履歴型鋼材ダンパーを用いた200mクラスの超高層建物の性能設計

多賀綱藏 —— *1 小林正則 —— *2
近藤 実 —— *1 吉田豊彦 —— *2
伊藤 敦 —— *1 山際信司 —— *2
奥野哲也 —— *3

キーワード：
性能設計、超高層建物、履歴型鋼材ダンパー、せん断パネル、居間拘束ブレース、損傷制御

Keywords:
Performance based structural design, High-rise building, Hysteresis steel damper, Shear yielding panel, Buckling restrained brace, Damage control

1. はじめに
兵庫県南部地震による建物被害を契機に、構造体のみならず建物全体にわたって保有性能を明示する性能設計への転換が必要であるとの認識が社会的に高まり、建築基準法を性能規定型へと改正された。筆者らは、高さ約200mの超高層建物を計画するにあたり、保有すべき性能を可能な限り具体的に設定し、構造設計の目標値として、その過程で既往の情報が不足している事項については必要に応じて設計段階で実験的検証を行っている。

本報では、設定した構造性能目標とそれを実現するための構造設計方針とを概説した後、主として耐震設計上適用した履歴型鋼材ダンパー（以下鋼材ダンパーと称す）を用いた損傷制御設計と、それに連関して実施した実験的検証の概要を示す。

2. 計画上の基本コンセプトと構造性能目標
本建物は、地下5階、地上41階、塔屋1階、高さ195.45mの規模を有するオフィスビルである。基準階は、東西約60m、南北約38mの長方形の平面形状となっており、南側中央にコアを配置して、北側及び東西面にコの字型の構造を提供している。
計画上の基本的なコンセプトのうち構造設計に関わるものとして以下を掲げている。
「高機能で信頼性の高い機能空間を提供すること」
「非常災害時にも機能を失わないこと」
これらを、具現化するために、長期荷重に対する安全性に加えて、以下に示すような構造性能目標を設定した。

2.1 日常的な居住性能の確保
居住性能の観点から、日常的に生じる振動現象に対して、日本建築学会「建築物の振動に関する居住性能評価指針」に基づき以下の目標性能を設定した。

PERFORMANCE BASED STRUCTURAL DESIGN OF 200M HIGH-RISE BUILDING USING HYSTERESIS STEEL DAMPERS

Kenzo TAGA —— *1 Masanori KOBAYASHI —— *2
Minoru KONDO —— *1 Haruhiko YOSHIDA —— *2
Atsushi ITO —— *1 Masashi YAMAGIWA —— *2
Tetsuya OKUNO —— *3

In designing a high-rise building of about 200m-high, the authors set the objective performance as concrete as possible. The authors implemented verification tests at the design phase to obtain necessary data in performance based structural design. This study first outlines the established structural objective performances, and the design principles to realize the performances. Then, it further outlines the damage control design using hysteresis steel damper adopted for seismic element, and the experimental study implemented.
3. 基礎設計概要

本建築の基礎設計には、主に水平力抵抗要素として、2.7m及び8.1mの間隔に柱を配置したコア部及び外周架構で、この架構形式が外観デザインを形成している。特に高強度の鋼管材を用いた耐震設計は、高耐力と高磁気力及び軸曲げ及び高軸力を受けます。耐震性能を保証するためには、高性能鋼管を用いた設計が重要である。

更に、地震時のエネルギー吸収を目的として、長期荷重を支持しない短距隔として、降伏点鋼（σy=235N/mm²）を用いた鋼管ダブレを地震ダンパーとして配置し、長期荷重支持部材の損傷を防ぐ設計としました。

前述の構造性能の目的実現のため、特に制振・制動の観点から、使用した手法を以下に示す。

<table>
<thead>
<tr>
<th>項目</th>
<th>採用手法</th>
</tr>
</thead>
<tbody>
<tr>
<td>鉄直断面振動対策</td>
<td>チャンプ・ムラ (TMD)</td>
</tr>
<tr>
<td>地震用対策</td>
<td>チャンプ・ムラ (AMD)</td>
</tr>
<tr>
<td>大地震時のエネルギー吸収</td>
<td>鋼管ダンパー</td>
</tr>
</tbody>
</table>

4. 耐震・耐風設計方針

我が国における外力条件としては、一般に高さ200m付近を境に風荷重が地震荷重に上回る。本建築物は高さが約195mであり、地震荷重・風荷重の双方が構造設計上支配的な外力となっている。

4.1 耐震設計方針

2.2に示したレベル2地震時の目標性能は、大規模な地震時にも主要構造体の損傷を無視または軽微にとどめることが数値目標に置き換えたものである。これを実現するために、地震エネルギーを能動的に吸収する手法（鋼管ダンパー）を各層に組み込み、経済性の向上を図りつつ主架構の損傷をおさえることを目的として制震構造を採用した。

保有耐震性能は以下の地震動波形を用いて動的応答解析により確認した。

<table>
<thead>
<tr>
<th>地震波</th>
<th>標準波</th>
<th>地域波</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL CENTRO</td>
<td>1940 NS</td>
<td>OSAKA L1</td>
</tr>
<tr>
<td>TAFT</td>
<td>1952 EW</td>
<td>OSAKA L2</td>
</tr>
<tr>
<td>HACHINOHE</td>
<td>1968 NS</td>
<td></td>
</tr>
</tbody>
</table>

※1）「大阪市土木・建築構造物耐震対策技術検討会」（会長：加藤義郎氏、京都大学名誉教授、建築構造物小委員会主査：森田田口司郎氏）において、南海断層（仮称寺山断層、上町断層、長居断層）の活動を想定し作成された動的解析用人工地震波形。

※2）「検討地震動波形 寺本他「観測地震動の位相特性を用いた設計用人工地震動について（19512）」日本建築学会大会学術演講概要、(中国) 1990.10.

位相特性として、宮城県沖地震の際に東北大学1階で観測されたSENDAI TH030 NS成分を採用した波形。

4.2 耐風設計方針

レベル1・レベル2の風荷重に対する目標構造体の応答に加えて、再現記年1年、5年及び10年の風に対しても居住性能の目標値を設定している。

耐風安全性及び居住性については、日本建築学会「建築物風荷重指針」による計上検討及び、以下の風洞実験を行い、その実験データ及びその結果を用いた動的応答解析により、性能を確認した。

<table>
<thead>
<tr>
<th>実験項目</th>
<th>実験目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>風圧実験</td>
<td>建築物各層に作用する風圧の測定を行い、壁面の同期性の風圧を把握。</td>
</tr>
<tr>
<td>空気圧実験</td>
<td>建築物全体に作用する空気圧を測定し、風による振動の予測・居住性能を評価。</td>
</tr>
<tr>
<td>空力振動実験</td>
<td>建築物の空力振動特性の把握と空力安定性を検討。</td>
</tr>
</tbody>
</table>

居住性能を確保するために、3.2に示したように建築物顶部に制振装置（AMD）を設置することとしている。他の手法としては、各種に圧制振器等を配置し、耐風性能の向上を図る手法を有効であるが、本建築においては建築計画との整合性、経済性の観点から、比較検討の結果、外乱の大小によって独立した制御方法を採用することとした。
5. 鋼材ダンパーの適用による大地震時の損傷制御設計

前述のように、大地震時の損傷制御の目的で、鋼材ダンパーを各層に設けることとしたが、この手法を高層建物に適用する場合、架構の変形性として、特に上層部においては変形成分の比率が大きくなり、鋼材ダンパーをコア部分に集中的に配置することは必ずしも効果的とはいえないと考えられた。鋼材ダンパーの設置目的を架構全体の弾性力特性的最適化ととらえると、適切な降伏せん断力（第1折れ点）と第2折れ点剛性を与える目的で鋼材ダンパーをすることを考えられる。今回設計を行うに当たり、外周架構及びコア層の梁の一と、せん断力が卓越する短スパン梁のせん断耐力を、鋼材ダンパーとして、地震時のエネルギーを吸収することとした。鋼材ダンパーの適用によりレベル2地震時の主構架の損傷を最大変位率で1.5以下、部材の積算変位変位率で10程度以下として、大地震を数回経験しても主構架の補修は必要ないということにある。

200mクラスの建物の場合、地震荷重と風荷重が同一レベル程度になるため、レベル2風荷重時に、鋼材ダンパーを弾性に保つことは、地震時の損傷制御の面からは不合理となる。したがって、本建物ではレベル2風荷重時に、鋼材ダンパーが有効することを想定し、その損傷度合いについて、時刻歴応答解析により確認することとした。

一方、鋼材ダンパーは、損傷を意図的に集中させる部材としているので、性能保持限界に達した場合に備えて取り替えを可能にしておくことが望ましい。本建物では、万が一の取り替え時の作業性にも配慮し、設置位置に応じて、せん断耐性パネルタイプと座屈拘束プレースタイプの2種類のダンパーを採用した。なお、本建物においては取り替えの要否を判断するために、ダンパーの履歴ひずみを記録するモニタリングシステムを設置する予定である。

5.1 鋼材ダンパーの概要

（1）せん断耐性パネルの概要

3.に示したように、常時荷重を支えるない梁のうち、外周架構の短スパン梁の中央部に図2に示すようなせん断耐性パネルを組み込んだ。既往の低降伏点鋼せん断パネルに関する研究21により、せん断耐性変形性が1/20程度までのあると定めた履歴ループを得ようとする場合、一般化幅厚比（0/15w+0/15f/10y/E）で1.5程度の低降伏点鋼が適しており、1000程度の積算変位変位率が期待できるとしている。本建物における、ダンパーとしての梁の適切なせん断耐力は20〜601程度であり、せん断耐力により制御する場合には、その部材重量は、組合プレートも含めて最大で100kg程度であるが、外周の梁を梁部構造に設けているため台車等による取り替え作業が可能である。

（2）座屈拘束プレースの概要

梁組込みダンパーのうち、BYジャンプや天井内の梁部分においては、万が一の取り替え作業性に配慮して、簡易な座屈拘束プレースを斜材として梁に組み込むこととした（図5）。このような材長が短い斜材に対しては比較的軽く、補助材で所要の剛性及び耐力が得られるように着目し、形状または組板をボルト接合により組み立てることができる可能な補助材による座屈拘束プレースを考察した。単体としての座屈拘束プレースは、図3に示すように、芯材周囲を4ビースの座屈拘束用鋼材で囲う構成となる。座屈拘束材料はボルト接合で一体化しており、芯材を塑性変形させる鋼材ダンパーとして用いた場合、座屈拘束材を取り外すことにより、大地震後の損傷程度を目視確認できる。また、1-1の取り替え時には分解することにより人工廃棄が十分可能となる。更に、芯材自体も鋼板の切削加工品で、全体を無溶接で製作できるため、鋼材自体の性能に依存する安定した品質の材料が低コストで製作可能となる利点も併せ持つ。

座屈拘束材は補助条件として1式を満足するように設計する34。

\[
(1 - \frac{1}{n_E})m_B^p > \frac{a + s}{l}
\]

ここで、\(n_E = \frac{N_y^B}{N_y}\)、\(m_B^p = \frac{M_B^p}{N_yl}\)、

\(a\)は拘束材中央の初期歪み、\(s\)は芯材と拘束材の間の隙間、\(l\)は芯材の座屈長、\(N_y\)は芯材の降伏軸応力、\(M_B^p\)は拘束材のオイラー荷重であり、\(n_E \leq m_B^p\)はそれぞれ拘束材の曲げ剛性\(E_yI_2\)及び曲げ強度\(M_y\)に関する無次元パラメータである。

拘束材の各部材はプレースの外方向および内方向に対して組合せにより曲げ剛性と個体の曲げ耐力から1式を満足するよう決定する、初期歪みを1/500とし、閾値はプレース材の軸降伏後の断面積の増加分を考慮した。また端部および中央部については、\(N_y\)の5%以下3%の拘束力に対して拘束材が降伏しないようにした。

図4に示すように、梁に組み込む場面は、2本の単材をX型に交差させるために、接合方法によっては偏心圧縮状態となり、座屈拘束材設計にはその影響を考慮する必要があるが、ここでは梁ウェブ芯との面外偏心は、被接合材（梁部材）側で処理し、座屈拘束プレースに対しては偏心載荷とならないようにした。
5.2 実大繰り返し実験による性能確認

鋼材ダンパーを用いて損傷抑制設計を合理的に行うためには、ダンパーとしてのエネルギー吸収能力の観点から、性能保持限界を定量的に把握することが不可欠である。本実験における使用条件下において実大実験により、性能確認を行った。実験の詳細については参考文献5)に示しており、ここではその概要を報告する。

（1）実験目的及び試験体

せん断パネルを被験材に組み込んだ場合には、軸変形が拘束されることによって、せん断パネルに作用する引張力の影響を把握しておく必要がある。また、今回の設計の特徴として、図4に示すように梁をハンチ形状としていること、施工性に配慮してエンドプレート形式と異なる接合方法を採用していること、が挙げられる。これらの影響を定量的に把握することを目的として当該部材の実大静的繰り返し載荷実験を行った。

試験体の種類は、既往実験と同形状の試験体と、実設計に即して、せん断パネルの大きさ及び板厚を変化させた2種類の計5種類とした。パネルの幅厚比については40〜50程度（一般化幅厚比1.35〜1.69）とすることを想定している。

一方、座屈拘束プレースタイプについては、設計方法の妥当性を確認するための座屈拘束条件確認試験として単体試験を行った後、X型として梁に組み込んだ実験を行った。

梁に組み込んだ場合にはせん断降伏パネルタイプと同様、軸変形拘束の影響を受けるとともに、接合端部において強制曲げの影響をうける。それらが性能に及ぼす影響を定量的に調査することが梁組み込み試験の目的である。

図5に梁組込みタイプの試験体を示す。単体試験体について前述の理論式により算出した座屈拘束条件を拘束材の曲げ強度一曲げ剛性関係にプロットしたものの一例を図6に示す。芯材は全て同形状であるが、製作精度の高い機械加工によるものとプラズマ切断加工による2種類とした。これは、コスト差の大きい加工精度の差異が塑性変形能力に及ぼす影響を確認することが目的である。なお芯材は材軸方向に帯状方向になるようしている。

実験項目及び試験体の名称を表1、表2に、使用した鋼材の機械的性質を表3に示す。
（2）加力装置及び加力パターン

梁組み込み実験の加力装置の概要を図7に示す。試験体は、内法2mの短スパン梁の中央部に鋼材ダンパーを組み込んだ実大試験体とした。柱は含まれ加カーボンとしせん断パネルに加力を行った。梁軸方向の変形を拘束し、左右均等の応力状態とするために、上部に軸力性の高い鋼部材をピッチ合わさって取り付けて載荷フレームを構成している。

漸増繰り返し載荷は2パターンとし、それぞれせん断パネルのせん断変形角で制御することとした。パターン1は、θ=5°×10^2まで漸増させるパターンであり、パターン2は、最大せん断変形角と累積塑性変形倍率に注目して、両者がほぼレベル2地震時の応答解析による予測値と一致するような漸増型の加力パターンを2回繰り返した後、最大振幅にて定振幅で繰り返すこととした。加力パターンを図8、9に示す。(θ=5.13θ R:フレームの変形角)

パターン2において、最大振幅で繰り返す時間までのレベル2地震時1回相当分の累積塑性変形倍率は300程度である。ここで、累積塑性変形倍率は、正の塑性変形量を降伏時せん断変形量で除したものと定義している。

（3）実験結果

実験結果の一例を図10、11に示す。実験により得られた知見を以下に列挙する。

1）せん断降伏型パネルタイプ

①設計で想定される最大振幅θ=0.06 rad程度以下の変形では、材軸方向の変形が拘束されている影響は既往およびエネルギー吸収能力に関して無視できる程度であるといえる。また、既往の実験と比較して今回の実験において、梁がハンチ形状となっていることによ るエネルギー吸収能力への影響はほとんどないと考えられる。

②全ての試験体で、累積塑性変形倍率θが1000を超えるまで亀裂は発 生せず、亀裂の貫通後も安定した履歴特性を示し、レベル2地震2回分相当のエネルギー入力に対して十分余裕があることが確認できた。パネル部分の、座屈後の凹凸の反転の際におけるエネルギーの低下は履歴を重ねることに顕著になるが、耐力低下の量はその履歴での最大せん断力の1/3程度である。

③耐力低下およびエネルギー吸収能力の点から、性能保持限界は、せん断パネルの亀裂発生時点と判断できる。

2）座屈拘束プレースタイプ

①既往の全体座屈拘束条件式による設計の妥当性が確認できた。

②材料と座屈拘束材の接面にクリープ等を発生して摩擦係数を低減させることにより圧縮降伏時の摩擦による耐力上昇を抑えることができる。

③単体実験、梁組込型実験とも安定した荷重-変位関係を示し、芯材破断に至るまでの累積塑性変形倍率は800程度の変形能力を有する。芯材破断まで最大耐力の低下はほとんどなく、性能保持限界は芯材の破断とはみない。

④梁組込型の場合、剛接合となっていることに伴いプレース端部に付加曲げが生じるが、最大耐力および変形能力に及ぼす影響は小さい。

⑤芯材の加工方法については、機械加工によるものとプラズマ切断加工の有無の差は認められなかった。
5.3 強風時における鋼材ダンバーの弾塑性挙動の把握

4.2で示したように、耐風性能の確認は風洞実験並びにその結果を用いた動的応答解析により行っているが、ここではレベル2風荷重時に一部降伏する鋼材ダンバーの損傷評価の概要を示す。

（1）風洞実験結果

風洞実験は、（財）日本建築総合試験所のエッフェル型吹出式端壁風洞を用い行った。実験空気の設定は、積度区分IVと仮定し、
模型は、縮尺1/500で周辺計画建物を含む半径400mの範囲を再現した。実験に基づき設計した設計用風荷重は、荷重指針値に比べ最大で約40%大きな値となっている。また、レベル2地震時に効果的にエネルギー吸収するように設計した鋼材ダンバーの降伏耐性はレベル2風荷重を一部下回っている。（図12）

なお、今回の実験風速域（実風速で最大80m/s）においては、空力不安定振動の発生は見られず、渦形成風速は、96m/sとなり、レベル2頂部風速（53.9m/s）に対し、十分安全である。

（2）時刻歴弾塑性応答解析

レベル2風荷重時には鋼材ダンバーが一部降伏するため、強風時の弾塑性応答を把握する目的で、多点同時風圧測定データから作成した時刻歴風圧力を入力波として時刻歴弾塑性応答解析を行った。解析モデルおよび仮定を以下に示す。

・解析モデル：1層1質点の42質点等価せん断型モデル
・復元力特性：鋼材ダンバーの降伏耐力、主架構の弾塑性限耐力をそれぞれ第1摂れ点、第2摂れ点とする

Normal Quadri-Linear型

・構造減衰：剛性比例型内部粘性減衰（1次:2%）
・入力波：最大同時風圧測定データから作成した時刻歴風圧力（再現期間500年）を各層に入力
・継続時間：2時間と仮定（2000年）

10分間の解析結果を図12に示す。

表4に、鋼材ダンバーの最大応答値を示す。最大応答せん断変形角は、風荷重が最大となる風向角15°で生じ、積累塑性変形倍率は、変動風荷重がもっとも大きい風向角15°で生じるが、最大せん断変形角で1/2、積累塑性変形倍率で1/4程度であり、実験により確認した性能保持限界（最大せん断変形角1/20、積累塑性変形倍率η=800程度）と比べて十分小さい。

表4 レベル2風荷重時の応答値

<table>
<thead>
<tr>
<th>風向角</th>
<th>下層せん断力</th>
<th>鋼材ダンバーの最大せん断変形角</th>
<th>鋼材ダンバーの積累塑性変形倍率</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>47,824kN</td>
<td>1/16</td>
<td>70</td>
</tr>
<tr>
<td>15°</td>
<td>53,312kN</td>
<td>1/72</td>
<td>2</td>
</tr>
</tbody>
</table>

6. まとめ

地震荷重は風荷重の双方が支配的となる超高層オフィスビルを設計するに当たり、居住性能、耐震性能、耐風性能の観点からそれぞれに性能目標を設定し、具体化した。

特に、大地震時の損傷制御のため採用した鋼材ダンバーについては、万が一の環境に負荷を受ける設計をるとともに、性能保持限界を実大実験により把握し、レベル2風荷重時に塑性履歴を受けても安全であることを定量的に確認した。本報における取り組みが今後の性能増幅型設計の普及の一助となれば幸いである。

7. 謝辞

本研究の実施に際し、ご支援を頂いた関電産業(株)の関係者各位並びに、ご指導いただいた京都大学井上一郎教授、近畿大学立山美二教授、大阪市立大学池谷義人教授、さらに実験にご協力頂いた近畿大学理工学部建築学科立山研究室、(財)日本建築総合試験所耐風試験室の皆様に深謝いたします。

＜参考文献＞

1) 旧田幸雄：「超高層建築物の耐震設計の現状と期待される」JSSC No.32 1999
2) 高橋信、西谷耕一、「風压荷重による風圧設計」: 日本建築学会論文報告集第469号, 1997.4
3) 例えば、日本鋼構造協会「鋼構造物設計」: 1999年
4) 多摩、近藤、星野、井上：「地震時強度検討」日本建築学会学術講演会概要, 1999.9
5) 近藤他：「鋼構造物の強度検討」: 1999年
6) 平野清之, 高橋, 渉木昌, 高橋信: 「風圧による風圧設計」: 1999年
7) 日本建築学会「建築物耐震設計」: 1999
8) 丸山正義, 三好正義: 「風圧による風圧設計」: 1999年
9) 木村正: 「風圧による風圧設計」: 1999年

[2000年4月20日原稿受理 2000年7月26日採用決定]