フレッシュコンクリートの単位水量試験に関する検討

1. はじめに
近年共同住宅の高層化が進み、それに伴い高強度材料の使用が増えている。高強度材料の適用は、高層化を可能にするばかりでなく、大スパン化や部材断面の減少による建物の軽量化・有効面積の拡大などの効果も期待でき、高強度コンクリートは設計基準強度（以下Fctnの略す）100N/mm²のコンクリートが実用化されている。

このような高強度コンクリートでは今まで以上に品質管理が重要になる。また、単位水量を管理することで、品質が安定し強度の変動が小さくなることが確認されている。

単位水量測定方法として水中質量法は精度よく測定できることから、超高強度コンクリートの品質管理に用いられている。しかし、水中質量法は熟練した測定員が測定を行う必要がある。そこで、測定員の熟練が比較的必要ないと思われる高周波加熱乾燥法の精度を確認し、品質管理への適用性を検討した。

2. 研究概要
ここでは、水中質量法と高周波加熱乾燥法による単位水量測定方法を取り上げ、精度の検証を行った。

まず実験試験として、生コン工場から出荷するFc100N/mm²およびFc80N/mm²のコンクリートについて、単位水量の変動を調査し、単位水量試験方法の比較を行った。

次に、室温下により単位水量試験方法の測定誤差の要因について検討を行った。

2.1 水中質量法
コンクリートの水中質量と空中質量の差から単位水量を推定する。
試験手順は以下の通り。
1) コンクリート約2kgを採取
2) コンクリートの空中質量を測定
3) 水中にてコンクリート中の空気を追い出し、水中質量を測定
4) 粗骨材を洗い出し、粗骨材量を測定
5) 空中質量と水中質量の差と、各材料の密度から単位水量を推定する。

\[C_{\text{con}} = \frac{C_{\text{con}} - C_{\text{con}}}{\rho_c} \] \(\text{(1)} \)

\[C_{\text{con}} = \frac{C_{\text{con}} + \rho_w}{\rho_c + \rho_w} \] \(\text{(2)} \)

ここで、\(C_{\text{con}} \)：コンクリート試料体積（cm³）、\(C_{\text{con}} \)：コンクリート試料水中質量（g）、\(\rho_c \)：コンクリート試料水中質量（g）、\(\rho_w \)：水温に対応する水の密度（g/cm³）、\(C_s \)：試料中のセメント量（g）、\(C_s \)：試料中の細骨材量（g）、\(C_s \)：試料中の粗骨材量（g）、\(W_s \)：試料中の水量（g）、\(\rho_c \)：セメント、細骨材、粗骨材の密度（g/cm³）

2.2 高周波加熱乾燥法
ウェットクリーニングによりコンクリートからモルタルを抽出し、高周波加熱器（電子レンジ）により加熱乾燥を行い、単位水量を推定する。測定手順は以下の通り。

業務用電子レンジ（電圧200V、出力1600W）を用いて測定を行う。加熱時間は試料の最高温度が200℃以下となるように設定した。試験結果を下記に示す。

Keywords:
単位水量, 試験方法, フレッシュコンクリート, 品質管理, 工場

关键词：单位水量, 测试方法, 新鲜混凝土, 品质管理, 工厂
1) コンクリートを5mmふるいにかけ、バイブレータをかけながら、ウェットスクリーニングを行う。
2) 試料容器（紙皿）を電子レンジで10秒間加熱する。
3) ウェットスクリーニングしたモルタルを試料容器（紙皿）に約400g採取して、モルタル質量を0.1gまで測定する。
4) 試料を電子レンジで3分30秒間加熱する。
5) 次式により、単位水量測定値を計算する。

\[W = \frac{W_b - W_a}{W_b - W_c} \times (W + C + S) - \frac{P}{100 + P} \times S + A_d \times m \] (3)

W: 単位水量測定値 (kg/m³)
Wa: 容器質量 (g)
Wb: 乾燥前モルタル質量+容器質量 (g)
Wc: 乾燥後モルタル質量+容器質量 (g)
W: 計算単位水量 (kg/m³)
C: 計算単位セメント量 (kg/m³)
S: 計算単位細骨材量 (kg/m³)
P: 細骨材吸水率（％）
A_d: 計算単位混和剤量 (kg/m³)
m: 混和剤固形分量（％）

3. 火コン工場での比較試験

コンクリートは川崎市に建設中のＲＣ層マンション工事に打設されるFc100N/m³およびFc80N/m³の高強度コンクリートである。使用材料および調合を表1,2に示す。測定は、Fc100N/m³は毎日、Fc80N/m³は週間について、出荷する全てのコンクリートをサンプリングして、単位水量を測定した。

単位水量の試験結果を図1に、各試験方法の測定結果の関係を図3に示す。単位水量管理の上限値を165kg/m³としたが、収束工事では調合値の155kg/m³を超えることを恐れのために、全体に単位水量が低めの値となった。

試験結果から、高周波加熱乾燥法は水中質量法と比較すると、全体的にFc100N/m³の調合では少ないものであるが、Fc80N/m³の調合では多少測定していることが分かった。

また、調合中の測定値の変動傾向は、高周波加熱乾燥法と水中質量法は、調合に関係なく測定日によってはば同じ場合となるが、ずれが生じる場合があったことが分かった。

このことから加熱乾燥法の精度の差を補正する必要があることがわかる。これらの単位水量測定結果の差は、測定方法そのものの誤差と、ウェットスクリーニングによる誤差が含まれていると考えられる。

表1 使用材料

<table>
<thead>
<tr>
<th>質材名</th>
<th>合成樹脂</th>
<th>質量（kg/m³）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2mm</td>
<td>VKC100SF</td>
<td>371</td>
</tr>
<tr>
<td>2.0mm</td>
<td>同上</td>
<td>351</td>
</tr>
<tr>
<td>2.5mm</td>
<td>同上</td>
<td>335</td>
</tr>
<tr>
<td>3.0mm</td>
<td>同上</td>
<td>317</td>
</tr>
<tr>
<td>3.5mm</td>
<td>同上</td>
<td>299</td>
</tr>
<tr>
<td>4.0mm</td>
<td>同上</td>
<td>281</td>
</tr>
<tr>
<td>4.5mm</td>
<td>同上</td>
<td>263</td>
</tr>
<tr>
<td>5.0mm</td>
<td>同上</td>
<td>245</td>
</tr>
<tr>
<td>5.5mm</td>
<td>同上</td>
<td>227</td>
</tr>
<tr>
<td>6.0mm</td>
<td>同上</td>
<td>209</td>
</tr>
<tr>
<td>6.5mm</td>
<td>同上</td>
<td>191</td>
</tr>
<tr>
<td>7.0mm</td>
<td>同上</td>
<td>173</td>
</tr>
<tr>
<td>7.5mm</td>
<td>同上</td>
<td>155</td>
</tr>
<tr>
<td>8.0mm</td>
<td>同上</td>
<td>137</td>
</tr>
<tr>
<td>8.5mm</td>
<td>同上</td>
<td>119</td>
</tr>
<tr>
<td>9.0mm</td>
<td>同上</td>
<td>101</td>
</tr>
</tbody>
</table>

表2 調合

<table>
<thead>
<tr>
<th>W/B (％)</th>
<th>水</th>
<th>結合材</th>
<th>細骨材</th>
<th>高性能AE減水剤</th>
<th>単位量（kg/m³）</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.5</td>
<td>100</td>
<td>155</td>
<td>689</td>
<td>835</td>
<td>18.6</td>
</tr>
<tr>
<td>29.5</td>
<td>80</td>
<td>155</td>
<td>526</td>
<td>871</td>
<td>11.6</td>
</tr>
</tbody>
</table>

図1 単位水量測定結果（Fc100）
図2 単位水量測定結果（Fc80）
図3 水中質量法と加熱乾燥法の関係（Fc100）
図4 水中質量法と加熱乾燥法の関係（Fc80）
4. 室内試験

4.1 目的

練り混ぜたモルタルおよび、コンクリートからウェットスクリーニングにより取り出したモルタルを用いて高周波加熱乾燥法で単位水量を測定し、試験方法固有の誤差とウェットスクリーニングによる誤差の検討を行うとともに、ウェットスクリーニングによる補正方法の検討を行った。

4.2 使用材料および調合

使用した細骨材および粗骨材は、生コン工場での比較試験で使用したものと同様、モルタルを表2に、コンクリートを表4に示す。ただし、ウェットスクリーニングは5mmのふるいを用いて行うことから、骨材粒度分布の影響を排除するために、細骨材は5mm上をカットし、粗骨材は5mm下をカットして使用した。

4.3 試験方法

1) モルタル試験

練り混ぜはモルタルミキサーを使用し、練り量は3hlとした。練上がり後直ちに、高周波加熱乾燥法で単位水量測定を行った。

2) コンクリート試験

練り混ぜは強制練りミキサーを使用し、モルタル先練り後、粗骨材を投入した。練り量は200hlとした。

練上がり後、ウェットスクリーニングを行い、取り出したモルタルについて、高周波加熱乾燥法で単位水量測定を行った。

4.4 測定結果

単位水量の測定結果を表5に示す。

1) モルタル試験結果

練り混ぜ時に材料を採取して表面水率を測定し、正確な実施調和を求め、測定結果と比較すると水率はほぼ一致しているが、水結合材比が高い調和では水量を少なく推定する傾向が若干認められる。試験全体での測定値の標準偏差はσ=2.5kg/m³であり、信頼限界95％（1.96σ）でも、±4.8kg/m³の推定誤差であることがわかった。

2) コンクリート試験

測定結果は、実際調和と比較すると水結合材比が高い調和では水量を多少推定し、水結合材比が低い調和では水量を多く推定していることが分かった。図5の結合材水比の推定値からも結合材水比の影響を受けることが分る。

モルタル試験の結果から、試験法固有の誤差は小さいと考えられる。ここから、このコンクリートでの誤差はウェットスクリーニング時に粗骨材に付着して残るモルタルにふるいから落下するモルタルの品質の差と考えられる。図5を見ると、結合材水比の測定結果と実測値は直線関係にあることから、結合材水比の一次式を補正値として用いれば誤差の補正が可能である。図5より求めた回帰式を元に、結合材水比の違いによる補正値を求め、単位水量を推定した結果を表5に示す。

5. 室内試験による誤差の検討

5.1 目的

単位水量の測定誤差とは、基準値に対するばらつきであるが、ウェットスクリーニングに起因する基準値に対するずれ、「4.4測定結果」に示したような回帰式により補正できることから、ここでは、補正後の誤差について検討する。

5.2 誤差の検討方法

高周波加熱乾燥法で予想される種々の誤差要因と誤差条件を設定して、試験誤差の計算上の検討を行う。ここでは、材料品質が変動する生コン工場のコンクリートについて、事前に把握した材料品質の数値を用いて単位水量推定試験を受入管理として長期間行う場合についての検討を行う。
想定される誤差としては、a.材料品質試験の測定誤差、b.単位水量試験の測定誤差、c.コンクリート製造時材の材料の計測誤差、d.5mmふれいを用いたウェットスクリーニング時の材料の誤差がある。表6にそれらの誤差要因と予想される誤差範囲を示す。

誤差は、単位水量推定計算式に表6の誤差を入力して単位水量をそれぞれ求め、推定誤差を算出した。個々の変動要因による単位水量の推定誤差を3σとして、(4)式により累積した。

\[
\sigma = (\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \ldots + \sigma_n^2)^{1/2}
\]

また、受入管理として単位水量の測定を行う場合、生コン工場での材料の品質変動による誤差が加わる表7に誤差条件を示す。

従って(4)式で求めた誤差と材料の品質変動による誤差を累積したものを品質管理条件としての全体誤差とした。

\[\text{53 検討結果}\]

材料の品質変動による単位水量推定値の誤差を累積した場合の計算結果を表8に示す。表8には、水中質量法について同様な検討を行った結果についても記載した。

この結果から、事前の材料試験データを用いた単位水量推定試験を長期に行った場合には、材料の品質変動を含む品質試験としての全体誤差は、95%信頼限界(1.96σ)で±11.3〜16.1kg/m³となった。

したがって、あらかじめ結合材水比を変えた調合で3点以上の試験繰りを行って単位水量試験を実施し、補正値を求めて上記で測定することにより、水中質量法の誤差(±10.5〜13.0kg/m³)と比較すると、高強度コンクリートではほぼ同じ程度の誤差であるが、普通強度コンクリートでは誤差が大きいことが分かった。

\[\text{6. まとめ}\]

受入検査としての2種類の単位水量試験について、その精度と工事での管理方法について検討を行った結果、以下の事は明らかとなった。

1) 実機試験の結果、水中質量法と高周波加熱法では、調合により単位水量試験の結果に影響を及ぼすことを確認した。

2) 水中質量法と高周波加熱法の測定結果の差は、主にウェットスクリーニングの影響と考えられ、前に述べた影響が異なる。

3) 高周波加熱乾燥法をコンクリートの品質管理に適用するに、W/Cを3点程度変化させたコンクリートについて、単位水量試験を行い、補正値を求める必要がある。

4) 上記補正値を求めることで、高強度コンクリートでは水中質量法と同程度の精度で単位水量測定が可能である。

\[\text{参考文献}\]

1) 原木貞・沢井裕昭・黒羽健嗣：Fct1000kgf/cm²の高強度コンクリートを用いた超高層建築物の施工、コンクリート工学、Vol.37, No.3, pp.35〜38, 1999.3
2) 原木貞：CFT構造および高層RC構造における品質管理の現状、コンクリート工学、Vol.39, No.5, pp.52〜55, 2001.5
3) 陣内浩・黒羽健嗣・他：設計基準強度1000kgf/cm²の高強度コンクリートを用いた超高層建築物の施工、日本建築学会技術報告集、第9号、pp.7〜12, 1999.12
4) 森本真幸・猪熊雅史・伊藤真直行：高周波加熱乾燥法によるフレッシュコンクリートの簡易単位水量推定試験に関する研究、第11回コンクリート技術大会研究発表論文集、pp.69〜74, 2001
5) 丸崎敏夫・黒羽健嗣・井戸信一：水中質量法によるフレッシュコンクリートの単位水量試験方法、コンクリート工学年次論文報告集、Vol.20, No.2, pp.313〜318, 1998