway Access

Fig.8 Distance from Wateline and Distance from Green
Fig.4 は、臨水界距離による工業用地占有率・住宅用地占有
率の挙動を表したものである。いずれの地区においても、臨水
界距離が増えるに連れて工業用地占有率が減少し、住宅用地占有
率が増加することがわかる。全メッシュ平均では、臨水界距離
700m で工業用地占有率と住宅用地占有率が入れ替わる。また、
臨水界距離 2,000m で工業用地占有率上昇点となり、臨水界
距離 2,100m で工業用地占有率下降点となっている。

（Fig.5）は、臨水界距離による工業系用途地域占有率・住宅
系用途地域占有率の挙動を表したものである。土地利用現況と同
様に、臨水界距離が増えるに連れて工業系占有率が減少し、住宅
系占有率が増加することがわかる。用途地域では、臨水界距離
1,000m で工業系占有率と住宅系占有率が入れ替わる。住宅系占有率
上昇点で、工業用占有率下降点は共に 1,800m となった。

ここで、臨水界距離に与える土地利用現況と用途地域のズレを考
えると、用途地域指定のうち、工業と住宅の占有率の入れ替わり
点が直線へ 300m、工業・住宅占有率下降点が平均で 250m 線側
圏内に存在する。これは、「指定」では瀬戸内の内陸地をより明確
に分離させようとしているが、「実態」は指定よりも混在の方向
へ力が働きていると考えられる。

（Fig.6）は、臨水界距離による人口密度の挙動を表したもの
である。臨水界距離の増加により人口密度は増加し、降伏点をす
ぎると緩やかに減少する。

（Fig.7）は、臨水界距離による駅アクセス距離の挙動を、
（Fig.8）は、臨水界距離による地元アクセス距離の挙動を表し
たものである。どちらも臨水界距離の増加により降伏点まで減少
し、降伏点をすぎると緩やかに増加する。駅アクセス距離減少降
伏点は 1,300m、地元アクセス距離減少降伏点は 1,000m である。

ただし、東京地区は、京浜地区・京都市区と異なり臨水界距離に
による地元アクセス距離の挙動は得られなかった。これは瀬戸内の
内陸地と地元の最短距離に差異がないが、東京地区全体に緑
地の絶対量が少ないともいえる。

3.2. 建立年代的側面（歴史的過程的側面）
（Fig.9）は建立年代別の土地利用現況の組成割合を示したもの
である。最も古い建立地では工業用地占有率が 62%であるが、
新しい建立地に近いものでいって工業用地占有率は減少する。最も新
しい 86 年以降の建立地では、5%と極端に少ない。一方、オプ
ションスペース占有率は新しい建立地になるほど薄かで、76 年
～85 年の建立地では 50%を占める。また住宅用地が 86 年以降
の建立地で 50%を占めている。

Fig.9 Landfill History and Existing Land Use
（Fig.-10）は埋立年代別の用途域地の組成割合を示したものである。土地利用現況と比較しやすいように13種類の用途域地と市街化調整区域を住居系、商業系、工業系、その他にインテグレーションした。工業系用途域地占有率は、土地利用現況の工業用地よりも高占有率であることがわかる。特に、高度経済成長期の埋立地で、現況と指定の割れが大きい。もちろん、工業系用途域地が全て工業用地に限定するような規制はかけられておらず、短絡的に判断はできない。特に業用地域は土地利用上の用途規制が緩や複合的な用途に利用できる。（Fig.-11）に、工業系用途域地の年代別内訳を示した。工業専用地域は46年〜65年の埋立地で2,857メッシュ83%、66年〜75年の埋立地で2,156メッシュ55%と、戦後から高度経済成長期までの埋立地で高占有率である一方、準工業地域は非埋立地で2851メッシュ64%、76年〜85年で1,666メッシュ47%、86年以降で629メッシュ73%で、非埋立地と高度経済成長期以後の埋立地で多いことが把握できた。

（Fig.-12）は埋立年代別の平均人口密度を示したものである。新しい埋立地になるほど人口密度が低く、定住人口が少ないことがわかる。25年以前の埋立地の平均人口密度は、110（人/メッシュ）であるが、86年以降では4（人/メッシュ）に留まっている。特に、25年以前の埋立地では、非埋立地の99（人/メッシュ）よりも大きい値となった。これらの埋立地ではすでに海洋性の土地利用から内陸性の土地利用となり、都市機能が成熟・集積しているといえよう。

（Fig.-13）は埋立年代別の平均駅アクセス距離を示したものである。新しい埋立地になるほど駅アクセス距離は大きい値であり、駅へのアクセスが悪くなっている。また、人口密度と同様に、25年以前の埋立地で580mと、787mの非埋立地よりも小さな値となっている。25年以前の埋立地で都市機能が集中しているのが示されている。

（Fig.-14）は埋立年代別の平均绿地アクセス距離を示したものである。駅アクセス距離と同様に、新しい埋立地になるほど大きな値となっている。しかし、高度経済成長期後の埋立地である76年から85年の埋立地で若干绿地アクセスが良い。

3-3. 用途域地の側面（設定空間的側面）

（Fig.-15）は各用途域地別の土地利用現況組成割合を示したものである。住居系用途域地の内、住宅用地の占有率が一番高いのは第二種低層住居専用地域で88%を占めている。逆に第二種低層住居地域では52%である。商業系では商業地域、近隣商業地域と共に商用地域の占める割合が少なく、屋に31%、12%となっている。工業系では、工業専用地域が工業用地占有率81と極めて低成長率一方、準工業地域では工業用地占有率31%である。以上のように、用途域地の特性によって、土地利用現況が1種類に限定している場合と、準工業用地、商業地域のように多種の土地利用現況に利用される場合があることが示されている。

（Fig.-16）、（Fig.-17）及び（Fig.-18）は各用途域地別の人口密度、駅アクセス距離及び绿地アクセス距離を示したものである。これらの三つのグラフより、人口密度、駅アクセス距離、緑地アクセス距離が、それぞれの用途域地に適した値になっていることが把握できる。用途域地の上記の実態は、人口密度、駅アクセス距離、緑地アクセス距離に限って考えるならば、各用途域地を比較

NII-Electronic Library Service
する上では規制が適切に機能しているといえる。

以上本章では、沿岸域空間的視点として臨水際距離的側面、歴史的過程の視点として埋立年代的側面、設定空間の視点として用途地域の側面からオーバーレイ分析を行った。これら3つの視点から、都市環境要素として、対策計画中における臨水際距離、緑地帯への近接性・緑地アクセス距離、都市密度・人口密度の3点と実態空間・土地利用空間、設定空間・用途地域の2点、計5点との関係性を把握することにより東京湾沿岸域の総合的特性・問題点を把握することができた。

4. 考察と課題

本報告では、広域的な沿岸域を対象とした地理情報システムを構築し、大都市沿岸域を多角的視点から現況分析と評価を行った。その結果、臨海部と内陸部とでは都市的環境特性に極端な相対性が見受けられ、臨海部は居住環境としての整備が遅れていることが判る。臨水際距離のオーバーレイにより、臨水際距離2,100m、1,800m、1,500m、1,000mを境界にして各指標に変化が表れ、構造的に分離していることが示されている。この1,000mから2,100mの帯状の中間的領域を境界として明らかに分離している。この中間的領域を示す時代の市新しく京成しても、内陸部と完全に分離した領域であるために日常的有効利用とその頻度・密度において、初年度の目的・効果が得られていない。

臨海部と内陸部がこのような分離してしまったのは、第一に大規模工業用地の存在がある。埋立年代とのオーバーレイ分析によって、土地利用の指定と現況では大きなズレがあり、特に工業系用途地域の指定は近年の埋立地においても指定されているが、土地利用現況値と工場立地が極端に少ない、このことから、臨海部における工業用地指定はオーバーフローの状態であると考えられる。臨海部における日常的都市空間形成が行われ始め段階において、臨海部は大規模な工業専用地域という既成概念を再検討すべきである。

用途地域とのオーバーレイ分析によって、近年埋め立てられた地域に多い準工業用途は工業用地だけに占有されることがなく、多用途な土地利用形成が併存していることを示した。均衡のとれた居住空間、地域環境とし自立的な環境形成がなされれば、準工業用地は地域へのニーズが変化しても、時代の変化に対する要請に柔軟にソフトウェアに反映することができる可能性を有しているといえよう。今後の研究課題としては、大都市沿岸域における土地利用における臨海部と内陸部の差異、単一化と複合化の現状、用途地域によるコントロールの可能性と合わせ、土地利用の協帯り具合、土地利用混合度、土地利用の近接性と非近接性について詳細な分析する必要があると考えている。また本報告により、沿岸域の土地利用上の評価においても計算ソフトとアプリケーション用プログラムを応用し、地理情報システムとして使用しても十分実用に耐えることを示した。

【参考文献】
(1)横内範久、横内研究室 (1988)：ウォーターフロント開発の手法、鹿島出版会、204p。
(2)山本佐世子、森下栄治 (1998)：地理情報システムを利用した広域避難場所としての公共緑地の充足度評価一東京都を事例として一、第12回環境情報科学論文集、pp.125-130
(3)横内範久、他 (1998)：臨界地域における土地利用規制の変容一臨界地域におけるウォーターフロント開発の計画制度に関する研究（その1）一、日本建築学会学術講演会論集A-2、pp.269-270
(4) 安田直子、他 (1998)：現行法制度の限界性と今後の方向性一臨界地域におけるウォーターフロント開発の計画制度に関する研究（その2）一、日本建築学会学術講演会論集A-2、pp.271-272
(5) 宮崎隆昌、中沢公治 (1997a)：大都市沿岸域における土地利用に関する研究、日本建築学会学術講演会論集A-2、pp.287-288
(6) T. Miyazaki, K. Nakazawa (1997b) Land Use at the Coastal Zone in Metropolitan Area. Proceedings of Pacific Congress on Marine Science and Technology 97、359-367

Fig. 19. Search Macro Algorithm

[1999年4月13日原稿受理 1999年7月27日採用決定]