The Effect of Suplatast Tosilate on TARC Production in Peripheral Blood Mononuclear Cells and TARC Plasma Levels

Shigeki Gorai1, Nobuhisa Terada1, Tadashi Kobayashi1, Tomohiro Nomura1, Woo Jeong Kim1, Nobuyuki Onai2, Kouji Matsushima2 and Akiyoshi Konno1

ABSTRACT

Background: Thymus and activation-regulated chemokine (TARC/CCL17) is a highly specific ligand for CCR4. TARC may contribute to the recruitment, activation, and development of Th2 polarized cells that express CCR4. These characteristics have led investigators to hypothesize that TARC is involved in the development of Th2 responses. Suplatast tosilate ((±)-[2-[4-(3-ethoxy-2-hydroxy-propoxy) phenylcarbamoyl] ethyl] dimethylsulfonium p-toluenesulfonate) is an anti-allergic agent that selectively suppresses the synthesis of Th2 cytokines. We examined the effect of suplatast tosilate on TARC production and CCR-4 expression in vitro. Furthermore, we attempted to clarify whether TARC production was suppressed after clinical administration of suplatast tosilate.

Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from patients with allergic rhinitis who tested positive to house dust. PBMCs were stimulated with mite antigen. TARC mRNA was detected by real time PCR. The amount of TARC was estimated using an ELISA kit. PBMCs expressing CCR-4 were sorted by flow cytometry. The plasma level of TARC was examined in patients with chronic allergic rhinitis before and after treatment with suplatast tosilate for 4 weeks.

Results: Suplatast tosilate significantly reduced TARC production by PBMCs. TARC mRNA was also suppressed in a concentration dependent manner. However, suplatast tosilate did not inhibit the expression of CCR-4 on PBMCs. The plasma level of TARC was significantly decreased in patients administered suplatast tosilate.

Conclusions: Suplatast tosilate suppressed TARC production by PBMCs and decreased the plasma level of TARC in patients with chronic allergic rhinitis.

KEY WORDS
allergic rhinitis, chemokines, suplatast tosilate, TARC

INTRODUCTION

Allergic rhinitis, as asthma and atopic dermatitis, is a manifestation of atopy characterized by the formation of IgE in response to environmental allergens. Eosinophils play an important role in the development of swelling and hyperreactivity of the nasal mucosa in response to non-specific stimulation.1,3 Antigen presentation to Th2 memory cells leads to the generation of interleukins (IL)-4, IL-13 and IL-5, which are involved in the stimulation of IgE production and the recruitment, activation and maintenance of eosinophils. They also stimulate the release of growth factors and chemokines from structural cells, such as epithelial cells, endothelial cells and fibroblasts. It has been reported that lymphocytic cell
lines derived from Th1 cells selectively express CXC3 and CCR5 in vitro, whereas lymphocytic cell lines derived from Th2 cells selectively express CCR3, CCR4 and CCR8. Thymus and activation-regulated chemokine (TARC) was recently found to be a highly specific ligand for CCR4. A number of cellular sources of TARC have been identified, including macrophages, dendritic cells, and natural killer cells. In addition, CD4 positive T cells, including naive T cells, Th2 cells and memory/effector T cells, were shown to produce TARC protein. They may aid in the recruitment, activation, and development of Th2 polarized cells that express CCR4. These characteristics have led investigators to hypothesize that TARC is involved in the development of the Th2 response. Therefore, the interaction between TARC and CCR4 is important in the pathogenesis of allergic inflammation. In a basic study, suplatast tosilate ((±)-2-[4-(3-ethoxy-2-hydroxy-propoxy) phenylcarbamoyl] ethyl] dimethylsulfoxonium p-toluene sulfonate) inhibited an experimental asthma model of type I allergic reaction, passive cutaneous anaphylaxis and allergic rhinitis. Furthermore, Suplatast tosilate was confirmed to inhibit IgE antibody production in a class-specific manner without inhibiting IgE and IgG antibody production and to inhibit tissue infiltration by eosinophils, which is a cause of allergic inflammation. These actions are considered to be based on the inhibition of cytokine IL-4 and IL-5 produced by helper cells. It also inhibits the allergen-induced increase of both eosinophils and CD4+ T cells in airways and prevents allergen-induced goblet cell metaplasia. These results strongly suggest that suplatast tosilate is a highly functional anti-allergic agent. In this study, we examined the effect of suplatast tosilate on TARC production from peripheral blood mononuclear cells (PBMCs) and CCR-4 expression in vitro and in vivo.

METHODS
EFFECTS OF SUPLATAST TOSILATE ON THE PRODUCTION OF TARC IN PBMCs
Subjects
This study enrolled 8 subjects with allergic rhinitis (6 men and 2 women, age 19–45 years, average age 25.2 ± 6.9 years) and 8 healthy controls (3 men and 5 women, age 18–41 years, average age 24.6 ± 7.7 years). All subjects underwent measurement of total serum IgE levels (IU/ml) and specific IgE antibody levels (UA/ml) to at least six inhalant allergens including house dust (HD; Greer Labs, Lenoir, NC, USA), mite (Dermatophagoides pteronyssinus), pollen of Japanese cedar (Cryptomeria japonica), common ragweed (Ambrosia artemisiifolia), cockfoot (Dactyliis glomerata), and mugwort (Artemisia vulgaris) by radioallergosorbent test (RAST). All patients with allergic rhinitis had a score of 2 or more on a RAST to Dermatophagoides farinae and a history of reasonably recurrent sneezing, watery rhinorrhea, and nasal obstruction. Neither patients nor controls had used any topical steroid or other medication for at least one month before the study. The control individuals were selected from among those who met the following conditions: absence of eosinophilia in nasal smears; RAST negative to the six allergens; IgE not higher than 300 IU/ml; and absence of symptoms of nasal hyper-reactivity, such as sneezing and watery nasal discharge.

All patients were informed about the content of the study, and gave informed consent prior to participation. In addition this study was approved by the ethics committee of the Graduate School of Medicine, Chiba University.

Cells
PBMCs were purified by centrifugation at 88 g for 30 min at 20°C against a Ficoll-Hypaque density gradient. The cells at the interface (mononuclear cells) were collected and washed twice in RPMI 1640 supplemented with heat-inactivated 10% fetal calf serum (FCS). We selected only mononuclear cells with a viability of more than 95% as assessed by the trypan blue exclusion dye test. These mononuclear cells were suspended in RPMI 1640 containing 10% FCS and adjusted to a cell density of 2.5 × 10^6 cells/ml. They were incubated in the presence or absence of suplatast tosilate at various concentrations for 24 hours, followed by challenge with mite antigen (10 μg/ml) for up to 96 hours. As a control, PBMCs, isolated from healthy control subjects, were stimulated with or without mite antigen. The effect of dexamethasone on TARC production was also examined. The supernatants were separated by centrifugation at 200 g for 5 min at 4°C and stored at −80°C until use. Cells were harvested and immediately frozen in liquid nitrogen until use.

Real Time RT-PCR
Total RNA was extracted using an RNeasy kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. RNA concentration and purity were determined on a spectrophotometer (UV-1201, Shimadzu, Japan) by calculating the ratio of optical density at wavelengths of 260 and 280 nm. An Omniscrypt RT (Qiagen), a reverse transcriptase inhibitor (LifeTech, Rockville, MD, USA) and an Oligo dT primer (LifeTech) were used in the synthesis of complementary DNA.

PCR was performed using a Light Cycler Fast Start Hybridization Probes buffer (Roche Molecular Biochemicals) by rapid cycling in a reaction volume of 20 μl with 0.5 mmol/L of each primer, 0.2 mmol/L of anchor probes, 0.4 mmol/L of detection probes and 50 ng of genomic DNA.

The Light Cycler Fast Start DNA Master Hybri-
Table 1  Oligonucleotides used in this study.

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Sequence 5’–3’</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>b-actin</strong> 459bp</td>
<td>CCAACCGCGAGCAGCTG</td>
</tr>
<tr>
<td>Forward primer</td>
<td>GGAAGGAAGGCTGGAAG</td>
</tr>
<tr>
<td>Reverse primer</td>
<td>CCTCCCCCATGCCATCCTGCGTC-FL</td>
</tr>
<tr>
<td><strong>Anchor probe</strong></td>
<td>LC-GGACCTGGCTGGCCGGGACCTG</td>
</tr>
<tr>
<td><strong>Dtection probe</strong></td>
<td>LC-GGACCTGGCTGGCCGGGACCTG</td>
</tr>
<tr>
<td><strong>TARC</strong> 241bp</td>
<td>TCTCTGCAGCACATCCACGC</td>
</tr>
<tr>
<td>Forward primer</td>
<td>GGCTTCAAGACCTCTCAAGG</td>
</tr>
<tr>
<td>Reverse primer</td>
<td>GCTCCAGGGATGCCATCGTT-FL</td>
</tr>
<tr>
<td><strong>Anchor probe</strong></td>
<td>LC-TTGTAACTGTGCAGGGCAGGG</td>
</tr>
<tr>
<td><strong>Dtection probe</strong></td>
<td>LC-TTGTAACTGTGCAGGGCAGGG</td>
</tr>
</tbody>
</table>

lymerase and 10 mmol/L of Mg²⁺. The final Mg²⁺ concentration in the reaction mixture was adjusted to 2 mmol/L for TARC and 3 mmol/L for β-actin. The samples were loaded into glass capillary cuvettes (Roche Molecular Biochemicals) and centrifuged to place the sample at the capillary tip before capping. After the initial denaturation at 95°C for 10 min, DNA was amplified through 40 cycles of denaturation (95°C for 15 sec), annealing (60°C for 15 sec) and extension (72°C for 10 sec). The temperature was programmed to decrease 20°C from denaturation to annealing, 20°C from annealing to extension, and 20°C from extension to denaturation. Fluorescence was measured at the end of the annealing period of each cycle to monitor amplification.

To detect TARC mRNA, four oligonucleotides were used in the assay; of them, two were the labeled anchor and detection probes and two served as amplification primers (Table 1).

All the hybridization probe PCR assays were performed in quadruplicate. The intraassay and interassay variation were 5.4% and 10.3%, respectively. The ratio of TARC mRNA to β-actin mRNA was determined.

**ELISA for TARC**

The amount of TARC was estimated using an ELISA kit (R & D Systems, Minneapolis, USA) and expressed in pg/mL; the lowest detection limit was 7 pg/mL. The ELISA used did not cross-react with other cytokines [IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-13, GM-CSF, IFN-γ and TNF-α] at levels of 50 ng/mL.

**Flow Cytometric Analysis of CCR-4 Expression on PBMCs**

In order to investigate the effect of suplatast tosilate on CCR-4 expression, we examined the expression of CCR4 on PBMCs expressing CD4 or CD45RO before and after the clinical administration of suplatast tosilate. The cells were stained with PE-conjugated anti-CD4 monoclonal antibody (MoAb) (mouse IgG1, R & D Systems) or cyanine dye-conjugated anti-CD45 RO MoAb (mouse IgG1, R & D Systems) followed by FITC-conjugated anti-CCR4 (KM-2160, mouse IgG1). This MoAb against CCR4 has been characterized in a previous report. CCR4 expression on CD4+CD45 RO⁺, CD4+CD45RO⁻, CD4-CD45RO⁺, or CD4-CD45 RO⁻ PBMCs was examined.

The number of CCR4⁺ PBMCs expressing CD4⁺ CD45RO⁺ was counted. Labeled cells were analyzed using flow cytometry (FACScan, Becton-Dickinson, San Jose, CA, USA).

**Changes in TARC Plasma Level After Clinical Administration of Suplatast TOSILATE**

The study was carried out on a group of 12 patients sensitized to house dust mites and with symptoms of perennial allergic rhinitis (7 men and 5 women, age 20–48 years, average age 28.6 ± 6.1 years). All patients had a score of 2 or more on a RAST to Dermatophagoides farinae. By using a patient diary, the severity of nasal symptoms, such as sneezing, rhinorrhea and nasal obstruction, was scored by patients each day during the study period in accordance with the Severity Classification of the Clinical Practice Guideline for Nasal Allergy and the Symptom Score (Table 2). Symptom scores were determined by comparing the two different symptoms (Table 3). All patients had a score of 2 or more on this symptom score.

After a 1-week washout period, patients took oral suplatast tosilate (100 mg, three times per day) for 4 weeks. Before and after the administration, the plasma level of TARC was measured. The global improvement rating of “remarkably improved” was assigned when the symptom score decreased by 2 points or more. A rating of “moderately improved” was assigned when the symptom score decreased by 1 point. General laboratory tests (hematology, biochemical profile and urinalysis) were performed before and after treatment, in addition to monitoring subjective and objective adverse reactions. It has been reported that the adverse reactions of suplatast tosilate appeared in 5.0% (73/1460) of the patients. Major adverse reactions included gastrointestinal symptoms such as stomach discomfort (0.5%) and
PBMCs were pre-incubated with suplatast tosilate (10^{-5} to 10^{-8} M) or dexamethasone (10^{-7} M) for 24 hr and were then stimulated with mite antigen to investigate the effect of suplatast tosilate on the production of TARC from these stimulated PBMCs. As shown in Figure 1, mite antigen induced TARC production by PBMCs, isolated from patients with allergic rhinitis, in a time dependent manner. PBMCs from healthy control subjects did not produce significant amounts of TARC (data not shown). Dexamethasone (10^{-7} M) significantly inhibited the production of TARC (Fig. 2). Pre-incubation with suplatast tosilate also decreased TARC production in a concentration-dependent manner. At concentrations of 1 \times 10^{-5} and 1 \times 10^{-6} M, suplatast tosilate significantly reduced TARC production. Suplatast tosilate did not affect TARC production by unstimulated PBMCs (data not shown). The mRNA expression of TARC was suppressed by suplatast tosilate in a concentration-dependent manner (Fig. 3).

The effect of suplatast tosilate on the expression of CCR-4 on PBMCs was clarified by treating the cells with suplatast tosilate for 24 hr and examining the change in CCR-4 expression by flow cytometry. CCR 4 is preferentially expressed on CD4^{+}CD_{45RO}^{+} PBMCs in patients with nasal allergy. The mite antigen significantly upregulated CCR4 expression on PBMCs. However, suplatast tosilate did not exhibit a significant concentration-dependent inhibitory effect on the expression of CCR-4 on PBMCs at concentrations of 1 \times 10^{-5}, 1 \times 10^{-6} and 1 \times 10^{-7} M (Fig. 4).

Next, we attempted to clarify whether the production of TARC was suppressed after clinical administration of suplatast tosilate. Based on the records in an allergic symptom diary, the frequency of sneezing, frequency of nose blowing and nasal obstruction score were calculated for each patient in accordance...
Fig. 2 Effect of suplatast tosilate on TARC production by PBMCs. The supernatants were obtained 96 hr after stimulation with mite antigen. Suplatast tosilate significantly reduced TARC production at concentrations of $1 \times 10^{-5}$ and $1 \times 10^{-6}$ M. Data are the mean + SEM of eight experiments. * $p < 0.05$, † $p < 0.01$

Fig. 3 Effect of suplatast tosilate on TARC mRNA expression in PBMCs. mRNA expression was normalized relative to that of $\beta$-actin mRNA. PBMCs were obtained 12 hr after specific antigen stimulation. Suplatasst tosilate significantly reduced TARC mRNA expression at concentrations of $1 \times 10^{-5}$ and $1 \times 10^{-6}$ M. * $p < 0.05$

Effect of Suplatast on TARC Production

DISCUSSION

Suplatast tosilate is effective to control allergic diseases such as allergic rhinitis. Many authors have discussed the selective inhibitory effect of suplatast tosilate on IgE and Th2 cytokine production. Al-lergic rhinitis is characterized by inflammatory cell infiltration, especially by eosinophils. It is probable that suplatast tosilate attenuates the PAF- and leukotriene-induced increase of edema and vascular permeability by reducing this eosinophilic infiltration of the nasal mucosa. This is possible because both IL-4 and IL-5 are implicated in the pathogenesis of eosinophilic inflammation and because eosinophils are one of the major sources of PAF and leukotrienene.

In this study, we showed that suplatast tosilate inhibits TARC production by PBMCs stimulated with mite antigen and that the plasma TARC concentration decreased significantly in patients with chronic allergic rhinitis after 4-week administration of suplatast tosilate. These findings confirm the results of an earlier study showing that suplatast tosilate inhibited TARC production by antigen-specific human Th2 cells.
The expression of TARC in the bronchial epithelium and sputum was significantly increased in asthmatics. Recently, we demonstrated that combined stimulation with IL-4 and TNF-α, as well as with IL-13 and TNF-α, synergistically induced TARC expression in epithelial cells. Furthermore, the amount of TARC induced by these cytokines was higher in epithelial cells obtained from patients with nasal allergy than in patients without allergy. In addition, recent studies have demonstrated that in patients with allergic diseases CCR4 expression on peripheral blood CD4+ T cells and serum TARC levels correlated with the severity of the disease. Wakugawa et al. reported that in patients with atopic dermatitis (AD) CCR4 expression on peripheral blood CD4+ T cells was significantly higher than in healthy subjects. Moreover, they observed that the symptoms improved with intensive topical corticosteroid therapy and that CCR4
expression on CD4+T cells gradually decreased as the symptoms improved. Kakinuma et al. quantified serum TARC levels in patients with AD, and examined the correlation between TARC levels and disease activity. The serum TARC level correlated with the severity of the disease and the number of eosinophils in peripheral blood. Both the serum TARC level and the number of eosinophils in peripheral blood decreased during treatment with topical corticosteroids and oral antihistaminics, and those changes were associated with an improvement of the skin conditions.

Suplatast tosilate inhibited TARC production at a concentration of $1 \times 10^{-6}$ M, but showed no inhibitory effect at $1 \times 10^{-7}$ M, the serum level attained following administration of the usual clinical dose. It appears that suplatast tosilate exhibits an inhibitory effect when it remains in contact with blood and tissues for a prolonged period. It may be necessary to increase its blood level to attain an appropriate inhibitory effect on TARC production induced by a specific antigen.

Next, we attempted to clarify whether the production of TARC was suppressed in patients with chronic allergic rhinitis after treatment with suplatast tosilate. As a result, the plasma TARC concentration decreased significantly after 4 weeks on suplatast tosilate. The percentage of decrease in plasma TARC concentration was significantly higher in the patients for whom suplatast tosilate was effective. In a previous study, we reported that compared with normal subjects, the plasma TARC concentration was significantly higher in patients with bronchial asthma, atopic dermatitis and allergic rhinitis. Another study on the correlation between plasma TARC concentration and severity of clinical symptoms revealed that plasma TARC concentration was significantly higher in patients with severe allergic rhinitis than in those with mild or moderate allergic rhinitis (Terada et al. Unpublished data). The above findings suggest that TARC plays a crucial role in the pathogenesis and development of allergic rhinitis. Plasma TARC concentration is an important index of the severity of allergic rhinitis. Our present findings also suggest that suplatast tosilate suppresses the production of TARC and improves clinical symptoms of allergic rhinitis.

In conclusion, suplatast tosilate suppressed TARC production by PBMCs and decreased the plasma level of TARC after clinical administration. In addition, the percentage of decrease in plasma TARC concentration was significantly higher in patients who responded to treatment with suplatast tosilate. Suplatast tosilate was considered useful as a baseline drug for the treatment of allergic rhinitis.

REFERENCES


