Invited review article

Sensitization to fungal allergens: Resolved and unresolved issues

Yuma Fukutomi*, Masami Taniguchi
Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Kanagawa, Japan

A R T I C L E I N F O
Article history:
Received 29 April 2015
Received in revised form 1 May 2015
Accepted 7 May 2015
Available online 9 June 2015

Keywords:
Allergen
Allergy
Cross-reactivity
Fungi
Molecular-based allergy diagnostics

A B S T R A C T
Exposure and sensitization to fungal allergens can promote the development and worsening of allergic diseases. Although numerous species of fungi have been associated with allergic diseases in the literature, the significance of fungi from the genera *Alternaria*, *Cladosporium*, *Penicillium*, *Aspergillus*, and *Malassezia* has been well documented. However, it should be emphasized that the contribution of different fungal allergens to allergic diseases is not identical, but species-specific.

Alternaria and *Cladosporium* species are considered to be important outdoor allergens, and sensitization and exposure to species of these genera is related to the development of asthma and rhinitis, as well as epidemics of asthma exacerbation, including life-threatening asthma exacerbation. In contrast, xerophilic species of *Penicillium* and *Aspergillus*, excluding *Aspergillus fumigatus*, are implicated in allergic diseases as indoor allergens. *A. fumigatus* has a high capacity to colonize the bronchial tract of asthmatic patients, causing severe persistent asthma and low lung function, and sometimes leading to allergic bronchopulmonary aspergillosis. *Malassezia* are common commensals of healthy skin, although they are also associated with atopic dermatitis, especially on the head and neck, but not with respiratory allergies.

Despite its importance in the management of allergic diseases, precise recognition of species-specific IgE sensitization to fungal allergens is often challenging because the majority of fungal extracts exhibit broad cross-reactivity with taxonomically unrelated fungi. Recent progress in gene technology has contributed to the identification of specific and cross-reactive allergen components from different fungal sources. However, data demonstrating the clinical relevance of IgE reactivity to these allergen components are still insufficient.

*Corresponding author. Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara, Kanagawa 252-0392, Japan.
E-mail address: y-fukutomi@sagamihara-hosp.gr.jp (Y. Fukutomi).
Peer review under responsibility of Japanese Society of Allergology.

Introduction

Fungi can have adverse effects on human health, causing infection, IgE-mediated allergy, non-IgE-mediated hypersensitivity, and toxicity/irritation. The incidence of fungal diseases has risen rapidly over the last two decades, and fungal allergy is one of the common health problems/medical conditions worldwide. It is estimated that there are approximately 1.5 million species of fungi, and numerous fungal species have been described as causes of allergic diseases in the literature. The pathogenic significance of fungi from the genera *Alternaria*, *Cladosporium*, *Penicillium*, *Aspergillus*, and *Malassezia* has been well described in the literature. The significance of *Candida*, and *Trichophyton* have also been discussed, but still controversial. However, it should be emphasized that the contribution of fungi to allergic diseases is species-specific, with different fungal species leading to allergic diseases with distinct presentations, which also vary according to the route and specific episode of fungal allergen exposure. This review focuses on the allergenicity of common environmental and commensal fungi in humans, and on the species-specific clinical relevance of these fungal allergens in allergic diseases.

Outdoor environmental fungi

Cladosporium and *Alternaria*, which display some lesional variations, are two of the major genera of outdoor airborne fungi worldwide. The outdoor concentration of fungal species from these genera has been associated with epidemics of asthma...
exacerbation. A survey of outdoor airborne fungi in Sagamihara city in Japan demonstrated that Cladosporium and Alternaria were the predominant genera, followed by Epicoccum spp., Aureobasidium spp., Curvularia spp., and Ulocladium spp. Detection of Cladosporium revealed two seasonal peaks, during the rainy season (June) and the autumn (September to October), whereas Alternaria was detected from April to October, but most frequently in the rainy season (June).

Indoor environmental fungi

Although there also is some lesional variation, Cladosporium, Penicillium, and Aspergillus spp. are reported to be the most common indoor airborne fungi. However, in the case of Cladosporium, because the indoor concentration is highly correlated with the outdoor concentration, the primary source of Cladosporium is considered to be the outdoor environment. A recent environmental survey in Japan used an air sampler to investigate the profile of indoor airborne fungal spores. The frequencies of isolates of Cladosporium spp., Penicillium spp., Aspergillus section restricti, and Aspergillus versicolor were 100, 78, 84, and 59%, respectively. Among all the isolated fungal species, the highest number of spores was detected for Aspergillus conicus, a species of Aspergillus section restricti. House dust (HD) also contains fungi, and the profile of fungi in HD is similar but not identical to that of airborne. In Japan, the profile of fungal spores isolated from HD was characterized by high frequencies of Eurotium spp. (88%), A. versicolor (90%), and Aspergillus section restricti (87%), and a relatively low frequency of Penicillium spp. (30%). The abundance of Aspergillus and Penicillium spores in the indoor environment may be explained by the finding that although optimal fungal growth requires high humidity, some xerophilic species of the genera Aspergillus and Penicillium are able to survive in a dry environment.

Prevalence of fungal sensitization

The prevalence of fungal sensitization displays wide geographical variation. Data from the European Community Respiratory Health Survey (ECRHS) demonstrated that among adults aged 20–44 years in the general population, the prevalence of positive skin tests using Alternaria and Cladosporium extracts ranged from 0.2 to 14.4%, and 0–11.9%, respectively.

The frequencies of positivity to fungal allergens among adult patients with asthma at Sagamihara National Hospital in Japan are shown in Fig. 1. Sensitization to Malassezia, Alternaria, and Cladosporium tended to decrease with age, which is in accordance with the general recognition that atopic asthma is more common in younger patients. However, the frequency of Aspergillus fumigatus did not decrease with age, most likely because sensitization to this species is associated with severe persistent asthma with long disease duration. A notable proportion of the patients, approximately 10–15%, were positive for common indoor environmental xerophilic fungi, in particular, Aspergillus restrictus, and Eurotium spp. The frequencies of positive skin tests for these fungi did not change with age, highlighting the potential significance of these indoor fungal species in middle-aged and elderly patients. This finding is similar to that of a study by Chou et al. Although Candida exhibits markedly high frequencies of positivity, the majority of affected patients have negative serum IgE tests for Candida (data not shown).

Cross-reactivity of fungal allergens

Measurement of serum IgE antibodies (Abs) from crude extract and/or a skin prick test using crude extract has been traditionally performed as the standard test for diagnosis of allergies. However, because of cross-reactivity between crude allergen extracts from

Fig. 1. Frequencies of positivity (%) to intradermal testing using fungal extracts among 1288 adult patients with asthma at Sagamihara National Hospital. Frequencies of sensitization to fungi shown in fig. A show statistically significant decrease trend with age (p trend<0.001 for all six fungi), and those to fungi shown in fig. B do not show any change with age. Extracts purchased from Torii Pharmaceutical (Japan); †† from HollisterStier (USA). Other fungal extracts were cultured in-house.
different fungi, apparent sensitization to crude fungal extracts does not always indicate genuine sensitization. Species-specific IgE reactivity is difficult to confirm using crude extracts alone, and this represents a major problem for the evaluation of IgE tests in clinical practice. More recently, allergenic molecules (allergen components) that are either purified from their native sources or produced as recombinant proteins, have been introduced into the battery of tests available for the diagnosis of allergic diseases. Molecular-based allergy (MA) diagnostics, formally known as component-resolved diagnostics (CRD), is an approach used to map the allergen sensitization of a patient at a molecular level, using purified natural or recombinant allergenic molecules instead of allergen extracts. One of the most important implications of MA diagnostics is its ability to distinguish genuine sensitization from sensitization due to cross-reactivity, following evaluation of the sensitization profile to specific allergens and pan-allergens.

This review focuses on specific and cross-reactive allergens from seven genera of common allergenic fungi. Cross-reactivity between fungal allergens is largely explained by taxonomic relationships between genera/species. Fig. 2 depicts the taxonomic relationships among all the allergenic fungi registered in the World Health Organization and International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature Sub-committee database (http://www.allergen.org/).

![Taxonomic relationships of allergenic fungi registered in the WHO/IUIS Allergen Nomenclature Sub-committee database](http://www.allergen.org/).

Alternaria

Alternaria alternata, which commonly grows on vegetation, is the most common species of the genus *Alternaria*, and it is the major environmental allergen associated with asthma and allergic rhinitis. *Alternaria* spp. are generally considered to be outdoor fungi, although they also exist in indoor environments. Airborne outdoor *Alternaria* spores are detectable from May to November, with the highest levels occurring in cultivated areas containing grassland and grain. A study using personal air samplers and nasal air samplers demonstrated that a greater number of spores were inhaled in an outdoor than an indoor environment, an effect that was accentuated by physical activity. Spores from *Alternaria* spp. are larger than those from most other fungi, at approximately 20–40 μm in diameter, and tend to be easily trapped in the nasal cavity. However, it has been reported that spores on cereal crops and grass may be broken into small fragments, presumably because of mechanized harvesting.

The clinical significance of *A. alternata* as the respiratory allergen has been well documented. Studies have revealed a strong association between sensitization to *Alternaria* spp. and the presence of asthma, as well as the severity of asthma. In addition, sensitization and exposure to *Alternaria* has been associated with epidemics of severe asthma exacerbation,
including respiratory arrest.15,52 Thunderstorms appear to be a contributory factor to high levels of fungal spores and epidemics of asthma exacerbation.6 Before a thunderstorm, an increase in air temperature and ozone concentration is observed, which is accompanied by a substantial increase in spore concentrations.5 A study in the UK in patients with Alternaria sensitization revealed a correlation between fragmented Alternaria spores, presumably caused by mechanized harvesting, and epidemics of acute asthma.55 Data from asthmatic patients identified in the ECRHS also demonstrate that sensitization to Alternaria is associated with a higher risk of asthma attacks during May to August in Southern Europe, and during July and August in Northern Europe.53

Alternaria can occur in indoor environments, especially under humid conditions, such as cervices in bathrooms and walls with dew condensation.17 However, the clinical relevance of Alternaria spp. as indoor fungi has not been deeply studied. Because indoor Alternaria concentrations are strongly influenced by outdoor concentrations,13 the independent contribution of indoor Alternaria concentrations is difficult to determine. However, a recent birth cohort study in Boston revealed a significant relationship between indoor dust-borne Alternaria at the age of 2–3 months and the frequency of wheezes, by one year old even after adjustment for outdoor airborne Alternaria concentrations.54 These data suggest that Alternaria in HD may be an important environmental allergen, in particular, for children.58

Although many allergenic proteins have been identified and approved by the WHO–IUIS Allergen Nomenclature Sub-committee (Table 1), Alt a 1 is considered to be only specific allergen component for the genuine Alternaria (or Pleosporaceae family) allergy.55–59 Spore germination promotes the release of allergens, including Alt a 1, from A. alternata.60 A recent study using immunogold electron microscopy demonstrated that Alt a 1 was mainly localized in the cell wall of airborne spores, which may explain the high clinical relevance of Alt a 1 as a respiratory allergen.55 Alt a 1 has been reported to cross-react with homologous fungal proteins from members of the Pleosporaceae family such as Stemphylium, Ulocladium, and Curvulalia.59,62 In contrast, allergenic proteins other than Alt a 1 exhibit a high sequence similarity with homologous proteins from taxonomically unrelated fungi. Thus, the diagnostic and clinical relevance of allergenic proteins other than Alt a 1 with respect to Alternaria allergy is unclear.

Cladosporium

Cladosporium is one of the most abundant genera of environmental fungi worldwide, and Cladosporium herbarum is one of the most common species to be isolated. Similar to Alternaria, Cladosporium is generally recognized as an outdoor fungus,4,15 but it is frequently detected in indoor environments.38,39,63 A strong correlation between indoor and outdoor Cladosporium concentrations has also been reported.59,64 The clinical relevance of Cladosporium as a respiratory allergen resembles that of Alternaria,55–67 whereas the contribution of this genus to the pathogenesis of asthma appears to be a little weaker than that of Alternaria. Data from the ECRHS indicate that the prevalence of positive skin prick tests for Cladosporium is 1.7% (ranging from 0 to 11.9%), which is lower than that for Alternaria (3.3%, ranging from 0.2 to 14.4%).47 The threshold concentration for evoking allergic symptoms is estimated to be 3,000 spores/m³ air for Cladosporium, which is substantially higher than that for Alternaria (100 spores/m³ air).59,68 The size of Cladosporium spores varies over a wide range, between 3 and 70 × 2–56 μm.60

Although many allergenic proteins have been identified and approved by the WHO–IUIS Allergen Nomenclature Sub-committee (Table 2), no specific major allergen components have been identified for Cladosporium allergies. With the exception of Cla h 8, all of the registered allergens are cross-reactive minor allergens.1 Cla h 8, an NADP-dependent mannitol dehydrogenase, is recognized by 57% of Cladosporium herbarum–sensitized patients;70 and it has 75% sequence similarity with Alt a 8, an NADP-dependent mannitol dehydrogenase from A. alternata.71 Presumably due to the cross-reactive nature of identified Cladosporium allergens, mono-sensitization to Cladosporium appears to be relatively rare.72

Penicillium

Penicillium is the blue or blue-green mold found on fruits and vegetables, and it is used for the production of blue mold cheese. While Penicillium is frequently isolated both in indoor and outdoor environments,11,12 many studies have focused on the significance of Penicillium as an indoor mold allergen.11,73,74 Indoor environmental factors, including inadequate heating and ventilation, the presence of pets, water leaks, and low sun exposure, are known to increase the concentrations of airborne Penicillium.14 Results for Alternaria and Cladosporium spp. indicate that indoor concentrations are highly correlated with outdoor concentrations, whereas for Penicillium spp., this correlation is not always observed.11 A birth cohort study in Connecticut and western Massachusetts evaluated the effect of exposure to specific genera of indoor airborne fungi, collected with a portable air sampler, on the incidence of respiratory symptoms. Although Cladosporium (61%) were most frequent followed by Penicillium (41%), airborne levels of Cladosporium were not related to an increased risk of wheeze. In contrast, the highest concentration of Penicillium was associated with a higher rate of incident wheeze (RR, 2.15, 95%CI, 1.34–3.46), and persistent cough

Table 1

<table>
<thead>
<tr>
<th>Species</th>
<th>Allergen</th>
<th>Biological activity</th>
<th>Molecular weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternaria</td>
<td>Alt a 1</td>
<td>16.4 and 15.3 band</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alt a 3</td>
<td>Heat shock protein</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Alt a 4</td>
<td>Disulfide isomerase</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Alt a 5</td>
<td>Ribosomal protein P2</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Alt a 6</td>
<td>Enolase</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Alt a 7</td>
<td>YCP4 protein</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Alt a 8</td>
<td>Mannitol dehydrogenase</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Alt a 10</td>
<td>Aldehyde dehydrogenase</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Alt a 12</td>
<td>Acid ribosomal protein P1</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Alt a 13</td>
<td>Glutathione-5-transferase</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Alt a 14</td>
<td>Manganese superoxide dismutase</td>
<td>24 kDa (reducing)</td>
</tr>
<tr>
<td></td>
<td>Alt a 15</td>
<td>Serine protease</td>
<td>58 kD</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Species</th>
<th>Allergen</th>
<th>Biological activity</th>
<th>Molecular weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cladosporium</td>
<td>Cla c 9</td>
<td>Vacularine serine protease</td>
<td>36</td>
</tr>
<tr>
<td>cladosporoides</td>
<td>Cla c 14</td>
<td>Transaldolase</td>
<td>36.5</td>
</tr>
<tr>
<td>Cladosporium</td>
<td>Cla h 2</td>
<td>Acid ribosomal protein P2</td>
<td>45</td>
</tr>
<tr>
<td>herbarum</td>
<td>Cla h 5</td>
<td>Acid ribosomal protein P2</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Cla h 6</td>
<td>Enolase</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Cla h 7</td>
<td>YCP4 protein</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Cla h 8</td>
<td>Mannitol dehydrogenase</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Cla h 9</td>
<td>Vacularine serine protease</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Cla h 10</td>
<td>Aldehyde dehydrogenase</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Cla h 12</td>
<td>Acid ribosomal protein P1</td>
<td>11</td>
</tr>
</tbody>
</table>
(RR, 2.06, 95%CI, 1.31—3.24).

Another cross-sectional study by the same authors confirmed the association of sensitization and exposure to indoor airborne *Penicillium* with wheeze and the severity of asthma.

Although numerous allergens from different *Penicillium* species have been identified and approved by the WHO—IUIS Allergen Nomenclature Sub-committee (Table 3), no species- or genus-specific major allergen components have been documented for *Penicillium* allergens. The major allergens from *Penicillium* spp. are alkaline and vacuolar serine proteases, which are referred to as group 13 and group 18 allergens, respectively.

These proteases exhibit high sequence similarity with homologous allergens from *A. fumigatus* (Asp f 13, Asp f 18). A study in Taipei demonstrated that 17% of asthmatic patients are positive to purified Pen ch 13 by IgE-immunoblotting, and the frequency of positivity increases with age, reaching 42% among patients aged over 70 years, indicating that *Penicillium* is of higher relevance to adults than childhood asthma. Because of the cross-reactive nature of identified *Penicillium* allergens, mono-sensitization to *Penicillium* appears to be relatively rare. Hypersensitivity pneumonitis induced by *Penicillium* species has also been reported.

Aspergillus

The genus *Aspergillus* includes more than one hundred species that are distributed ubiquitously in the environment. Human disorders caused by the *Aspergillus* include allergic asthma and/or rhinitis, allergic bronchopulmonary mycosis (ABPM),

allergic rhinosinusitis,

and invasive aspergillosis. ABPM is a pulmonary hypersensitivity disease characterized by sensitization to fungi, uncontrolled asthma, recurrent transient radiographic infiltrate, peripheral and pulmonary eosinophilia, and bronchiectasis.

A. fumigatus is the most common causal pathogen for ABPM. In addition, it is frequently isolated from the respiratory tract of patients with asthma who do not meet the criteria for allergic bronchopulmonary aspergillosis (ABPA),

and also from patients with respiratory diseases other than asthma, including cystic fibrosis,

chronic obstructive pulmonary disease,

tuberculosis-related fibrocavitary disease,

and occasionally in the respiratory tract of healthy individuals. The pathogenic capacity of *A. fumigatus* is related to its pronounced thermostolerance, which enables them to grow at human body temperature, and its small spore size (approximately 2—3 μm),

which enables transfer to the terminal airways. Despite its importance as a fungus that colonizes the human respiratory tract, *A. fumigatus* is not a dominant species in either indoor or outdoor environments. The most common environmental fungal species among the genus *Aspergillus* is *A. fumigatus*, but *Aspergillus niger*, *A. restrictus*, *A. versicolor*, and *Aspergillus ochraceous*. Studies have demonstrated that the clinical relevance of the association between exposure to indoor *Penicillium* spp. and the risk of asthma resembles that of *Penicillium* spp., which is a closely related fungus in the taxonomic classification.

Several studies have found that IgE sensitization to *A. fumigatus* and/or colonization of *A. fumigatus* in the respiratory tract of asthmatic patients is associated with reduced lung function and severe disease. The possible role of antifungal therapy in the treatment of fungal allergic asthma has also been reported.

Another study demonstrated that although *A. fumigatus* is not abundant in the indoor environment, isolation of this species from sputum was related to higher airborne concentrations of the fungus in the homes of asthmatic patients, suggesting that the home environment should also be considered as a source of fungal exposure. Therefore, housing intervention may be necessary for the management of fungal allergen-sensitized severe asthma.

Numerous allergens from *Aspergillus* have been identified and approved by the WHO—IUIS Allergen Nomenclature Sub-committee (Table 4). Some of these allergen components are species- or genus-specific, while others are pan-allergens that display cross-reactivity beyond the family or order.

The Asp f 1 allergen is not identified as an 18-kD allergen of mitogillin family, which is almost identical to restrictocin cloned from *A. restrictus*, and is a species-specific major allergen for *A. fumigatus*. The Asp f 1 allergen is not approved by the WHO—IUIS Allergen Nomenclature Sub-committee.

Table 3

Allergenic proteins from fungi of the genus *Penicillium* approved by the WHO/IUIS Allergen Nomenclature Sub-committee.

<table>
<thead>
<tr>
<th>Species</th>
<th>Allergen</th>
<th>Biological activity</th>
<th>Molecular weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>brevicompactum</td>
<td>Pen b 13</td>
<td>Alkaline serine protease</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Pen b 26</td>
<td>Acidic ribosomal prot. P1</td>
<td>11</td>
</tr>
<tr>
<td>Penicillium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chrysogenum</td>
<td>Pen ch 13</td>
<td>Alkaline serine protease</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Pen ch 18</td>
<td>Vacular serine protease</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Pen ch 20</td>
<td>N-acetyl-glucosaminidase</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Pen ch 31</td>
<td>Calreticulin</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Pen ch 33</td>
<td></td>
<td>36.5</td>
</tr>
<tr>
<td></td>
<td>Pen ch 35</td>
<td>Transaldolase</td>
<td></td>
</tr>
<tr>
<td>Penicillium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>citrinum</td>
<td>Pen c 3</td>
<td>Peroxyxosomal membrane protein</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Pen c 13</td>
<td>Alkaline serine protease</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Pen c 19</td>
<td>Heat shock protein P70</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Pen c 24</td>
<td>Elongation factor 1 beta</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Pen c 30</td>
<td>Catalase</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Pen c 32</td>
<td>Pectate lyase</td>
<td>40</td>
</tr>
<tr>
<td>Penicillium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>crustosum</td>
<td>Pen cr 26</td>
<td>605 acidic ribosomal</td>
<td>11 kDa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>phosphoprotein P1</td>
<td></td>
</tr>
<tr>
<td>Penicillium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxalicum</td>
<td>Pen o 18</td>
<td>Vacular serine protease</td>
<td>34</td>
</tr>
</tbody>
</table>

Table 4

Allergenic proteins from fungi of the genus *Aspergillus* approved by the WHO/IUIS Allergen Nomenclature Sub-committee.

<table>
<thead>
<tr>
<th>Species</th>
<th>Allergen</th>
<th>Biological activity</th>
<th>Molecular weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flavus</td>
<td>Asp f 13</td>
<td>Alkaline serine protease</td>
<td>34</td>
</tr>
<tr>
<td>fumigatus</td>
<td>Asp f 1</td>
<td>Mitogillin family</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Asp f 2</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Asp f 3</td>
<td>Peroxyosomal protein</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Asp f 4</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Asp f 5</td>
<td>Metalloprotease</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Asp f 6</td>
<td>Mn superoxide dismutase</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>Asp f 7</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Asp f 8</td>
<td>Ribosomal protein P2</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Asp f 9</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Asp f 10</td>
<td>Aspartate protease</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Asp f 11</td>
<td>Peptidyl-prol cytokine</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Asp f 12</td>
<td>Heat shock protein P90</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Asp f 13</td>
<td>Alkaline serine protease</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Asp f 15</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Asp f 16</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Asp f 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asp f 18</td>
<td>Vacular serine protease</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Asp f 22</td>
<td>Enolase</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Asp f 23</td>
<td>L3 ribosomal protein</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Asp f 27</td>
<td>Cyclophilin</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Asp f 28</td>
<td>Thioredoxin</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Asp f 29</td>
<td>Thioredoxin</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Asp f 34</td>
<td>Phia cell wall protein</td>
<td>20</td>
</tr>
<tr>
<td>Aspergillus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>niger</td>
<td>Asp n 14</td>
<td>Beta-lyoxidase</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Asp n 18</td>
<td>Vacular serine protease</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Asp n 25</td>
<td>3-phytase B</td>
<td>66—100</td>
</tr>
<tr>
<td>oryzae</td>
<td>Asp o 13</td>
<td>Alkaline serine protease</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Asp o 21</td>
<td>TAKA-amylase A</td>
<td>53</td>
</tr>
<tr>
<td>Aspergillus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>versicolor</td>
<td>Asp v 13</td>
<td>Extracellulare alkaline serine protease</td>
<td>43 kDa</td>
</tr>
</tbody>
</table>
present in spores, being produced after germination and growth of the fungi.105 and it is almost undetectable in HD extracts.106 Thus, respiratory sensitization to airborne Asp f 1 in the indoor environment seems to be uncommon, and patients who develop antibody responses to Asp f 1 have been exposed to \textit{A. fumigatus} which has germinated in their respiratory tract.106 A specific mAb-based ELISA for Asp f 1 has been shown to be a useful tool for standardization and quality control of \textit{A. fumigatus} allergenic products.107 Asp f 2 is a species-specific major allergen of \textit{A. fumigatus}, with a frequency of sensitization of 96%.100,108–110 While Asp f 4 is another well-described specific allergen, with a frequency of sensitization of 92%.111 On the contrary, Asp f 3112, Asp f 6113, Asp f 8114, Asp f 12115, Asp f 22116, and Asp f 27117, which correspond to peroxisomal membrane protein (PMP), manganese superoxide dismutase (MnSOD), ribosomal protein P2, heat shock protein 90, enolase, and cyclophilin from \textit{A. fumigatus}, exhibit high similarity and identity with homologous proteins from fungi of genera other than \textit{Aspergillus}.112,118,119 While many studies111,120–122 have focused on the clinical relevance of sensitization to panels of the \textit{Aspergillus} allergenic proteins, Asp f 1, 2, 3, 4, and 6, as diagnostic markers of ABPA, the results are controversial.120

Although some allergenic molecules, such as Asp f 9113 and the more recently identified Asp f 34123, have a relatively high sequence specificity for \textit{A. fumigatus} and a high prevalence of sensitization among the ABPA population, indicating that these allergens are of clinical importance, the number of studies demonstrating their clinical relevance has been limited to date. Asp n 14 and Asp n 25 from \textit{A. niger}, and Asp o 21 from \textit{Aspergillus orizae} have been identified as allergenic proteins causing occupational respiratory allergies.

It is important to recognize that most of the allergenic components from \textit{A. fumigatus} have been identified using sera from patients with ABPA. The importance of other allergenic proteins from the genus \textit{Aspergillus} as environmental respiratory allergens has not been well studied. According to clinical data from the author's hospital, the concordance between positive intradermal tests to \textit{A. fumigatus} and \textit{A. restrictus} is low (data not shown), which indicates that current techniques for serum IgE or skin tests using extracts from \textit{A. fumigatus} may not be used for the diagnosis of sensitization to environmental \textit{Aspergillus}.

Malassezia

\textit{Malassezia} yeasts (formally known as \textit{Pityrosporum orbiculare/ovalle}) are commensals of healthy human skin, but are also associated with pityriasis versicolor, seborrheic dermatitis, and atopic dermatitis.124,125 All the species within the genus, with the exception of \textit{Malassezia pachydermatis}, are lipid-dependent due to their inability to initiate de novo synthesis of C\textsubscript{14} or C\textsubscript{16} fatty acids.126 Thus, \textit{Malassezia} spp. do not exist in the external atmosphere. Although many species have been identified within the genus, the most commonly detected species on healthy human skin are \textit{Malassezia sympodialis}, \textit{M. globose}, and \textit{Malassezia restricta}.

\textit{Malassezia} spp allergens have been described as important exacerbating factors for atopic dermatitis (AD), in particular, head and neck-type adult AD, but they have not been associated with respiratory allergies. Studies have demonstrated the strong correlation between specific IgE Abs to \textit{Malassezia} and the presence of AD127–129 as well as between IgE Abs to \textit{Malassezia} and the severity of AD130–132 and dermatitis on head and neck.131,133 The frequency of sensitization to \textit{Malassezia} among the head and neck-type AD population is relatively high, ranging from 55% to 68%.122,134,135 Improvements in head and neck-type AD after antifungal therapy have been documented.136–138 Similar to healthy individuals, \textit{Malassezia sympodialis}, \textit{M. globose}, and \textit{M. restricta} are also commonly detected species on the skin of AD patients. However, in contrast to the strong IgE response of AD patients to \textit{Malassezia}, a study reported that the population density of \textit{Malassezia} on lesional AD skin was lower than non-lesional AD or healthy skin.139 Furthermore, a more recent study indicated that non-\textit{Malassezia} yeast microbiota of AD patients is more diverse than that of healthy individuals.140

Many allergenic proteins from fungi of the genus \textit{Malassezia} have been identified and approved by the WHO/IUIS Allergen Nomenclature Sub-committee (Table 5). \textit{Malassezia} species produce complex allergens that contain both common and species-specific allergen sequences.141,142 It is hypothesized the variation in \textit{Malassezia} microflora on the skin surface of AD patients is reflected by the heterogeneity of sensitivity to \textit{Malassezia} spp of each AD patient. Thus, serum IgE Ab tests using a mixture of \textit{M. sympodialis}, \textit{M. globose}, and \textit{M. restricta} are commercially available and used in clinical practice. Crude extracts of \textit{Malassezia} spp. also contain allergenic proteins that exhibit high sequence similarity to proteins from fungi of genera other than \textit{Malassezia}, including PMP (\textit{Mala} s 2, 3),117,143,144 cyclophilin (\textit{Mala} s 6),117,143,144 heat shock protein 70 (\textit{Mala} s 10),145 and thioredoxin (\textit{Mala} s 13).146 As a result, cross-reactivity is observed between crude extracts of \textit{Malassezia} spp. and those of fungi from genera other than \textit{Malassezia}. Mannan, a polysaccharide, is also known to be associated with IgE cross-reactivity beyond the genus.147 In contrast, \textit{Mala} s 1, 7, 8, and 9 are considered to be specific allergens with unique sequences.129,144,148,149

Casagrande et al. investigated the frequency of sensitization to a panel of recombinant \textit{M. sympodialis} allergens (\textit{rMala} s 1 and 5–9) in 51 patients with atopic eczema who were positive for IgE Abs to crude \textit{M. sympodialis} (ImmuNoCAP m70). Analysis by ELISA indicated that the frequencies of positivity for IgE Abs to \textit{rMala} s 1, 5, 6, 7, 8, and 9 were 39, 47, 55, 10, 31, and 61%, respectively, indicating that \textit{Mala} s 1, 5, 6 and 9 are the predominant allergenic components.129

\textbf{Candida}

\textit{Candida} is a genus of yeasts, with many species being commensals of the skin, and the gastrointestinal and genitourinary tracts. \textit{Candida albicans} is the most frequently isolated species and many studies have suggested that it plays a role in the pathogenesis of allergic diseases. However, the clinical significance of \textit{C. albicans} as an allergen causing allergic diseases remains controversial. Many studies have shown the association between IgE sensitization to \textit{C. albicans}, and the presence and severity of AD.150–157 In addition, \textit{C. albicans} is more frequent in the gastrointestinal tract of patients

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Species & Allergen & Molecular weight \\
\hline
\textit{Malassezia furfur} & Mala f 2 & 21 \\
 & Mala f 3 & 20 \\
 & Mala f 4 & 35 \\
\hline
\textit{Malassezia sympodialis} & Mala s 1 & 25 \\
 & Mala s 5 & 35 \\
 & Mala s 6 & 20 \\
 & Mala s 7 & 35 \\
 & Mala s 8 & 67 \\
 & Mala s 9 & 13 \\
 & Mala s 10 & 86 \\
 & Mala s 11 & 23 \\
 & Mala s 12 & 67 \\
 & Mala s 13 & 13 \\
\hline
\end{tabular}
\caption{Allergenic proteins from fungi of the genus \textit{Malassezia} approved by the WHO/IUIS Allergen Nomenclature Sub-committee.}
\end{table}
with AD compared with healthy controls.151,154 However, because of the significant cross-reactivity between C. albicans and Malassezia allergens,155,156 the clinical relevance of specific IgE sensitization to C. albicans, independent from that to Malassezia, also remains a matter of debate.

The clinical significance of C. albicans as a causal allergen for respiratory allergies is much less clear than for AD.157 C. albicans is frequently isolated from the respiratory tract. However, a study in patients with cystic fibrosis demonstrated that although sensitization to and colonization of C. albicans was common, colonization and sensitization were not correlated.158 While some asthmatic patients who are IgE-sensitized to C. albicans experience an immediate bronchial response after inhalation of C. albicans extract,159 its specific significance beyond fungal cross-reactivity is yet to be clarified. Asero et al. reported on the clinical features of adult patients with respiratory allergies monosensitized to C. albicans.160 The proportion of males and females was equally distributed, the mean age was 58 years old, which was higher than atopic controls, and 44% had nasal polyposis. The same author demonstrated that the higher frequency of sensitization to C. albicans in patients with nasal polyposis compared with the general subjects with respiratory allergy.161 One study examined the association between recurrent vaginal candidiasis and atopy in women. Atopy, defined by the presence of allergic respiratory diseases or a positive skin prick test to at least one allergen, was associated with recurrent vaginal candidiasis, whereas specific IgE to C. albicans was not.162 Other studies have revealed an association between IgE sensitization to C. albicans and chronic urticaria,163 as well as a high frequency of sensitization to C. albicans in eosinophilic esophagitis.164

Several allergenic proteins from fungi of the genus Candida have been approved by the WHO/IUIS Allergen Nomenclature Sub-committee. Candida a 1 is a 40-kD alcohol dehydrogenase from C. albicans. Using sera from 30 asthmatic patients with a positive skin test and IgE Abs to C. albicans, IgE immunoblotting of C. albicans extract showed that Cand a 1 had the highest frequency, being recognized by 23 (77%) patients.164 Cand a 3 is a 20-kD peroxisomal protein, which has 62% sequence identity with a hypothetical protein (YDR533c) from Saccharomyces cerevisiae.165 Nine (56%) of 16 asthmatic sera with positive serum IgE Abs tests to C. albicans displayed positivity to Cand a 3 in IgE immunoblotting. Candida b 2 is a 20-kD peroxisomal membrane protein from Candida boidinii, which displays cross-reactivity with PMP from A. fumigatus, Asp f 3.112 Secreted aspartyl proteinase (SAP; formally known as C. albicans acid protease) is an extracellular hydrolytic enzyme secreted by C. albicans and some pathogenic Candida species, and it is a key determinant of the virulence of C. albicans.166 Akiyama et al. demonstrated that the significance of SAP as an allergen for respiratory and mucosal allergy after conjunctival and bronchial provocation with the purified SAP enzyme.157,158 Isolated late skin and bronchial responses to purified SAP were also observed for nonatopic asthmatics whose peripheral blood mononuclear cells released IL-5 upon incubation with purified SAP, which indicated the possible role of SAP as a T-cell allergen for nonatopic asthma.169

Trichophyton

Fungi in the genus Trichophyton are known as the causal pathogen of dermatophytosis, a fungal infection of the skin, hair, and nails. Trichophyton rubrum and Trichophyton mentagrophytes are the most common pathogens in the genus. Although Trichophyton spp. are only found at low concentrations in indoor and outdoor environments, sensitization to Trichophyton is relatively common among the general atopic population.72 This is attributed to the high prevalence of dermatophytosis in the general population.170–172 High levels of IgE Abs to Trichophyton are found in patients with trichophytosis, regardless of atopy,173,174 indicating that Trichophyton infection, not respiratory exposure, is the major determinant of an IgE response to Trichophyton. However, it has been suggested that tinea infection/sensitization plays a role in the pathogenesis of asthma and rhinitis.175–178 In a placebo-controlled clinical trial by Ward et al., an improvement in asthma symptoms, peak flow, and steroid use was observed among patients with late-onset asthma who had tinea infection after oral fluconazole treatment.179 However, the route of exposure to Trichophyton allergens in such Trichophyton-infected patients has not been identified. A few reports have suggested the possible role of inhaled Trichophyton in the pathogenesis of asthma or rhinoconjunctivitis among subjects without Trichophyton infection.180 Occupational exposure to airborne Trichophyton in nail dust has been shown to induce nasal and eye symptoms in chiropodists.181 Sensitization to Trichophyton is also reported to be a risk factor for more severe disease among the general asthmatic population.182

Some allergenic proteins from fungi of the genus Trichophyton have been identified and approved by the WHO/IUIS Allergen Nomenclature Sub-committee. Tri t 1 is a 30-kD, exo 1,3-beta-glucanase that causes an immediate hypersensitivity skin reaction. It is a major allergen of Trichophyton tonsurans, with the prevalence of sensitization being \% 73 (22 of 30) in patients with asthma rhinitis or urticaria who were sensitized to Trichophyton extract.183–185 Tri t 4 is an 83-kD serine protease that is associated with delayed hypersensitivity skin reactions, but can also cause immediate hypersensitivity skin reactions.186 Tri r 2, from the T. rubrum species, is as a 29-kD serine protease that elicits immediate and delayed-type hypersensitivity skin reactions in different individuals.187,188 Tri r 4, an 85-kD serine protease, has also been identified but it does not elicit skin test reactivity.188

Conclusion

The clinical and diagnostic relevance of allergens from seven common genera of fungi has been reviewed. Recent progress in gene technology has greatly contributed to the identification of species-specific and cross-reactive allergenic molecules from different allergenic fungal sources. However, data verifying the clinical and diagnostic relevance of IgE reactivity to these allergens are insufficient. Recent studies from Japan have suggested the possible contribution of other fungal allergen sources, including Schizopyllum commune189,190 and Bjerkandera adusta191 from basidiomycetous fungi, to the pathogenesis of respiratory allergy, cough, and ABPM. Data regarding the species-specific impact of these fungi on the general allergic population are also needed.

Acknowledgments

The authors would like to thank all those who were involved in data collection and processing; in particular, Dr. Maiko Watanabe, Yoichi Kamata, and Kosuke Takatori from National Institute of Health Science (of Japan) for providing fungal strains, Dr. Katsuhisa Uchida from Teikyo University for providing fungal extracts, Akemi Saito from Sagamihara National Hospital for the fungal cultures, and Yuji Kawakami from FCC Research Institute Inc. for advice on the taxonomic tree of allergenic fungi. This study was partially supported by the Health Labour Sciences Research Grant on allergic disease and immunology from the Ministry of Health Labour and Welfare of Japan.
Conflict of interest
The authors have no conflict of interest to declare.

References

64. Chew GL, Rogers C, Burge HA, Muilenberg ML, Gold DR. Dustborne and

62. Saenz-de-Santamaria M, Postigo I, Gutierrez-Rodriguez A, Cardona G,

63. Garrett MH, Rayment PR, Hooper MA, Abramson MJ, Hooper BM. Indoor

61. Twaroch TE, Arcalis E, Ster

60. Mitakakis TZ, Barnes C, Tovey ER. Spore germination increases allergen

68. Gravesen S. Fungi as a cause of allergic disease.

75. Gent JF, Ren P, Belanger K, Triche E, Bracken MB, Holford TR, et al. Levels of
differing relations to home characteristics.

91–5.

Twaroch TE, Arcalis E, Ster

64. Chew GL, Rogers C, Burge HA, Muilenberg ML, Gold DR. Dustborne and

62. Saenz-de-Santamaria M, Postigo I, Gutierrez-Rodriguez A, Cardona G,

63. Garrett MH, Rayment PR, Hooper MA, Abramson MJ, Hooper BM. Indoor

61. Twaroch TE, Arcalis E, Ster

60. Mitakakis TZ, Barnes C, Tovey ER. Spore germination increases allergen

68. Gravesen S. Fungi as a cause of allergic disease.

75. Gent JF, Ren P, Belanger K, Triche E, Bracken MB, Holford TR, et al. Levels of
differing relations to home characteristics.

