実測による躯体蓄熱空調システム性能指標の統計的算出法

STATISTICAL METHOD FOR CALCULATING PERFORMANCE INDICES OF BUILDING THERMAL MASS STORAGE SYSTEM BY FIELD MEASUREMENT

藤田尚志———*1
渡邉隆雄———*3
平山昌宏———*2
三宅正人———*4

Hisashi FUJITA ————*1
Chouyu WATANABE ————*3
Masahiro HIRAYAMA ————*2
Masato MIYAKE ————*4

キーワード：
躯体蓄熱，実測，蓄熱効率，回帰分析

Keywords:
Building thermal mass storage, Field measurement, Effectiveness of thermal storage, Regression analysis

1. はじめに
近年，床スラブ等の建物躯体に蓄熱する空調システム（躯体蓄熱空調システム）が注目を集めており，その性能を明らかにするため実験や実測が行われている（1,2）。実験では実機の使用状況を観察できる利点はあるものの，性能を定量的に評価しようとするため条件の再現性の高いという問題がある。躯体蓄熱空調システムの性能評価では，蓄熱運転の有無による比較が不可欠で，外気温等の条件ができるだけ近い日の測定結果を比較する方法が採られてきたが，性能に影響する条件は多く，比較の精度は不明であった。

これらの問題に鑑み，実測データから躯体蓄熱空調システムの性能指標（躯体蓄熱効率等）を統計的に算出する手法を考察した。これは熱負荷等に関する仮定を設け，各データを実測データから回帰分析によって求めるものである。石野ら2）は等価蒸発係数法とし，熱負荷計算式の係数を実測値から逆算して求める手法を提案した。今回仮定した式は，これに躯体蓄熱量を表す項目を組み入れたもので，実測を施している。

この統計的算出法を，実際に稼働している躯体蓄熱空調システムに適用した結果を報告する。

2. 用語の定義
「蓄熱投入熱量比率η}_1）は，躯体蓄熱運転によって躯体に蓄えられた熱量を，そのために費やされた空調機空調負荷（積算値）で除した比率であり，次式で定義される。（各記号の説明は表1参照）

\[\eta_1 = \frac{Q_n}{Q_0} \]

（1）

躯体蓄熱効果の指標となる「躯体蓄熱効率η}_1）は，非蓄熱日と躯体蓄熱日を比べ，昼間の空調機空調負荷（積算値）の減少分を，躯体蓄熱用の空調機空調負荷（積算値）で除した比率であり，次式で定義される。

\[\eta_1 = \frac{(Q_n' - Q_n)}{Q_n} \]

（2）

「夜間移行量は，非蓄熱日と躯体蓄熱日を比べ，昼間の空調機空調負荷（積算値）の減少分を，空調面積で除した値，すなわち（Q_n' - Q_n）/A）である。

3. 統計的算出法の提案
3.1 躯体蓄熱効率を算出する時の問題点と対応
実測結果から躯体蓄熱効率を算出する時，次の問題が生じる。

1）実験では条件の再現が難しく，躯体蓄熱日と非蓄熱日で，外気温及びこと作り場面の条件を同一にできない。

2）空調内の温度分布があるため，スラブの限られた位置で温度を測定しても，一般的にはそれが対応するスラブ全体の平均温度にはならない。

3）躯体蓄熱に有効な躯体範囲を特定するのが難しい。また，躯体以外の仕掛等も蓄熱に影響があるが，その効果の定量化が困難である。

4）1日周期でスラブの温度が元に戻らない場合が多く，その差異が空調機負荷に影響する。

上記の問題点の影響をなるべく少なくするため，次的方法を採る（以下の番号は，上記問題点の番号に対応）。

1）躯体蓄熱日と非蓄熱日を同一条件で比較するために，複数日の測定データから統計的に傾向を推定する。詳細は後述。
2) 脅体全体の蓄熱量が、スラブ内平均温度測定値に比例すると仮定し、比例定数を未知とする。
3) 上記の方法でカーブができる。
4) 実測を同一設定条件で最低1週間連続で行い1日周期の定常状態に近づけると共に、設定条件を変更した初日の測定データを上記1)の統計処理から除くする。さらに1日ごとに算出された結果を平均することで、周期定常に近い値が得られると考えられる。

1.2 統計的算出法
1)1日を空調時間帯（8時〜18時）と非調時間帯（前日18時〜当日の8時）に分け、それぞれの時間帯で熱収支式をつくる。脅体蓄熱時間帯の代わりに非調時間帯を採用したことで、解析上、次の利点がある。
1)1)脅体蓄熱運転時間の長さに依存しない。
2)空調時間帯と連続する。
対象室内における熱収支に影響する主な変数を導入し、それらが、次式で示した直線比例的な変動を持つことを仮定する。

\[
Q_{n} = C_{n} (T_{c} - T_{o}) + C_{t} \Delta T_{e} + T_{d} + C_{h} \Delta T_{e} + Q_{n} \quad (3) \\
Q_{b} = C_{f} (T_{c} - T_{o}) + C_{t} \Delta T_{e} + T_{d} + C_{h} \Delta T_{e} + Q_{n} \quad (4) \\
T_{r} = C_{f} Q_{c} + C_{t} \Delta T_{e} + T_{d} + T_{r} \quad (5)
\]

式(3)は空調時間帯（暖房の）の熱収支、式(4)は非空調時間帯（産業n）の熱収支を表す。式(3)、式(4)共、右辺第1項は脅体の温度変化による熱授受を表し、脅体蓄熱そのものである。ここでは右辺第1項のスラブ内平均温度、脅体に有効な物質の代表温度を見なしている。脅体に有効な物質には、構造物内のもの、仕様類も含み、「脅体全体」と呼ぶ。従って式(3)の\(C_{n} \)、式(4)の\(C_{f} \)は、それを含んだ上での係数である。スラブ内平均温度の典型的な時間変化を図に示す。周期定常状態を想定しているので、前日18時と当日18時で温度が等しい。

式(3)、式(4)の右辺第2項は、室内の外気温度差に係る熱量を表す。式(3)の右辺第3項は、日照に係る熱量であり、式(4)では、非空調時間帯に日照の影響は無視できるとして対応する項はない。

式(5)の右辺第2項の係数\(\alpha \)は、室の断熱性能に比例、熱容量に反比例すると予想される。式(5)の定数項\(C_{f} \)は、ほとんどの空調時間帯の設定温度に比例することを推測する。式(5)の左辺\(T_{r} \)が非調整時間帯の平均値であるので、係数\(C_{f} \)、\(C_{t} \)は、平均的な操作を含んだ値である。

式(4)の右辺第1項が脅体全体の蓄熱量を表すので、脅体蓄熱時間帯に限れば、蓄熱量は\(C_{f} (T_{c} - T_{o}) \)である。従って蓄熱入熱量\(\eta \)は次式で表される。

\[
\eta = C_{f} (T_{c} - T_{o}) / Q_{n}
\]

式(3)〜式(5)において、気象条件等の蓄熱運転以外の条件が一定と仮定した上で、脅体蓄熱運転を行わなかった場合\(Q_{n} = 0 \)を仮定し、式(3)を付けて以下に表す。

\[
Q_{n} = C_{f} (T_{c} - T_{o}) + C_{t} \Delta T_{e} + T_{d} + C_{h} \Delta T_{e} + Q_{n} \quad (6)
\]

式(5)から式(6)を導くと、

\[
Q_{r} - T_{r} = C_{f} (T_{c} - T_{o}) + C_{t} \Delta T_{e} + T_{d} + C_{h} \Delta T_{e} - T_{r}
\]

また、

\[
\Delta T_{e} - \Delta T_{e} = (T_{c} - T_{o}) - (T_{c} - T_{o})
\]

図1 スラブ内平均温度の時間変化の概念図

<table>
<thead>
<tr>
<th>号の説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tc</td>
</tr>
<tr>
<td>T0</td>
</tr>
<tr>
<td>T1</td>
</tr>
<tr>
<td>T2</td>
</tr>
<tr>
<td>T3</td>
</tr>
<tr>
<td>T4</td>
</tr>
<tr>
<td>ΔTc</td>
</tr>
<tr>
<td>ΔTc</td>
</tr>
<tr>
<td>ηf</td>
</tr>
<tr>
<td>ηg</td>
</tr>
</tbody>
</table>
この式を式(10)へ代入し整理すると，
\[
\Delta T_{e} = \Delta T_{e} + C_{d1}Q_{e}/(C_{d1}+t_{d1}) \quad \cdots (12)
\]
1日のスラブ内平均温度変化が周囲常温状態に近いと仮定すると，空調時間帯の温度変化（\(T_{e} - T_{e}'\)）は，非空調時間帯の温度変化（\(T_{e} - T_{e}'\)）に近似でき，さらに式(8)を書き換えることで次式が得られる。
\[
T_{e}' - T_{e} \approx T_{e}' - T_{e}

= (C_{d1} - \Delta T_{e} + C_{d1}Q_{e})/C_{d1} \quad \cdots (13)
\]
式中，\(\Delta T_{e}'\)は式(12)から求められる，ところで式(1)から式(3)を差し引くと，
\[
Q_{e} = Q_{e} = (T_{e} - T_{e}' - (T_{e}' - T_{e})) \quad \cdots (14)
\]
この式の左辺は集体蓄熱効率の分子であるが，本実測では空調時間帯に集体から上階にも吹きさらし，その熱量が空調機負荷削減に寄与しない。そこで一般的な集体蓄熱効率の定義と合わせるために，その熱量も取り入れ，次のように操作を施す。式(14)の右辺は，集体蓄熱日と非蓄熱日空調時間帯空調機負荷の差が，集体蓄熱日空調時間帯空調機負荷の温度変化による負荷削減（\(C_{d1}(T_{e} - T_{e})\)）と，非蓄熱日空調機負荷の空調時間帯空調機負荷の温度変化による負荷削減（\(C_{d1}(T_{e} - T_{e})\)）の和であることを示す。近似的に，集体蓄熱日空調機負荷がすべて空調時間帯の空調機負荷削減に寄与すると仮定すると，集体蓄熱日空調機負荷温度変化による負荷削減（\(- C_{d1}(T_{e} - T_{e})\)）と，従って，集体蓄熱効率 \(n_{e}\) は次式で表される。
\[
\eta_{e} = (C_{d1}(T_{e} - T_{e}) - C_{d1}(T_{e} - T_{e})) / Q_{e} \quad \cdots (15)
\]

4. 集体蓄熱空調システムの実測
4.1 実測対象建物・空調設備
実測対象建物は名古屋市内の10階建て事務所ビルの9階会議室（71.1m²）である。空調システムは3 stupeが天井裏に設置されており，この会議室だけを空調する，空調システム図を図2に示す。
集体蓄熱運転時（8時に終了）には，天井裏空気のスラブ1000mm下方で直結に開啟１断面のダクトの250mm（蓄熱空調用吹出口）2箇所を遠方オープンに吹付ける（空気吹付け方式）。集体蓄熱運転時に給気温度一定になるよう空調機は制御される。また集体蓄熱運転時には全熱交換器を停止し，外気に取り入れない。
空調運転時（原則8〜18時）には，空調機給気側のモーターダンバを切替えることで空調を室内へ吹出す。還元気温が天井裏空気を吸込み口を通る空調機に戻るまでに，スラブから吸い込む熱を回収する。室内サーモンによる室温が設定温度になるよう空調機は制御される。
4.2 測定方法
温度測定点の位置を図3に示す。スラブ内・表面・下の温度測定点は，平面上で①〜⑨の13位置あり，「測定位置」と称する。測定位置①〜⑧は鉄骨構造を囲む各スラブを代表する。測定点⑨〜⑬は蓄熱分布を調べるために蓄熱用吹出口の近くに配置した。各測定位置で鉄直方向に0〜5の6の測定点を設けている。熱流計を，測定位置①〜⑨の近くのスラブ100mm表面・下表面（計18点）に設置した。ダクトに接続した熱量計は複合ビトー管である。ダクト隔間端部において熱線風速計から求めた風量を基準とし，風量計からのデータを比例補正した。また全天日射量を屋上で測定した。すべての測定データは，データロガーにより1分間隔で自動収録された。実測期間は1999年8月1日〜9月26日である。
4.3 実測の設定条件
実測期間中、約1週間ごとに気象条件の観測時によって取った、0、3、5時間と変えることと、仮定分析に用いるデータを追加した。

9階会議室では空調・照明用、休日でも平日と同じ発生スケジュールとした。実際は8月1日～15日中、昼間でも上階の空調運転が停止のまま上階の温度が高い、このため、それに対する上階の空調運転を休日でも平日と同等スケジュールで発生する
よう設定した。
吹出し風量は、気象条件運転時に約1400m³/h、空調運転時に約2000m³/hであった。また気象条件運転時の吹出し気流強度は約13℃以上を一定とした。

4.4 スラップ熱量変化の定義
「スラップ内平均温度」と「スラップ熱量変化」を測定位置①～⑩ごとに次式で定義する（図3の断面図参照）。

・スラップ内平均温度[℃] = (A点の温度 + B点の温度) / 2（位置0.5）、(C点の温度 + D点の温度) / 2（位置0.5）

・スラップ熱量変化[kJ/m²] = (A点温度変化[B点温度変化] + B点温度変化[C点温度変化] + C点温度変化[D点温度変化] + D点温度変化[A点温度変化]) / 4

気温条件運転時の「スラップ温度変化」の絶対価が「気温変化温度」である。また測定位置①～⑩の13位置、または①～⑩の9位置のスラップ熱量変化の単純平均値をそれぞれ「13点平均」、「9点平均」と記す。

4.5 実測結果
8月20日（気温変化運転3〜8時）を代表日とした。

4.5.1 日平均気温
8月上旬には日平均気温が30℃を超え、中旬には30℃をやや下回るが、下旬には30℃程度に上がった。9月に再び下落、24〜30℃であった。

4.5.2 空調時間帯平均の空気温
26℃が設定目標値である。8月10日に空気温設定を上げ、その日以降、ほぼ25〜30℃に保たれた。

4.5.3 代表日におけるスラップ熱量
図2に示すように、測定位置①～⑩で比較すると、スラップ熱量変化は10秒以内には基準位置①と②の変動が特に大きいが、かなり差が見られず測定位置⑤、⑥と続く、測定位置②、⑤、⑧にはほとんど差が見られていなかった。

4.5.4 測定位置③におけるスラップ熱量変化
測定位置③におけるスラップ熱量(熱流計測定値から算出)とスラップ熱量変化、気温変化運転時間ごとに表2に示す。これより、休日も平日と同様に上階を空調した8月17日以降のデータから求めた。通熱熱はスラップ熱流束を＋とした。スラップ内で水平方向の熱移動を無視できるとすると、スラップ上・下の通熱熱の相対値がスラップ熱量変化に影響するはずだが、表中の値は必ずしもそうではない。熱収支が合わないのは測定誤差、および設定したスラップ熱流量の精度が主因と考える。

当該日数の気温変化熱を100%としての、空調時間帯の通熱熱の比率を、スラップ上・下およびスラップ熱量変化について表3に示す。スラップ熱変化3時間運転と5時間運転で、あまり差がない。空調時間帯にスラップ熱変化の7〜8割が発生し、上階・下階にはそれぞれスラップ熱量の約2〜3割、約3〜4割が発生した。

5. 統計的算出法の適用
3.2節で説明した統計的算出法を、実測データに適用した。まず
(3)〜(5)の各係数を実測データから回帰分析により求める。それには、室温熱負荷Q_{ei}、Q_{es}が一定となる条件を選ぶ必要がある。9階会議室の空調と照明の発生スケジュールを平日と休日で同じに設定したが、平日の空調時間帯の室内熱負荷は、時間帯に伴う空気流通と在室人員の数、日により変動すると予想される。しかしながら休日には室内熱負荷Q_{ei}がほぼ一定と推定できるので、休日のデータを使って(3)の回帰分析を行えば、比例定数c_{ei}〜c_{es}の定数Q_{es}が求められる。非空調時間帯については、平日・休日にかかわらず、室内熱負荷Q_{ei}がほぼ一定と設定でき、そのときのデータを用いて(4)および(5)で回帰分析すれば、等同にC_{ei}〜C_{es}と定数Q_{es}、T_{ei}が得られる。

休日も上階を平日と同様に空調した8月17日以降の測定データを回帰分析に用いた。但し、設定条件を変更した初日と、種々の事情で空調運転制御が設定と異なった日のデータを外した。

スラップ内平均温度(13点平均)のデータを用いた回帰分析から、次式が得られた。

\[
Q_{ei} = 12.9 - 0.388 \times \Delta T_{ei} + 0.418 \times T_{ei} + 43.6
\]

(3.1)

\[
Q_{es} = 26.2 - 0.386 \times \Delta T_{es} + 0.369 \times T_{es} + 12.6
\]

(3.2)

\[
T_{ei} = -0.0244 \times Q_{ei} + 0.00742 \times \Delta T_{ei} + 25.6
\]

(3.3)

またスラップ内平均温度(9点平均)のデータを用いて用いることと,

図2 代表日におけるスラップ熱量

<table>
<thead>
<tr>
<th>測定位置③におけるスラップ上・下の通熱熱およびスラップ熱量変化</th>
<th>測定位置</th>
<th>3時間</th>
<th>5時間</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1時</td>
<td>2時</td>
<td>3時</td>
</tr>
<tr>
<td>スラップ上部の通熱熱 [kJ]</td>
<td>50〜140</td>
<td>160〜190</td>
<td>220〜360</td>
</tr>
<tr>
<td>スラップ下部の通熱熱 [kJ]</td>
<td>120〜110</td>
<td>160〜150</td>
<td>250〜350</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>測定位置③における空調時間帯の放熱量変化</th>
<th>3時間</th>
<th>5時間</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1時</td>
<td>2時</td>
</tr>
<tr>
<td>スラップ上部からの放熱量比</td>
<td>9〜11%</td>
<td>9〜11%</td>
</tr>
<tr>
<td>スラップ下部からの放熱量比</td>
<td>21〜46%</td>
<td>21〜46%</td>
</tr>
</tbody>
</table>
式(a)と式(b)の右辺第1項の係数にはスラブ熱容量が関係する。参考値として、スラブ熱容量は20.6 MJ/m²(=スラブ面積71.1m²×厚さ0.15m×2200 kg/m³×8/1/(kg×K×10⁻⁸ MJ/m²))である。非空調時間帯の式(b)の係数に対し、空調時間帯の式(a)の係数は半分以下であるのは、躯体蓄熱量の内、半分近くが空調時間帯にスラブ下面から出てくる対象屋の空調機熱負荷削減に寄与するという実測結果と対応する。

式(a)と式(b)の右辺第2項の係数は主に、室の断熱性能と対応し、式(a)、(b)共、各程度の値である。

式(a)の右辺第3項の係数は日射の影響を表すが、負荷と算出された。正負であるべきだが、負荷となった原因を次の如く検討する。

1) 9階議事室は窓面がわずかで、日射の影響を受けにくい。
2) 式(a)の回帰分析に用いたデータ数が少なかった。
3) 日射量と外気温との差(ΔT_{r1-1})が比例的な関係であるため、(ΔT_{r1-1})の係数が大きく算出され、その分、I_{γ}の係数が小さくなった。

式(a)～式(l)の値を取得するため、計算値を測定値と照合した結果を図5に示す。再現性は妥当と考える。

式(a)～式(l)を用いて、次の効率、熱量を日ごとに算出し、図6に示した。図に回帰分析として、外気温・室温・スラブ内平均温度の日ごとの測定値を併せて示した。スラブ内平均温度(13点平均)のデータの代わりに9点平均のデータから算出した式(a)～式(l)を用いても、各効率、熱量は差違がないことが図からわかる。このことより、スラブへの蓄熱の状態を反映する位置の温度データが含まれれば、温度測定の位置や数をよそらす、各効率、熱量を算出できると考える。

各効率、熱量は次のようにまとめられ

1) 蓄熱投入熱量比率は約0.8～1.0である。
2) 車体蓄熱効率は約0.6～1.0である。
3) 夜間移行量は約400～500 kJ/m²である。これでスラブだけの熱量と仮定すると、約1.4～1.7の温度差に相当する。

4) 車体全体の蓄熱量は蓄熱投入熱量比率の分子、すなわち(C_{γ1}(T_{r1}- T_{r0}))で計算できる。これをスラブ全体の蓄熱量の測定値と照合する。スラブ全体の蓄熱量は、測定値1および3の蓄熱量に熱容量を掛けて求めた。「計算値」は車体全体の蓄熱量、「測定値」はスラブ全体の蓄熱量と対象が異なるものの、両者は同程度の値を示す。「測定値」では測定位置1、3でスラブ熱容量を変化させたことに起因する。その結果、もう一方の要因効果は相殺した結果、ほぼ等しくなったと検討する。

得られた蓄熱投入熱量比率と車体蓄熱効率が日によって異なる原因は主に、スラブの周辺が1日周期で元に戻らないことにあると考えられる。そこで前日18時と当日18時のスラブ内平均温度の差が、10点平均、9点平均のいずれでも0.1K以内という条件に当てはまる8月18、19、31日に関して図8を視認すと、蓄熱投入熱量比率は約0.9、車体蓄熱効率は約0.7と比較的ばらつきの少ない値が得られる。

式(a)～式(l)の各係数は、室・空調システム・温度測定位置等が組み合わされた系としての固有の値である。これらの係数はこの系について、上記の次のように利用できる。

1) C_{γ1}に対するC_{r1}の比率が、車体全体の蓄熱量の内、空調機熱負荷削減への寄与の割合を示す。
2) 車体蓄熱運転時にスラブ平均温度をモニタリングして、車体全体の蓄熱効率を知る。

6. まとめ

車体蓄熱空調システムの性能を評価する時、蓄熱運転の有無による比較が不可欠だが、実では条件の再現が難しい。蓄熱以外の条件ができるだけ近い日の測定結果を比較する従来の方法では、比較の精度は不明であった。この問題に対し、性能指標を実測データを基に実証的に算出する手法を考案した。具体的には、蓄熱投入熱量と温度に関する式の係数を回帰分析により求めた。得られた式を測定結果をほんと再現し、この手法の妥当性が確認された。蓄熱効率を求める内部の性能指標は、スラブの温度が前日の温度に戻る日間に限定すると、蓄熱投入熱量比率＝約0.9、車体蓄熱効率＝約0.7であった。

本論文に関連する既報参考文献

a) 三宅正人、渡邉隆雄、平山昌宏、藤田尚志：空気吹付け方式車体蓄熱空調システムの性能実測 その1 実験概要と実測値等の実測結果、日本建築学会大会学術講演論集 41(101) pp.1011～1012, 2000.9
b) 藤田尚志、渡邉隆雄、三宅正人、平山昌宏：空気吹付け方式車体蓄熱空調システムの性能実測 その2 車体熱容量変化の実測結果、日本建築学会大会学術講演論集 41(101) pp.1013～1014, 2000.9
c) 長伸朗、平山昌宏、渡邉隆雄、藤田尚志：空気吹付け方式車体蓄熱空調システムの性能実測 第1報 実験概要とスラブ熱容量変化の実測結果、空気調和・衛生工学会学術講演論文集 C-5, pp.161～164, 2000.9
d) 藤田尚志、渡邉隆雄、平山昌宏、長伸朗：空気吹付け方式車体蓄熱空調システムの性能実測 第2報 車体蓄熱効率の統計的算出方法、空気調和・衛生工学会学術講演論文集 C-6, pp.165～168, 2000.9

参考文献

1) 中村維子、渡邉隆雄、筒井有二、赤井善義、吉竹第二、沿原信之：事務所ビルに採用した車体蓄熱空調システムの総合的評価、日本建築学会大会学術講演論集 41057～41058 pp.113～116, 1996.9
2) 石野久明、木村達一：各種空調熱負荷計算の実測による比較検証の研究、空気調和・衛生工学、Vol.47, No.9, pp.35～34, 1972.9
[2000年10月19日原稿受理 2001年2月22日採用決定]