ダイレクトスプレー法による繊維強補セメント系パネルの熱応力解析

岡太浩 ——*1 杉田佳寛 ——*2

キーワード：繊維強補セメント系複合材料，リブ付パネル，熱応力解析
Keywords: Fiber reinforcement Concrete, Stiffening panel, Thermal stress analysis

1. はじめに

内外装仕上材あるいは下地材として使用される短纖維強補セメント系複合材料を用いたリブ付パネルは、様々な外的環境により、パネル内部に応力が発生し、極端な場合は、基材の剥れ、変形などの外観上有害な変形が発生する可能性がある。

このような現象に対しては、パネル自体の変形を減少する対策や取付工法による対策がとられが、この外観上有害な変形が発生するメカニズムを解明することが重要である。それによって材料の目標性能、工法開発が可能と考えられる。

非耐力外壁に有害な変形が発生する要因として、建築物の構造の要因がある場合、取付工法の問題がある場合、非耐力外壁パネル自体の問題がある場合に大別される。

本研究では、建築物の構造、非耐力外壁の取付工法の問題は別として、非耐力外壁自体の変形の要因について検討する事として、数値解析的な方法を用いて検討を行った。

非耐力外壁自体の性質に起因する有害な変形は大別して以下の3項目に要約されると考えられる。

①熱膨張
②含水率変化
③化学的収縮

これらの項目は短纖維強補セメント系複合材料の固有の性質であり、本質的には排他することが困難な項目である。しかし②の含水率変化、③の化学的収縮は、製品として使用する段階では既に平衡に達しているはずである。

これに対し、①の熱膨張による変形は屋外環境に置かれている場合、常に発生する可能性がある。

そこで今回の検討では熱膨張変形によって、発生すると予想される応力に対してモデルパネルを想定し、最も極端な温度条件に対し、有限要素法による数値解析をおこなって、応力の分布状態、変形状況を予測する事とした。

2. 解析手法

汎用有限要素法MARCによる解析手法として、まずメッシュ生成ソフトFEMISを用いモデルメッシュを作成し、温度解析を行った後、温度分布に起因する熱応力の解析を行う。

解析の手順として、想定したモデルパネルの4分割モデルを想定し、3次元構成のメッシュを作成し、外観子のパラメータを入力し、温度解析を行った。この温度分布と、必要なパラメータを入力し、応力の解析を行った。

また、境界条件を変更し、金物による拘束が有る場合での解析を行った。

解析に使用したソフト、および解析手法を以下に示した。

解析の図を図1に示した。

3. 解析条件

解析に当たっての材料物性の与条件を表1に示した。また、今回の解析に用いた材料物性値は代表値としてそれぞれ表1の解析に用いた値を使用した。

表1 繊維強補パネル標準物性(1)〜(7)（注1）

<table>
<thead>
<tr>
<th>項目</th>
<th>物性</th>
<th>解析に用いた値</th>
<th>単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>単位面積質量</td>
<td>水分</td>
<td>1.9〜2.3</td>
<td>g/cm²</td>
</tr>
<tr>
<td></td>
<td>性能</td>
<td>1.8〜2.1</td>
<td>g/cm²</td>
</tr>
<tr>
<td>引張強度</td>
<td></td>
<td>8〜12</td>
<td>N/mm²</td>
</tr>
<tr>
<td></td>
<td>張力係数</td>
<td>1.8〜2.5 × 10⁴</td>
<td>N/mm²</td>
</tr>
<tr>
<td></td>
<td>張力値</td>
<td>8×10⁴</td>
<td>J/m²</td>
</tr>
<tr>
<td></td>
<td>張力値</td>
<td>10×10⁴</td>
<td>J/m²</td>
</tr>
<tr>
<td></td>
<td>張力値</td>
<td>16×10⁴</td>
<td>J/m²</td>
</tr>
<tr>
<td></td>
<td>張力値</td>
<td>16×10⁴</td>
<td>J/m²</td>
</tr>
<tr>
<td></td>
<td>張力値</td>
<td>26</td>
<td>℃</td>
</tr>
</tbody>
</table>

パネルの外径は 3000mm×2000mm でリブ成 150mm、リブ幅 150mm でこの4分割モデルを想定した。またリブ内部は空洞とした。

これはダイレクトスプレー法により製造される典型的な形状を想定し

*1 宇都宮大学大学院工学研究科 大学院生・工藤
(〒321-8585 栃木県宇都宮市斎東7-1-2)
*2 宇都宮大学工学部建築学科 教授・工藤

The thermal effect of fiber reinforced concrete was estimated by using FEM analysis. As a result, fiber reinforced concrete has high durability on heat shock. And one of FEM analysis for fiber reinforced concrete was proposed.
本条件でモデルメッシュを想定しFEMISを用い、4分1分割モデルとしてメッシュ生成を行った。本解析において作成した解析用メッシュについて図5に示す。図5は屋内側より4分1分割モデルを見下ろした状態のパネルである。

4. 解析結果
4.1 温度解析

前掲条件に基づいて第一段階として温度解析を実施した。外部温度条件を与えられたパネルの温度変化の状況の経時変化についてアウトプットの一例を図6、図7に示す。図6は4分1モデルで内部側よりパネルを見下ろした状態である。赤色部分は温度が50℃以上であること示しており、黄色部分は40℃以上、青色部分は26℃であることを示している。中間色部分はそのうちの多彩で局所的な温度であることを示している。これによりパネル内部において温度差が生じていることが閲覧的に判別することが可能となる。

図8ではリブ部の温度状況を確認するため対側の視点からパネルビューを表示している。この結果リブ側表面に位置する部分の板厚部での温度差が大きい事が予想される。

パネル内での最大温度差がどの程度になるかを見極めるためにパネル内で代表的なパネル位置での温度について経時変化を追うこととした。パネル内の温度分布について、图9に示す代表的な節点での温度変化についてのシミュレーション結果を図10に示す。図9はパネル内部側からの見下ろし状態である。

図10において、加熱時のステップは13インクリメントまで同じ日射量となっていることが想定しており、それ以降のインクリメントでは日射が停止し、雨がかかるが、冷却し行く状態を示している。

この結果、パネル内での温度差が最大となるのは6時間後、冷却後では冷却開始直後の温度差が最大となることを観察することができる。この結果リブ部の温度を代表する節点1、および節点30と内部の温度を代表する節点3399、節点3430、および節点3638とでは加熱後6時間後、冷却後6時間後、冷却後6時間後にパネルの温度変動の状況を確認することができる。この結果、パネル内での温度差が最大となるのは6時間後、冷却後では冷却開始直後の温度差が最大となり、以降の冷却時パネル内部での温度差が大きいことが観察される。
4.2 応力解析

各段階において得られた温度分布に対して，材料の物性定数および式（1）で示される応力を発生させるものにパネル内部の応力解析を行った。

応力解析は，各温度段階において各局所間で生じる温度差により発生する熱膨張量の差を応力値に変換したものである。

パネルの拘束条件として，パネルを構造物の外周に設置する場合を想定し，図２に示す拘束点で金物によって拘束する場合を想定した。

この際，1点のみを固定し，パネル自体は面と平行する方向以外は自由に動くものと仮定した拘束条件，および1点のみを固定した拘束条件の2条件でパネル内に発生する応力について比較した。

与えた条件は，4.1節の温度解析において加熱の最終段階で最も温度差が大きい状態，すなわち冷却前の状態と，冷却後と同じく4.1節の温度条件で水に接する表面と反対側の裏側で最も大きな温度差が見られる最終段階とで計算を行った。解析結果のアウトプットの例を図11，図12に示す。本アウトプットにおいて，観点上，応力が低い部分を青，高い部分を赤としている。

これらの変形により発生する応力について最大値をまとめた内容を表2に示す。これは，非耐外壁として4周を拘束した場合，および一点のみを拘束し，他部分を非拘束として自由変形させた場合のパネル内に発生する応力と最大変形の状況を示したものである。変形については解析で図3に示される変形より最大値を計測したものである。

![Image](https://via.placeholder.com/150)

表2 発生応力および変形を示す

<table>
<thead>
<tr>
<th>拘束条件</th>
<th>最大変形量 (mm)</th>
<th>最大応力</th>
<th>引張応力 (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>加熱時</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>非拘束</td>
<td>1.33</td>
<td>1.7 (リブ内側)</td>
<td>1.2</td>
</tr>
<tr>
<td>拘束</td>
<td>1.13</td>
<td>10.2 (リブ外側)</td>
<td>0.2</td>
</tr>
<tr>
<td>冷却時</td>
<td>0.57</td>
<td>0.28 (接合部)</td>
<td>8.7</td>
</tr>
<tr>
<td>拘束</td>
<td>0.32</td>
<td>18.2 (接合部)</td>
<td>8.5</td>
</tr>
</tbody>
</table>

表2の結果より，加熱時で発生する応力レベルより，冷却時に発生する応力レベルの方が高くなることが，拘束条件を設けた場合，加熱時は自由膨張となり，ほとんどのパネル内に応力は発生しないこと，また冷却時においてはパネルが非対称であることが分かることから変形が抑えられるため発生応力が大きくなくなることが判明した。また，完全に拘束した場合においても，パネル内に発生する応力は，解析対象とした材料の引張許容応力を10N/mm²とすれば十分余裕が有り，材料の破壊には繋がらないと予想される。

5.まとめ

モデル化したダイレクトスプレーフラジによる短縮圧縮実験結果と同等材料によるリブ付きパネルにおいて，発生する可能性がある応力についての検討を行った。

短縮圧縮実験結果と同等材料によるリブ付きパネルが中高層ビルの非耐外壁に使用される場合，通常のコンクリート製PCパネルを使用する場合に比較し，薄い板として使用されるケースが多い。これは材料使用が高くなり，引張耐力を持たない補強材を生かし，薄板化して軽量化を目的とする主軸となっている。この際，パネル自体が挙げられることで，板内に働く応力は多少の変形を受けても均一に応力を発生させる効果があるためである。

本研究においては，PC 施工による薄い材として使用する短縮圧縮実験結果と同等材料によるリブ付きパネルに発生する応力についての検討を行った。

本研究の目的は，通常使用が可能な繊維複合パネルのモデル化を行い，熱環境制御に関するメカニカルケースを想定した。さらに伝熱面での複雑な温度を考慮したケースでのシミュレーションを行い，得られた計算結果について解析を行った。

この結果，面材において寝返りに差が有るパネルにおいては深い部分，すなわちモデル中のリブ部での伝熱には時間があるが，面材部分

での表裏で熱伝導はリブ部に比較し，相対的に早く均熱状態になることが判明した。

また，完全実験パネルでの日射加熱，雨等外壁という非常に複雑な条件においても発生する応力については面材内の応力の影響について示した。つまり，特に特に発生する応力において，短縮圧縮実験結果と同等材料のパネルは，瞬時に破壊するような破壊現象は発生しないと考えられる。

さらに，短縮圧縮実験結果と同等材料のパネルを固定した場合の発生する応力をについて，取り付け部を拘束した条件の解析を実施し検討した結果，応力がパネル固定部に集中する結果が得られた。

今後，この手法を発展させることにより，非耐外壁に対しての有効な解析手法と成り得ると考えている。

謝辞

本研究の実施ならびに解析手法の利用にあたり，旭硝子（株）中央研究所，伊賀主幹研究員，吉川主幹研究員に多くのご協力，ご援助をいただきました。また，論文作成に際し，宇都宮大学工学研究科助手の中村成幸氏（工博）にご協力いただきました。ここに記して、感謝いたします。

参考文献

1）宿谷：数値計算で学ぶ光と熱の建築環境学，丸善 pp164〜pp167，1983.7
2）田中，足立，武田，土屋：最新建築環境工学，井上書院 pp180〜pp183，1993.12
3）今井：組合せ建築環境工学，オーム社 pp38〜pp39，pp48〜pp51
4）建築設計資料集成1 環境，丸善，pp123，1978
5）松本，土屋：日本建築学会大会学術講演会講概，pp271〜pp272，1994.6
6）理科年表，気象 pp196〜pp111，1993
7）旭硝子，ビル用板ガラス建材総合カタログ，1988

注記

＊1 本研究ではCGS 単位を用いて解析を行ったが，表1中の数字はSI 単位に換算後の値である。

＊2 代入の都合上，カラーコードを本報告3頁目に一括してまとめた，ため図番号に前後のある。

[2001年4月18日原稿受理 2001年7月27日採用決定]